单克隆抗体制备与应用
- 格式:docx
- 大小:28.05 KB
- 文档页数:10
单克隆抗体的制备及应用 It was last revised on January 2, 2021单克隆抗体的制备及应用单克隆是由杂交瘤产生的、只针对复合上某一单个。
技术(monoclonal antibody technique):一种免疫学技术,将产生抗体的单个同骨髓肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的,并以此生产抗体。
是仅由一种类型的细胞制造出来的抗体,对应于多克隆抗体、多株抗体——由多种类型的细胞制造出来的一种抗体。
1 单克隆抗体的优点与局限性:单克隆抗体的优点:(1)杂交瘤可以在体外“永久”地存活并传代,只要不发生细胞株的基因突变,就可以不断地生产高特异性、高均一性的抗体。
(2)可以用相对不纯的抗原,获得大量高度特异的、均一的抗体。
(3)由于可能得到“无限量”的均一性抗体,所以适用于以标记抗体为特点的免疫学分析方法,如IRMA和ELISA等。
(4)由于单克隆抗体的高特异性和单一生物学功能,可用于体内的放射免疫显像和免疫导向治疗。
总体来说,即:高特异性、高纯度、重复性好、敏感性强、成本低和可大量生产等。
单克隆抗体的局限性:(1)单克隆抗体固有的亲和性和局限的生物活性限制了它的应用范围。
由于单克隆抗体不能进行沉淀和凝集反应,所以很多检测方法不能用单克隆抗体完成。
(2)单克隆抗体的反应强度不如多克隆抗体。
(3)制备技术复杂,而且费时费工,所以单克隆抗体的价格也较高。
2 单克隆抗体的制备:单克隆抗体的制备原理:应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。
这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。
单克隆抗体的制备过程:抗原准备、动物的选择与、细胞融合、选择杂交瘤细胞及检测、杂交瘤的克隆化、杂交瘤细胞的冻存与复苏、单克隆抗体的纯化等步骤。
免疫学研究中单克隆抗体的制备及其在疾病预防和治疗中的应用中文版:免疫学研究中单克隆抗体的制备及其在疾病预防和治疗中的应用单克隆抗体(mAb)是由单一的淋巴细胞克隆所产生的抗体,是目前广泛应用于疾病预防和治疗的一类生物制品。
单克隆抗体具有高特异性、高亲和力以及高度稳定性等优点,因此研究和开发单克隆抗体已成为生物制品领域的热点之一。
本文将简要介绍单克隆抗体的制备原理及其在疾病预防和治疗中的应用。
单克隆抗体的制备原理制备单克隆抗体的基本原理是从一个淋巴细胞中获得特异性单一的抗体基因并进行扩增,从而得到大量相同的单克隆抗体。
其过程包括以下几个步骤:1. 免疫原选择首先需要选择合适的免疫原,一般采用纯化的蛋白质、多肽或者病毒、细胞等生物体的整体或部分结构。
此外,也可以利用人工合成的类似物或其他不同来源的物质进行免疫原选择。
2. 免疫反应将免疫原注射到动物体内,动物的免疫系统便会针对该免疫原产生相应的抗体。
这个过程需要仔细控制免疫原的种类、用量和注射方式等因素,以确保获得高效的及特异性的免疫反应。
3. 细胞融合将免疫细胞和肿瘤细胞进行融合,形成杂交瘤细胞(Hybridoma)。
该过程需要注意克隆合适的融合细胞和免疫细胞,以保证融合后的细胞能够稳定分泌特异性的单克隆抗体。
4. 筛选与鉴定对杂交瘤细胞进行筛选和鉴定,以获得产生高效的单克隆抗体的细胞株。
筛选方法包括酶联免疫吸附试验(ELISA)、流式细胞术、免疫组化等多种方法。
5. 生产和纯化选优的杂交瘤细胞株进行大规模生产,获得相应的单克隆抗体。
此外,还需要对其进行充分的纯化和质量分析等,以保证单克隆抗体的稳定性和高纯度。
单克隆抗体在疾病预防和治疗中的应用单克隆抗体广泛应用于疾病预防和治疗领域,其疗效与其优越的结构和性质密切相关。
在疾病预防中,单克隆抗体可用于对特定细菌、病毒等病原体的识别和清除,从而预防感染和疾病的发生。
目前已经有多种单克隆抗体用于疾病预防,其中包括白喉疫苗、流感疫苗等。
英文回答:The basic process for the preparation of monoclonic resistance consists of the selection of suitable antigens and the immunisation of animals to induce the production of specific antibodies。
The nucleic acid is then extracted from the spleen cells of immunosuppressants and, when integrated with tumour cells, it is formed into a hybrid tumour cell。
A hybrid cell is screened to obtain a single cloned hybrid cell strain of high—yield antibodies。
These monoclonal antibodies are strictly identified to ensure their purity and specificity。
