动量定理测试题
- 格式:doc
- 大小:558.50 KB
- 文档页数:9
人教版(2019)选择性必修一 1.2 动量定理一、单选题1.章老师在课堂做演示实验,把两枚几乎相同的鸡蛋A和B从同一高度由静止释放。
鸡蛋A直接落在地板上,碎了;鸡蛋B装在有水的纸杯中随纸杯一起下落,落在地板上完好无损。
对这一结果,下列说法正确的是()A.与地板接触前的瞬间,鸡蛋A的动量大于鸡蛋B的末动量B.与地板碰撞过程中,鸡蛋的动量变化量小C.与地板碰撞过程中,鸡蛋B的动量变化量小D.与地板碰撞过程中,鸡蛋B的动量变化慢2.质量为1kg的物体做直线运动,其速度—时间图像如图3所示,则物体在0~5s内和10s~20s内所受合外力的冲量分别是()A.10N•s,-10N•s B.5N•s,0C.5N•s,10N•s D.5N•s,-10N•s 3.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2,以下判断正确的是()A.小球从被抛出至到达最高点受到的冲量大小为10 N·sB.小球从被抛出至落回出发点动量的变化量大小为零C.小球从被抛出至落回出发点受到的冲量大小为10 N·sD.小球从被抛出至落回出发点动量的变化量大小为10 N·s4.研究自由落体运动时,描绘出的图像如图所示,则()A.纵轴为加速度()a、横轴为运动的时间()tB.纵轴为速度()v、横轴为运动的时间()tC.纵轴为下落的物体的动量变化率(Δ/Δ)p t、横轴为下落的高度()h D.纵轴为速度()v、横轴为下落的高度()h5.某次跳水比赛中运动员从110h=m高的跳台跳下,进入水中深度23h=m后速度减为零。
已知运动员的质量50m=kg,忽略空气阻力,则运动员从入水到速度减为零的过程中水给运动员的冲量最接近下面的()A.710N·s B.915N·s C.215N·s D.520N·s6.古有“守株待兔”寓言,设兔子头部受到大小等于自身体重的打击力时即可致死,并设兔子与树桩作用时间为0.1s,则被撞死的兔子其奔跑的速度约为(g=10m/s2)()A.0.5m/s B.1.0m/s C.1.5m/s D.2.0m/s 7.2022年北京冬奥会短道速滑混合团体接力决赛中,由任子威、曲春雨、范可新、武大靖、张雨婷组成的中国队以2分37秒348的成绩夺冠。
动量。
动量定理练习题
动量定理练题
1.一恒力F与水平方向夹角为θ,作用在质量为m的物体上,作用时间为t,则力F的冲量为Fcosθt。
2.质量为m的质点以速度υ绕半径R的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小为2mυ。
3.质量为m的物块沿倾角为θ的斜面由底端向上滑去,经过时间t1速度为零后又下滑,经过时间t2回到斜面底端,在整个运动过程中,重力对物块的总冲量为mgsinθ(t1+t2)。
4.水平抛出的物体,不计空气阻力,则在相等时间内,动量的变化相同。
5.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。
若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过
程称为Ⅱ,则过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小。
6.甲、乙两物体质量相等。
并排静止在光滑水平面上。
现用一水平外力F推动甲物体。
同时在F的相同方向给物体乙一个瞬时冲量I,使两物体开始运动。
当两物体重新相遇时,甲的动量为2I。
7.质量为1kg的物体从离地面5m高处自由下落。
与地面碰撞后,上升的最大高度为3.2m,设球与地面作用时间为0.2s,则小球对地面的平均冲力为100N。
8.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较,重力在上升过程的冲量大。
高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
求: ①A 与B 撞击结束时的速度大小v ;②在整个过程中,弹簧对A 、B 系统的冲量大小I 。
【答案】①3m/s ; ②12N •s 【解析】 【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得m 1v 0=(m 1+m 2)v代入数据解得v =3m/s②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得I =(m 1+m 2)(-v )-(m 1+m 2)v代入数据解得I =-12N •s负号表示冲量方向向右。
(物理)物理动量定理练习题含答案含解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R=0.1 m,半圆形轨道的底端放置一个质量为m=0.1 kg的小球B,水平面上有一个质量为M=0.3 kg的小球A以初速度v0=4.0 m/ s开始向着木块B滑动,经过时间t=0.80 s与B发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高考物理动量定理专项训练100(附答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧3.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。