This preparation process aims to ensure the quality and stability of monoclon antibodies, in line with the country ' s approach to scientific and technological development, and to promote innovative development in the field of medicine and the flourishing of health。
单克隆抗体的制备及应用实验原理1. 简介单克隆抗体是指由单一B细胞克隆扩增得到的抗体,在医学研究和生物制药等领域具有重要的应用价值。
本文将介绍单克隆抗体的制备方法及其在实验中的应用原理。
2. 单克隆抗体的制备方法单克隆抗体的制备需要经历以下几个步骤:2.1 免疫原的选择免疫原的选择是单克隆抗体制备的第一步。
通常选择与所需抗体结构最为相似的蛋白质作为免疫原,可以是纯化的蛋白质、重组蛋白、细胞表面抗原等。
2.2 免疫动物的免疫选择适当的免疫动物,常见的包括小鼠、大鼠、兔子等。
将免疫原与免疫佐剂混合注射到动物体内,触发免疫反应,使得免疫动物产生特异性抗体。
2.3 细胞融合将免疫动物的脾细胞和癌细胞进行融合,常用的癌细胞包括骨髓瘤细胞、淋巴瘤细胞等。
通过融合方法,使得脾细胞和癌细胞融合成为杂交瘤细胞。
2.4 杂交瘤细胞的筛选与培养对融合后的杂交瘤细胞进行筛选,常用的方法包括喷洒法、限稀稀释法等。
筛选出具有单克隆性的杂交瘤细胞后,进行培养、扩增。
2.5 单克隆抗体的纯化将培养得到的杂交瘤细胞进行离心、洗涤等操作,得到含有目标抗体的上清液。
通过柱层析、电泳等方法,对上清液进行纯化,最终得到单克隆抗体。
3. 单克隆抗体的应用实验原理单克隆抗体在实验室中有多种应用,包括免疫组化、免疫印迹、流式细胞术等。
以下将介绍单克隆抗体在这些实验中的应用原理:3.1 免疫组化免疫组化是一种检测组织或细胞中特定抗原表达情况的方法。
通过与组织或细胞中特定分子结合,单克隆抗体可以为我们提供目标抗原的定位和分布情况。
3.2 免疫印迹免疫印迹是一种检测特定蛋白质表达情况的方法。
通过将蛋白质转移到膜上,并与特异单克隆抗体结合,可以用于检测目标蛋白质的存在与定量。
3.3 流式细胞术流式细胞术是一种用于分析和鉴定细胞表面标记物的方法。
通过与特定抗原结合,单克隆抗体可以进行标记,并通过流式细胞仪进行检测和分析。
3.4 免疫沉淀免疫沉淀是一种用于富集目标蛋白质的方法。
单克隆抗体的制备及应用 The latest revision on November 22, 2020单克隆抗体的制备及应用单克隆是由杂交瘤产生的、只针对复合上某一单个。
技术(monoclonalantibodytechnique):一种免疫学技术,将产生抗体的单个同骨髓肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的,并以此生产抗体。
是仅由一种类型的细胞制造出来的抗体,对应于多克隆抗体、多株抗体——由多种类型的细胞制造出来的一种抗体。
1单克隆抗体的优点与局限性:1.1单克隆抗体的优点:(1)杂交瘤可以在体外“永久”地存活并传代,只要不发生细胞株的基因突变,就可以不断地生产高特异性、高均一性的抗体。
(2)可以用相对不纯的抗原,获得大量高度特异的、均一的抗体。
(3)由于可能得到“无限量”的均一性抗体,所以适用于以标记抗体为特点的免疫学分析方法,如IRMA和ELISA 等。
(4)由于单克隆抗体的高特异性和单一生物学功能,可用于体内的放射免疫显像和免疫导向治疗。
总体来说,即:高特异性、高纯度、重复性好、敏感性强、成本低和可大量生产等。
1.2单克隆抗体的局限性:(1)单克隆抗体固有的亲和性和局限的生物活性限制了它的应用范围。
由于单克隆抗体不能进行沉淀和凝集反应,所以很多检测方法不能用单克隆抗体完成。
(2)单克隆抗体的反应强度不如多克隆抗体。
(3)制备技术复杂,而且费时费工,所以单克隆抗体的价格也较高。
2单克隆抗体的制备:单克隆抗体的制备原理:应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。
这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。
单克隆抗体的制备过程:抗原准备、动物的选择与、细胞融合、选择杂交瘤细胞及检测、杂交瘤的克隆化、杂交瘤细胞的冻存与复苏、单克隆抗体的纯化等步骤。
单克隆抗体的制备方法与应用一、前言单克隆抗体是指一种具有高度特异性和亲和力的抗体,其来源于单个B细胞克隆。
相比多克隆抗体,单克隆抗体更加纯净、稳定和可靠,因此在生物医学研究、诊断和治疗等方面有着广泛的应用。
本文将介绍单克隆抗体的制备方法与应用。
二、单克隆抗体的制备方法1. 免疫动物首先需要选取适当的动物进行免疫,通常选择小鼠或大鼠。
在进行免疫前需要对动物进行预处理,例如注射低剂量的抗生素来消除潜在的感染。
2. 免疫原选择选择合适的免疫原是制备单克隆抗体的关键步骤。
常见的选择包括蛋白质、多肽、细胞表面分子等。
在选择时需要考虑到其特异性、稳定性和可重复性等因素。
3. 免疫程序在进行免疫前需要对动物进行预处理,例如注射低剂量的抗生素来消除潜在的感染。
接着,将免疫原注射到动物体内,通常需要多次免疫以增强免疫效果。
在免疫过程中需要对动物进行监测,例如采集血样检测抗体水平。
4. 融合细胞的制备在获得足够的抗体后,需要从动物体内采集B细胞并与骨髓瘤细胞进行融合。
常用的骨髓瘤细胞包括SP2/0和NS0等。
5. 单克隆抗体筛选通过限稀法或单一细胞分离法等方法将融合细胞分离为单个克隆,并通过ELISA、免疫印迹等方法筛选出特异性较高的单克隆抗体。
接着对筛选出的单克隆抗体进行扩增和纯化等处理。
三、单克隆抗体的应用1. 生物医学研究单克隆抗体在生物医学研究中有着广泛的应用,例如作为特定蛋白质或分子的检测工具、用于药物开发和治疗等。
2. 诊断单克隆抗体在诊断方面也有着重要的应用,例如用于肿瘤标志物的检测、病原体的检测等。
3. 治疗单克隆抗体在治疗方面也有着广泛的应用,例如用于治疗癌症、自身免疫性疾病等。
其中一些单克隆抗体已经被批准为药物并用于临床治疗。
四、总结单克隆抗体是一种具有高度特异性和亲和力的抗体,在生物医学领域中有着广泛的应用。
其制备方法包括适当动物选择、合适免疫原选择、多次免疫程序、融合细胞制备和单克隆抗体筛选等步骤。
单克隆抗体的制备及应用单克隆抗体技术是由淋巴细胞杂交瘤产生的、只针对复合抗原分子上某一单个抗原决定簇。
单克隆抗体B淋巴细胞antibody technique)同骨髓肿瘤细胞杂交,获:一种免疫学技术,将产生抗体的单个(monoclonal得既能产生抗体,又能无限增殖的杂种细胞,并以此生产抗体。
是仅由一种类型的细胞制造出来的抗体,对应于多克隆抗体、多株抗体——由多种类型的细胞制造出来的一种抗体。
1 单克隆抗体的优点与局限性:1.1 单克隆抗体的优点:(1)杂交瘤可以在体外“永久”地存活并传代,只要不发生细胞株的基因突变,就可以不断地生产高特异性、高均一性的抗体。
(2)可以用相对不纯的抗原,获得大量高度特异的、均一的抗体。
(3)由于可能得到“无限量”的均一性抗体,所以适用于以标记抗体为特点的免疫学分析方法,如IRMA和ELISA等。
(4)由于单克隆抗体的高特异性和单一生物学功能,可用于体内的放射免疫显像和免疫导向治疗。
总体来说,即:高特异性、高纯度、重复性好、敏感性强、成本低和可大量生产等。
1.2 单克隆抗体的局限性:(1)单克隆抗体固有的亲和性和局限的生物活性限制了它的应用范围。
由于单克隆抗体不能进行沉淀和凝集反应,所以很多检测方法不能用单克隆抗体完成。
(2)单克隆抗体的反应强度不如多克隆抗体。
(3)制备技术复杂,而且费时费工,所以单克隆抗体的价格也较高。
2 单克隆抗体的制备:单克隆抗体的制备原理:应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。
这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。
单克隆抗体的制备过程:抗原准备、动物的选择与免疫、细胞融合、选择杂交瘤细胞及抗体检测、杂交瘤的克隆化、杂交瘤细胞的冻存与复苏、单克隆抗体的纯化等步骤。
一、实验目的1. 学习单克隆抗体的制备方法;2. 掌握单克隆抗体的鉴定技术;3. 了解单克隆抗体在免疫学研究和临床诊断中的应用。
二、实验原理单克隆抗体(Monoclonal Antibody,mAb)是由单个B细胞克隆产生的,具有高度特异性和亲和力。
单克隆抗体的制备通常采用杂交瘤技术,即将B细胞与肿瘤细胞融合,形成杂交瘤细胞,杂交瘤细胞既具有B细胞的抗体产生能力,又具有肿瘤细胞的无限增殖能力。
通过筛选和培养杂交瘤细胞,可以得到大量相同的单克隆抗体。
三、实验材料1. 实验动物:Balb/c小鼠;2. 抗原:目的蛋白;3. 细胞株:SP2/0(小鼠骨髓瘤细胞);4. 培养基:IMDM培养基、DMEM培养基、RPMI-1640培养基;5. 试剂:FCS、HAT(Hypoxanthine-Aminopterin-Thymidine)、PEG(聚乙二醇)、兔抗小鼠IgG-HRP(辣根过氧化物酶标记)、羊抗兔IgG-FITC(荧光素异硫氰酸酯标记);6. 仪器:CO2培养箱、倒置显微镜、酶标仪、流式细胞仪等。
四、实验方法1. 抗原免疫小鼠:将抗原注入Balb/c小鼠体内,免疫小鼠,制备抗体。
2. 细胞融合:收集免疫小鼠脾细胞,与SP2/0细胞按一定比例混合,加入PEG,诱导细胞融合。
3. 融合细胞筛选:将融合细胞接种于96孔板,加入HAT培养基,培养7-10天,观察细胞生长情况,筛选出阳性克隆。
4. 阳性克隆扩大培养:将阳性克隆扩大培养,制备杂交瘤细胞。
5. 阳性克隆抗体检测:收集杂交瘤细胞培养上清,进行ELISA检测,鉴定阳性克隆。
6. 阳性克隆抗体纯化:将阳性克隆抗体进行亲和层析或蛋白A/G层析,纯化抗体。
7. 阳性克隆抗体鉴定:采用流式细胞术或免疫荧光技术,鉴定阳性克隆抗体。
五、实验结果1. 免疫小鼠制备抗体:免疫小鼠后,血清抗体水平明显升高。
2. 细胞融合:融合细胞生长良好,阳性克隆筛选成功。
3. 阳性克隆扩大培养:阳性克隆杂交瘤细胞生长旺盛。
单克隆抗体技术路线引言:单克隆抗体技术是一种重要的生物医学研究方法,也是生物制药领域的重要工具。
本文将介绍单克隆抗体技术的基本原理、制备步骤以及应用领域,以帮助读者更好地了解和应用这一技术。
一、单克隆抗体技术的基本原理单克隆抗体技术是一种通过克隆单个抗体细胞,制备具有相同抗原结合特异性的抗体的方法。
其主要原理是将抗原注射到实验动物体内,激发机体产生免疫应答,然后采集动物体内的B细胞,融合B 细胞与骨髓瘤细胞,形成杂交瘤细胞,最后通过筛选获得特异性抗原结合能力的单克隆抗体。
二、单克隆抗体制备步骤1. 免疫原选择:选择合适的免疫原,通常为纯化的蛋白质或多肽。
2. 免疫程序:将免疫原注射到实验动物体内,激发免疫应答。
3. B细胞采集:从免疫动物体内采集脾细胞或淋巴结细胞,富集含有目标抗体的B细胞。
4. 杂交瘤细胞制备:将采集到的B细胞与骨髓瘤细胞融合,形成杂交瘤细胞。
5. 杂交瘤细胞筛选:通过限制性稀释法或酶标记法等方法,筛选出分泌特异性抗原结合能力的杂交瘤细胞。
6. 单克隆抗体生产:将筛选出的杂交瘤细胞进行扩增培养,收集培养上清液,纯化得到单克隆抗体。
三、单克隆抗体技术的应用领域1. 生物学研究:单克隆抗体可用于特定分子或细胞的定位和鉴定,帮助研究者了解生物体内的生物过程和机制。
2. 临床诊断:单克隆抗体可用于检测和诊断疾病,如癌症、感染性疾病和自身免疫性疾病等。
3. 治疗应用:单克隆抗体可用于治疗某些疾病,如肿瘤、免疫性疾病和传染病等,具有较高的治疗效果和较低的副作用。
4. 生物制药:单克隆抗体作为生物制药领域的重要工具,可用于药物研发、质量控制和生产等方面。
结论:单克隆抗体技术是一种重要的生物医学研究方法和生物制药工具,其制备步骤简单明了,应用领域广泛。
随着技术的不断发展和完善,单克隆抗体技术在生物医学领域将发挥越来越重要的作用,为疾病的诊断和治疗提供更多的选择和可能。
相信随着对单克隆抗体技术的深入研究和应用,必将为人类健康事业作出更大贡献。
单克隆抗体的制备原理及应用概述单克隆抗体是由单一克隆细胞分泌的抗体,具有单一的抗原结合特异性,在生物医学研究和临床诊疗中具有重要的应用价值。
本文将介绍单克隆抗体的制备原理及其在医学领域的主要应用。
制备原理单克隆抗体的制备包括如下几个步骤:1.抗原免疫:选择目标抗原,根据需要选择适当的动物作为免疫宿主,并注射抗原以激发免疫反应。
2.B细胞分离:从免疫宿主的脾脏或淋巴结中分离出B细胞,这些细胞具有产生抗体的能力。
3.融合:将B细胞与癌细胞(常用的是骨髓瘤细胞)进行融合,生成一种称为杂交瘤细胞的细胞系。
4.筛选:通过筛选,选择出产生特定抗原结合特异性的单个细胞。
常用的筛选方法包括ELISA和流式细胞术。
5.扩增和提取:将筛选出的单克隆细胞进行扩增,然后提取单克隆抗体。
应用领域单克隆抗体在医学领域具有广泛的应用,主要包括以下几个方面:1.肿瘤治疗:单克隆抗体可以用于肿瘤治疗,通过特异性结合肿瘤细胞表面的抗原,识别并杀灭肿瘤细胞。
例如,CD20单克隆抗体在非霍奇金淋巴瘤治疗中被广泛使用。
2.自身免疫性疾病治疗:单克隆抗体可以用于治疗自身免疫性疾病,如风湿性关节炎、狼疮等。
它们可以通过抑制免疫反应的关键分子,降低炎症反应和组织损伤。
3.诊断试剂:单克隆抗体可以用作诊断试剂,帮助检测疾病标志物或特定细胞表面受体。
例如,嗜酸性粒细胞抗体可以用来识别嗜酸性粒细胞,从而辅助诊断哮喘和过敏性疾病。
4.病原体检测:单克隆抗体可以用于检测病原体,如病毒、细菌等。
它们可以特异性地结合病原体表面的蛋白质,从而帮助诊断和监测感染性疾病。
5.药物研发:单克隆抗体可以用于药物研发,如生物制剂和抗体药物。
它们可以作为靶向药物的组成部分,具有高度的特异性和选择性。
通过上述应用领域的介绍,可以看出单克隆抗体在医学领域的广泛应用,为疾病的诊断和治疗提供了有效的手段。
总结单克隆抗体的制备原理简单明了,包括抗原免疫、B细胞分离、融合、筛选、扩增和提取等步骤。
单克隆抗体的应用及原理单克隆抗体是指由单一细胞株产生的、只针对特定抗原的抗体。
相对于多克隆抗体,单克隆抗体具有更高的特异性和稳定性,因此在医学、生物学、生物技术等领域有着广泛的应用。
本文将从单克隆抗体的原理、制备方法和应用三个方面进行介绍。
一、单克隆抗体的原理单克隆抗体的制备基于生物学中的免疫原理。
当机体受到外来抗原的侵袭时,免疫系统会产生对抗原的免疫应答,其中的一种反应是产生抗体。
抗体是一种由免疫细胞(主要是B细胞)合成的蛋白质,它可以结合到抗原表面的特定区域(抗原决定簇,Epitope),从而识别和中和抗原。
抗体的结构包括两个重链和两个轻链,每个链都含有一个可变区(variable region,V区)和一个恒定区(constant region,C区)。
V区是抗体分子中最为多样化的部分,它决定了抗体的特异性。
当抗原与B细胞表面的抗体结合后,B细胞会被激活并分化成浆细胞,进而产生大量的抗体分子。
单克隆抗体的制备过程中,需要先制备出特定的抗原。
然后,将该抗原注射到小鼠等动物体内,激活其免疫系统产生抗体。
接着,从动物的脾脏等淋巴组织中分离出B细胞,并将其与肿瘤细胞融合,形成一种称为杂交瘤(hybridoma)的细胞。
杂交瘤细胞既具有B细胞的抗体合成能力,又具有肿瘤细胞的无限增殖能力。
在一系列的筛选和鉴定过程中,可以筛选出只针对特定抗原的单克隆抗体细胞株,进而大规模制备单克隆抗体。
二、单克隆抗体的制备方法单克隆抗体的制备主要包括以下几个步骤:1. 抗原的制备:首先需要准备出特定的抗原,可以是蛋白质、多肽、糖类、药物等。
2. 动物免疫:将抗原注射到小鼠等动物体内,激活其免疫系统产生抗体。
注射的方式有多种,如皮下注射、腹腔注射、静脉注射等。
3. B细胞的分离:从动物的脾脏等淋巴组织中分离出B细胞,可以使用离心、梯度离心等方法。
4. 杂交瘤的制备:将B细胞与肿瘤细胞融合,形成一种称为杂交瘤的细胞。
杂交瘤细胞既具有B细胞的抗体合成能力,又具有肿瘤细胞的无限增殖能力。
单克隆抗体的制备及其应用单克隆抗体是一种能够识别特定抗原并结合于它的单一克隆抗体分子。
相对于传统的混合抗体,单克隆抗体具有更加精准的特异性和较高的亲和力,因此在现代医学中应用广泛,尤其在疾病的诊断、治疗和预防方面发挥着重要的作用。
制备单克隆抗体的过程可以分为四个主要步骤:免疫原的制备、小鼠的免疫、脾细胞的融合和单克隆抗体的筛选和鉴定。
免疫原制备免疫原是指能够引起免疫反应并且激发机体产生抗体的物质。
制备免疫原主要有两种方法:一是纯化目标分子,二是化学合成人工抗原。
纯化目标分子是指从生物体内提取目标蛋白质,包括人类血清、细胞培养上清液或从组织中分离的蛋白质,通过高效液相层析或离子交换层析等技术达到纯度要求。
化学合成人工抗原需要建立三级结构,并且通过光谱分析等技术进行鉴定。
小鼠的免疫制作单克隆抗体时,一般使用小鼠进行免疫。
将免疫原注射到小鼠体内,通过免疫系统的识别和选择,产生能够与目标分子特异性结合的抗体,这些抗体被称为多克隆抗体。
免疫时间和免疫剂量都是需要精细控制的参数,以确保得到的多克隆抗体可以覆盖免疫原的所有表位。
脾细胞的融合脾细胞是一个重要的免疫细胞,当它遇到免疫原时,会产生抗体。
将免疫小鼠的脾脏取出,制成单细胞悬液,然后与能够维持无限增殖的癌细胞融合。
融合细胞将产生能够继承小鼠脾细胞产生的抗体特异性和癌细胞的无限增殖能力的“嵌合抗体细胞”。
单克隆抗体的筛选和鉴定通过将“嵌合抗体细胞”进行单细胞分离和分层培养,筛选出特异性结合目标分子的单抗,并经过多重鉴定,包括酶联免疫吸附实验、亲和力检测试验、特异性试验、同工酶分析、生物学鉴定和单克隆抗体的特性鉴定等多项检测,确保得到的单克隆抗体具有较高的特异性、亲和力和稳定性。
单克隆抗体的应用单克隆抗体可应用于医学、生物技术及科学研究等领域,例如基因工程药物、免疫诊断、癌症治疗、疫苗研发、食品安全检验、环境检测和生物学研究等方面。
在基因工程药物开发中,单克隆抗体能够定位特定的蛋白质,从而研制出精确治疗某种疾病的药物,例如格拉西米布是一种单克隆抗体,用于治疗类风湿性关节炎和肠炎。
单克隆抗体的制备与应用单克隆抗体是一种高度特异性的生物分子,能够识别并结合特定的抗原,对于现代生命科学研究和临床医学诊治具有重要意义。
一、单克隆抗体的制备单克隆抗体的制备主要包括以下几个步骤:(1)选择合适的免疫原:免疫原应具有较好的生物学活性、易于纯化,并且可以诱导动物产生足够的免疫反应。
常用的免疫原包括蛋白质、多肽、糖类、DNA等。
(2)免疫动物:将免疫原注射到小鼠、大鼠、兔子等动物身上,诱导其产生免疫反应。
此过程需要严格控制免疫剂量及免疫间隔时间,以保证动物身体内产生充分的免疫反应。
(3)筛选克隆:从免疫动物获得脾细胞,与骨髓瘤细胞进行融合,生成杂交瘤细胞。
将杂交瘤细胞进行分离、克隆和筛选,最终获得单克隆细胞系。
(4)制备单克隆抗体:将单克隆细胞系进行扩增,并通过细胞培养和大规模发酵获得充足的单克隆抗体产物。
二、单克隆抗体的应用(1)免疫诊断:通过单克隆抗体对特定分子的识别和结合能力,可以用于免疫诊断。
例如,通过检测患者体液中特定抗原的单克隆抗体结合情况,可以诊断疾病,并对病情进行判断。
(2)药物研发:单克隆抗体在药物研发中具有广泛的应用前景。
例如,在抗肿瘤药物的开发中,单克隆抗体可以针对肿瘤细胞特异性抗原,实现有选择性地杀伤肿瘤细胞。
(3)免疫治疗:单克隆抗体可以作为一种抗体治疗手段,对病原体或某些癌细胞进行特异性杀伤。
例如,在肿瘤治疗中,单克隆抗体能够选择性地结合癌细胞表面的受体,阻断其信号传递,从而抑制肿瘤细胞的生长和扩散。
(4)生物学研究:单克隆抗体可以用于生物学研究中的诸多方面。
例如,通过单克隆抗体对特定蛋白的结构和功能进行研究,可以深入了解其生物学特性和作用机制。
三、单克隆抗体的前景与挑战单克隆抗体拥有广泛的应用前景,近年来,其在医学、生命科学研究领域得到了广泛的应用。
然而,单克隆抗体的研发仍面临着一些挑战。
(1)制备难度:单克隆抗体的制备要求高度的技术和设备支持,需要在动物免疫、细胞融合、细胞培养等环节中严格把控。
抗CD19单克隆抗体及其制备方法与应用1. 抗CD19单克隆抗体概述在免疫疗法领域,抗CD19单克隆抗体被广泛应用于治疗B细胞相关的疾病,尤其是B细胞恶性肿瘤和自身免疫疾病。
CD19是B细胞表面的一种标志性蛋白,它在B细胞的发育、激活和功能中扮演重要角色。
抗CD19单克隆抗体可以选择性地杀伤CD19阳性的B细胞,而对其他细胞几乎没有影响,从而成为治疗B细胞相关疾病的有效手段。
2. 抗CD19单克隆抗体的制备方法抗CD19单克隆抗体的制备主要通过以下步骤实现:1.免疫原:首先需要获得CD19的免疫原,常见的方法包括从CD19表达的细胞中提取膜蛋白或人工合成片段。
2.免疫动物:将免疫原注射到小鼠或大鼠等实验动物体内,触发其免疫系统产生抗CD19抗体。
3.融合细胞:从免疫动物中获取B细胞,并将其与瘤细胞或其它细胞融合,形成杂交瘤细胞,这些细胞能够不断产生具有特异性的抗CD19抗体。
4.提取与纯化:从培养基中提取并纯化目标抗体,经过一系列的纯化步骤,最终得到高纯度的抗CD19单克隆抗体。
3. 抗CD19单克隆抗体的临床应用抗CD19单克隆抗体作为治疗B细胞相关疾病的新战略,已在临床上取得了显著的成果。
以CAR-T细胞疗法为代表的治疗手段,就是通过将患者自身的T细胞进行基因改造,使其表达抗CD19单克隆抗体,从而实现对恶性B细胞的杀伤。
在自身免疫疾病的治疗中,抗CD19单克隆抗体也展现出了良好的疗效。
通过选择性地清除异常活化的B细胞,可以有效地控制自身免疫疾病的发作和进展。
4. 个人观点和理解抗CD19单克隆抗体作为一种新型的免疫治疗药物,不仅在临床上展现出了显著的疗效,而且为免疫疗法领域带来了新的活力和希望。
在未来,随着对其作用机制和临床应用的进一步深入研究,相信抗CD19单克隆抗体会在更多疾病的治疗中发挥重要作用,并为患者带来更好的治疗效果。
结语通过对抗CD19单克隆抗体的概述、制备方法和临床应用的全面探讨,我们对其在治疗B细胞相关疾病中的重要作用有了更深入的理解。
单克隆抗体的应用及原理单克隆抗体是一种由相同母细胞分裂而来的具有相同特异性、亲和力和效能的抗体。
它是通过体外诱导和细胞融合技术获得的,可以专门针对特定抗原进行应用和治疗。
单克隆抗体在医学、科研和生物技术等领域具有广泛的应用前景。
单克隆抗体的应用主要分为治疗应用、诊断应用和研究应用三个方面。
治疗应用方面,单克隆抗体被用于免疫治疗和抗肿瘤药物的研发。
例如,单克隆抗体可以与肿瘤细胞表面的抗原结合,通过直接杀伤肿瘤细胞或激活免疫细胞来抑制肿瘤的生长和扩散。
目前已经有多种单克隆抗体药物被批准用于临床治疗,如赫赛汀、特鲁替珠单抗等。
此外,单克隆抗体还可以用于传统药物的改进,增强药效、减少毒副作用。
单克隆抗体的应用在抗癌药物研发中具有巨大的潜力。
在诊断应用方面,单克隆抗体被用于制备特异性的抗原检测试剂盒。
通过与特定抗原的结合,单克隆抗体可以在临床实验室中用于疾病的早期检测、诊断和预后。
例如,单克隆抗体可以用于肿瘤标志物的检测,如CA125、PSA等。
此外,单克隆抗体还可以用于免疫组化、免疫印迹、流式细胞术等实验方法中,对细胞表面分子、蛋白质的检测和鉴定起关键作用。
在研究应用方面,单克隆抗体被用于分子生物学、细胞生物学和生物工程等领域的研究。
例如,单克隆抗体可以用于从复杂的混合物中纯化特定的蛋白质或细胞。
此外,单克隆抗体还可以用于研究蛋白质的结构与功能、信号转导途径等。
由于单克隆抗体拥有高度特异性和亲和力,它在研究领域具有重要的价值。
单克隆抗体的制备原理主要包括免疫克隆、细胞融合和筛选等步骤。
首先,制备单克隆抗体需要从动物体内或体外免疫获得特定的抗原刺激。
接下来,从免疫动物(如小鼠)体内采集抗体产生的淋巴细胞。
这些淋巴细胞与肿瘤细胞进行融合,形成杂交瘤细胞。
这些细胞具有强大的免疫力,并能长时间产生单克隆抗体。
然后,必须对杂交瘤细胞进行筛选和鉴定。
首先,通过双荧光筛选法、酶联免疫吸附实验等技术,选择具有特异性抗原结合能力的杂交瘤细胞。
单克隆抗体的应用和原理单克隆抗体是一种由单一克隆细胞所产生的具有同一免疫原特异性的抗体。
相比于多克隆抗体,单克隆抗体具有更高的特异性和亲和力,因此在医学、生物学、生物技术等领域得到了广泛的应用。
本文将介绍单克隆抗体的应用和原理。
一、单克隆抗体的制备单克隆抗体的制备主要包括以下几个步骤:1. 免疫原制备:免疫原是指能够引起机体免疫反应的物质,如蛋白质、多肽、糖类等。
免疫原的制备需要根据具体的实验目的进行选择,通常采用纯化、重组、化学合成等方法制备。
2. 免疫动物的免疫:将免疫原注射到小鼠等动物体内,激发机体产生抗体。
为了增强免疫效果,通常需要多次免疫。
3. 脾细胞的制备:在免疫动物免疫一定次数后,取出其脾脏,制备脾细胞悬液。
4. 杂交瘤的制备:将脾细胞与肿瘤细胞进行杂交,形成杂交瘤。
由于肿瘤细胞具有无限增殖能力,因此杂交瘤可以持续产生单克隆抗体。
5. 单克隆抗体的筛选和纯化:通过ELISA、免疫印迹、流式细胞术等方法筛选出具有特异性的单克隆抗体,并进行纯化。
二、单克隆抗体的应用1. 诊断单克隆抗体可以用于诊断疾病。
例如,针对肿瘤标志物的单克隆抗体可以用于肿瘤的早期检测和诊断。
另外,单克隆抗体还可以用于检测病毒、细菌等微生物,以及药物、毒素等物质。
2. 治疗单克隆抗体还可以用于治疗疾病。
例如,针对肿瘤细胞表面的特异性抗体可以选择性地杀死肿瘤细胞,达到治疗肿瘤的效果。
另外,单克隆抗体还可以用于治疗自身免疫性疾病、炎症等疾病。
3. 生物技术单克隆抗体在生物技术领域也有广泛的应用。
例如,可以用于免疫印迹、ELISA、流式细胞术等实验中,用于检测特定蛋白质的表达和定量。
另外,单克隆抗体还可以用于纯化蛋白质、分离细胞等。
三、单克隆抗体的原理单克隆抗体的原理是基于机体的免疫反应。
当机体遇到免疫原时,会产生多种不同的抗体,这些抗体具有不同的特异性和亲和力。
其中,具有特异性和亲和力最高的抗体被称为单克隆抗体。
单克隆抗体的制备需要经过多个步骤,其中最核心的是杂交瘤的制备。
生物制药技术中的单克隆抗体制备与应用单克隆抗体制备与应用在生物制药技术中发挥着重要的作用。
单克隆抗体是一类能够特异性地识别抗原并与之结合的抗体,具有高度的单一性和亲和力。
其制备和应用广泛涉及到生物学、免疫学、生物化学等多个学科领域。
本文将从制备和应用两个方面介绍单克隆抗体在生物制药技术中的重要性和应用前景。
在生物制药技术中,单克隆抗体的制备是一个复杂而关键的步骤。
制备单克隆抗体的第一步是选择合适的抗原。
抗原是指与特定抗体结合的分子或细胞。
常见的抗原包括蛋白质、多肽、细胞膜表面分子等。
选择抗原需要考虑其在疾病诊断或治疗中的重要性,并确保抗原具有较高的纯度和活性。
制备单克隆抗体的第二步是免疫动物。
常用的免疫动物包括小鼠、鸡和兔子等。
免疫动物在接种抗原后,会产生特异性的抗体。
接种后的抗体可以从免疫动物中分离出来,并与细胞融合以形成杂交瘤细胞。
这些杂交瘤细胞具有免疫动物的抗体产生能力和无限增殖的能力。
制备单克隆抗体的第三步是筛选和鉴定杂交瘤细胞。
筛选和鉴定杂交瘤细胞的目的是确保杂交瘤细胞产生的抗体是特异性的,并且具有较高的亲和力。
常见的筛选方法包括酶联免疫吸附试验(ELISA)和免疫组化方法。
通过这些方法,可以筛选出特异性和高亲和力的杂交瘤细胞。
制备单克隆抗体的最后一步是制备和纯化单克隆抗体。
制备和纯化单克隆抗体的目的是获得大量的单克隆抗体,并去除杂质。
常见的制备和纯化方法包括离心、超滤和亲和层析法。
这些方法可以帮助提高单克隆抗体的纯度和活性,从而提高其在生物制药技术中的应用效果。
单克隆抗体在生物制药技术中有广泛的应用前景。
首先,单克隆抗体可用于疾病的诊断。
由于单克隆抗体具有高度的特异性和亲和力,它们可以用于检测特定疾病标志物的存在和水平,从而实现疾病的早期诊断和定量检测。
其次,单克隆抗体可用于疾病的治疗。
通过结合疾病相关的靶点,单克隆抗体可以抑制疾病进展、促进免疫反应或直接杀死病原体。
例如,单克隆抗体治疗癌症的药物已经被广泛应用于临床实践中,显示出显著的疗效。
单克隆抗体制备与应用姓名:王志豪学号:10073485 班级:工优070 关键词:单克隆抗体,人抗体,杂交瘤细胞摘要:1975年德国学者Kohler和英国学者Milstein成功地将骨髓瘤细胞和产生抗体的B淋巴细胞融合为杂交瘤细胞,其分泌的抗体是由识别一种抗原决定簇的细胞克隆所产生的均一性抗体,称之为单克隆抗体。
从鼠源单抗之后,单抗历经了鼠源性抗体、嵌合抗体、人源化抗体、人源性抗体4个发展阶段。
随着分子生物学和细胞生物学的发展,单抗理论几乎应用到生物学研究的每一个区域。
1975 年, Kohler 和Milstein 创立了杂交瘤技术制备单克隆抗体,此后单克隆抗体迅速广泛地应用于生物学和医学的各个领域。
单克隆抗体可用于分析抗原的细微结构及检验抗原抗体未知的结构关系;生产出针对复杂生物混合物中的特定分子的抗体,可用于分离、分析及纯化该特定分子抗原;其试剂可用于临床诊断和治疗,或用于以单抗为弹头的“生物导弹”药物等。
但单克隆抗体技术自问世以来,在临床治疗方面进展缓慢,主要原因是目前单克隆抗体大多是鼠源性的,而鼠源单抗应用于人体治疗时存在诸多问题:鼠源单抗在人体中常不能有效激活补体和Fc 受体相关的效应系统;被人体免疫系统所识别,产生人抗鼠抗体(HAMA) 反应;且在人体循环系统中很快被清除。
因此,在保持对特异抗原表位的高亲和力的基础上人源化和全人化的改造,减少异源抗体的免疫原性成为单抗研究的重点。
此外,传统杂交瘤技术还存在制备周期较长,成本较高,杂交瘤细胞不稳定抗性会丢失等缺陷。
近年来,随着分子生物学技术的发展,出现了嵌合单克隆抗体和由转基因小鼠、噬菌体展示技术、核糖体展示技术及共价展示技术所制备的单克隆抗体。
这些技术可有效解决传统杂交瘤技术所存在的问题,为单克隆抗体的应用提供更广阔的空间。
1994 年, 美国Cell Genesys 公司和Genpharm公司宣布转基因小鼠作为生产全人抗体的载体问世。
这项技术是将人抗体基因微位点转入小鼠体内,产生能分泌人抗体的转基因小鼠。
其前提是人的抗体基因片段在小鼠体内进行重排并表达,并且这些片段能与小鼠细胞的信号机制相互作用,即在抗原刺激后,这些片段可被选择、表达并活化B 细胞分泌人抗体。
这些转基因小鼠的不足之处在于转移基因片段较小,仅30kb 左右,因此这种抗体库在面对抗原多样性时,其抗体应答显得单薄而不足。
此后,Green 等人利用基因打靶技术将编码人抗体轻重链的基因片段大约18Mb 的DNA 全部转到自身抗体基因位点已被灭活的小鼠基因组中,再经过繁育筛选,建立了稳定的转基因小鼠品系。
这样得到的转基因小鼠对特异的抗原能产生高亲和力的人抗体。
用传统的杂交瘤技术,将表达特异抗体的转基因小鼠B 细胞和骨髓瘤细胞融合,获得杂交瘤细胞系,产生人源抗体。
利用转基因小鼠技术已获得了一系列抗IL8 、TNFα以及EGFR 的人单克隆抗体,这些细胞因子在肿瘤或其他疾病中起着重要的作用,因此其单克隆抗体作为导向剂具有重要的临床治疗意义。
目前生产的单抗大多是鼠源性的,但其在临床应用方面还存在着很大的弊端,主要是鼠源单抗与NK 等免疫细胞表面Fc 段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒作用(ADCC)作用较弱,而且它与人补体成分结合能力低, 对肿瘤细胞的杀伤能力较弱,并且鼠源性抗体在人血循环中的半衰期短,它发挥ADCC作用的时间较短;其次鼠单克隆抗体还具有免疫原性,使宿主易引起过敏反应。
这样一方面降低了单抗的效价,另一方面又会给病人带来严重的后果。
因此鼠源性单克隆抗体还应进一步改善才能广泛应用于临床。
嵌合单克隆抗体产生于1980 年代中期,是应用DNA 重组技术将小鼠抗体基因上的可变区与人抗体基因的恒定区重组,再将重组后的基因导入骨髓瘤细胞中表达。
根据所用的载体质粒标记基因产物,选用适当的抗生素或试剂进行筛选,再用与传统杂交瘤技术相似的方法克隆出分泌人鼠嵌合抗体的细胞株。
1980 年代中后期,科学家对嵌合抗体进一步改进后,抗体基因只有互补性决定区(CDR) 是鼠源成分,其余均为人基因序列,这实现了抗体的高度人源化。
嵌合抗体不但具有与鼠源单抗相同的特异性、亲和力和产量,而且可根据不同的需要接上不同亚类的人恒定区基因来改变抗体的功能,使用更加灵活。
第一个人源化单抗rituxan 是一个抗CD20的人鼠嵌合型单抗,在非何杰氏恶性淋巴瘤患者的治疗中取得了良好的疗效。
目前,嵌合单克隆抗体基本主宰着治疗性单抗的商品市场,截止到2003 年初,共有9 个单克隆抗体被美国FDA 授予生物药许可证,都是人鼠嵌合抗体或人源化的抗体类型。
虽然CDR 仅占整个嵌合抗体分子的5 %以下,但仍有鼠源成分的存在,并未完全解决鼠抗体的免疫原性问题,而且人源化过程繁复且费用昂贵,大量的反复试验不可避免。
因此又发展出了产生全人单克隆抗体的技术。
由于嵌合抗体异源性仍然很大,因此需要对鼠源抗体进行人源化改造,进一步人源化的方法很多, 主要是重构抗体和表面重塑技术。
重构抗体就是互补决定区(complementarity determining region, CDR)移植,将鼠抗体的CDR 移植到人抗体的相应部位,这样人源化程度可达90%以上,目前该方法是人源化单抗最常用、最基本的方法。
而表面重塑技术,即将鼠抗体框架区表面氨基酸的残基(surfaceamino acid residues, SAR)进行人源化改造。
该方法是仅替换与人抗体SAR 差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换。
虽然人源化抗体解决了鼠抗体的免疫原性等问题,但生产人源化抗体仍有很大的困难;人源化过程需大量繁复、昂贵的电脑模拟,需取代不同的氨基酸以恢复选择性和亲和力,工作量非常大,并且它总还含有少量鼠源性成分。
完全的人源性抗体才是用于治疗的理想抗体,目前它主要通过3 种途径来研制:噬菌体抗体库技术、核糖体展示技术和转基因小鼠制备人源性抗体。
噬菌体抗体库技术噬菌体抗体库技术是迄今发展最成熟、应用最广泛的抗体库技术。
其基本原理是将蛋白分子或肽段的基因克隆到丝状噬菌体的基因组DNA 中,与噬菌体的外壳蛋白形成融合蛋白, 从而使该异源分子呈现于噬菌体表面。
通过这种方式, 形成了一个收藏上亿个以体外方式制得的不同抗体的基因数据库, 使从任何真实的抗原中迅速分离高度相似的同族抗体成为可能。
分离得到的抗体可用于制备完全人源化的单克隆抗体产品。
随着噬菌体表面展示技术的成熟与不断应用,其肽库的构建及筛选技术得到迅速发展和推广,已广泛应用于包括基因定位、分子识别、疫苗设计等许多领域。
噬菌体展示技术的最大优点是一旦噬菌体库建立后,就可以根据需要直接从文库中筛选得到针对目标抗原的特异性抗体,通常只需要23 周的时间,大大缩短了单克隆抗体的制备周期。
当抗体分离出来时,噬菌体系统同时也提供了设计抗体亲和性及其应用的模式。
但是该技术也存在一定的缺陷,由于受表达系统的限制,抗体库的库容不足以支持获得稀有的抗体,而且对噬菌体或表达宿主的生长或功能产生抑制作用的抗体也难以获得。
转基因小鼠和噬菌体展示技术均依赖于细胞技术和体内基因的表达,所建库的容量和分子多样性最终要受到转化效率、胞内环境等诸多因素的限制。
因此,建立不受细胞转染和表达等因素影响的完全体外展示系统成为必然。
新发展的核糖体展示和共价展示技术就属于无细胞转化技术,成功地解决了这些问题。
要建立体外蛋白质分子筛选系统,遗传分子必须附着在蛋白质分子上,并在蛋白质合成过程结束时形成一种稳定的遗传分子- 蛋白质复合体,才能保证筛选后的复制与扩增。
利用蛋白质生物合成的主要场所核糖体作为基因型和表型相偶联的纽带,形成抗体- 核糖体- mRNA 复合物是核糖体展示技术的基本原理。
先扩增目的抗体基因DNA 文库,同时加入启动子、核糖体结合位点,转录形成mRNA。
在核糖体展示系统中,mRNA 的终止密码子被除去,以防止新转录的抗体蛋白被释放,使抗体始终与对应的mRNA 联系在一起。
在无细胞翻译系统(如E. coli 裂解液和麦胚提取物) 中孵育,核糖体与mRNA 结合,并在mRNA 分子上移动组装肽链。
在此过程中可以通过调节无细胞翻译系统的环境以确保抗体分子的正确折叠。
核糖体展示系统的抗体筛选过程与噬菌体展示系统的过程相类似。
核糖体展示技术的主要优点是一方面能产生更大的抗体库,库容可达到1015 ,另一方面可以方便地与一些特殊的PCR 技术,如性别PCR、错配PCR等结合,获得更多的抗体遗传多样性,而且所表达的抗体具有正确的空间折叠构象。
核糖体展示技术已经成功地用于生产抗黄体酮的抗体片段。
利用核糖体展示技术在筛选过程中,由于核糖体是相对分子量为2 000 000 的大分子,而一个典型的肽库或抗体库中可供选择的分子大小一般都小于100 000 。
这样在核糖体大分子和被展示的小分子之间由于空间位阻可能会产生一些不可预知的变化,导致目标分子的丢失。
由Phylos 公司开发的RNA - 多肽融合技术基本克服了这一缺点。
RNA - 多肽融合技术是将mRNA 的3′末端和抗体蛋白质的羧基端借助嘌呤霉素分子共价连接在一起。
具体方法是抗体库中的DNA 转录出RNA后,在mRNA 的3′端共价连接一个嘌呤霉素标记的DNA 片段,作为合成的衔接物。
在体外无细胞翻译系统中转录时,核糖体在mRNA 分子上移动合成多肽。
当到达mRNA 分子末端时, 核糖体停止在mRNA 与DNA片段的连接处,嘌呤霉素就会进入核糖体的酰氨化位点,并在肽酰转移酶的作用下与多肽之间形成稳定的酰胺键。
所得到的多肽- 嘌呤霉素- mRNA复合物与核糖体分离后可直接进行筛选。
多肽- 嘌呤霉素- mRNA 复合物较mRNA -核糖体- 蛋白复合物更为稳定,实验证明mRNA -核糖体- 蛋白复合物可以在4 ℃条件下完整保存10天左右,并允许剧烈的亲和筛选,足以筛选到高亲和性的抗体。
由于该技术采用共价偶联的方法,因此也被称为共价展示技术。
制备全人抗体的基因工程小鼠包括人外周血淋巴细胞- 严重联合免疫缺陷小鼠( hu- PBL- SCID 小鼠)、转基因小鼠和转染色体小鼠制备人抗体技术。
Hu- PBL- SCID 小鼠是将已产生一定免疫反应的供者或癌症患者的人的外周血淋巴细胞移植于严重联合免疫缺陷小鼠(SCID),经抗原免疫后可获得人源抗体。
转基因小鼠:转基因小鼠技术就是将外源DNA 导入到小鼠基因组中,建立小鼠基因组中带有外源基因的遗传性小鼠突变模型的方法技术。
该方法的核心思想是利用编码人抗体的基因序列库转化鼠细胞以形成转基因鼠,在抗原刺激下,该转基因鼠可分泌合成人抗体,该抗体没有人源化鼠抗体的免疫原性,该法也避免了直接接种患者来刺激B 细胞产生抗体。