遗传物质知识点
- 格式:ppt
- 大小:158.00 KB
- 文档页数:39
遗传物质知识点总结遗传物质是生物体内负责遗传信息传递和表达的重要物质,它决定了个体的遗传特征,对生物进化和种群遗传变异具有重要意义。
遗传物质在细胞内起着非常重要的作用,它通过细胞分裂和有丝分裂的方式传递给后代细胞,保证了后代细胞中的遗传信息与其母细胞相同。
本文将分别从DNA与RNA的结构、功能、复制、转录和翻译等方面进行总结,帮助读者更好地理解遗传物质的相关知识。
一、DNA的结构1. 脱氧核糖核酸(DNA)是真核生物和原核生物细胞中负责遗传信息传递和表达的主要物质,是由一系列核苷酸通过磷酸二酯键连接而成。
DNA分子的主要结构单元是核苷酸,包括脱氧核糖、磷酸基团和氮碱基。
氮碱基主要有腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)四种。
2. DNA分子是由两条互补对链以双螺旋方式相互缠绕而成。
每条链上的氮碱基之间通过氢键相互配对,形成“A-T”和“G-C”碱基配对规律。
因此,DNA分子呈现出螺旋状的二级结构。
3. DNA分子的结构具有一定的稳定性和可塑性,同时具有很高的信息密度和信息传递能力。
这些特点保证了DNA分子在细胞内的遗传信息传递和表达方面发挥着至关重要的作用。
二、DNA的功能1. DNA分子主要包括编码DNA和非编码DNA两类。
编码DNA负责编码蛋白质的氨基酸序列,而非编码DNA则参与调控基因表达、维持染色体稳定性等生物学过程。
2. DNA分子的双螺旋结构使其具有很高的稳定性和可复制性。
通过DNA复制,每当一个细胞分裂时,DNA分子都会复制成两条完全相同的DNA分子,保证了遗传信息的传递。
3. DNA分子还能够通过转录和翻译过程将其携带的信息转化成蛋白质,从而参与细胞代谢、生长发育、免疫调节等生命活动。
三、DNA的复制1. DNA分子的复制是细胞分裂的前提,也是细胞生长和分化的基础。
DNA的复制是通过半保持复制方式进行的,即在DNA复制过程中,每一条DNA链都作为模板为新合成的链提供了信息。
高中生物遗传物质知识点复杂的劳动包含着需要耗费或多或少的辛劳、时间和金钱去获得的技巧和知识的运用。
下面小编给大家分享一些高中生物遗传物质知识,希望能够帮助大家,欢迎阅读!高中生物遗传物质知识11、DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。
②多样性:DNA中的碱基对的排列顺序是千变万化的。
碱基对的排列方式:4n(n为碱基对的数目)③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。
2、碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。
②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。
③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。
3、DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期。
②场所:主要在细胞核中。
③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。
缺少其中任何一种,DNA复制都无法进行。
④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。
随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子。
⑤特点:边解旋边复制,半保留复制。
⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子。
⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性.。
生物遗传有关知识点总结一、遗传物质的基本结构遗传物质是决定生物遗传特征的物质,它存在于细胞的细胞核中。
在生物界主要有两种遗传物质,分别是DNA和RNA。
DNA是脱氧核糖核酸,是细胞中最主要的遗传物质,它具有双螺旋结构,并且是由四种碱基组成的。
RNA是核糖核酸,它在蛋白质合成中起着重要的作用。
基因是携带遗传信息的基本单位,它是由一段特定的DNA序列构成。
基因通过转录和翻译的过程,可以转化成蛋白质,从而表达出来。
基因的不同组合和排列形成了我们的遗传特征。
二、遗传变异的机制遗传变异是指在遗传过程中,由于基因的突变等原因使得个体的基因型和表型发生改变的现象。
主要包括基因突变、染色体重组和基因重组。
基因突变是指基因本身发生变异,在复制和分裂过程中,一些错误的碱基被替换,删除或添加,从而导致基因的改变。
染色体重组是指两条同源染色体之间的交换,这会导致基因组合的改变。
基因重组是指在有性生殖过程中,不同染色体或同一染色体不同部位的基因组合。
这些变异可以为个体的适应环境提供遗传物质的多样性。
三、遗传规律的遗传定律遗传学的研究发现了一系列的遗传规律,包括孟德尔的遗传规律、染色体遗传规律和分离定律。
孟德尔的遗传规律是指在自交和异交两种情况下,基因的遗传规律。
他发现了基因的分离和组合规律,即领性和隐性基因的遗传规律,成为遗传学的基础。
染色体遗传规律是指染色体在有丝分裂和无丝分裂过程中的遗传规律。
分离定律是指同源染色体的分离规律。
这些遗传定律揭示了基因在遗传过程中的规律,为遗传学的发展奠定了基础。
四、基因与表型的关系基因决定了个体的遗传特征,它通过转录和翻译的过程转化成蛋白质,从而影响了个体的表型。
在生物体的发育过程中,基因的表达受到内部和外部环境的影响,这就产生了遗传表现的多样性。
基因型是决定个体遗传特征的基因组合,而表型是指基因型在环境影响下表现出的形态特征。
基因型和表型之间存在着复杂的相互作用关系,这是生物发展过程中非常重要的内容。
初中生物遗传知识点归纳遗传是生物学中的重要概念,它研究的是生物个体间基因的传递和表达。
初中生物教育中,遗传知识是必学内容之一。
本文将为大家归纳初中生物中的遗传知识点,帮助同学们更好地理解和掌握这一重要内容。
一、基本概念1.1 遗传物质:指生物体内携带遗传信息的物质,主要是DNA(脱氧核糖核酸)。
1.2 基因:DNA分子中携带遗传信息的基本单位,位于染色体上。
1.3 染色体:细胞中负责携带遗传信息的结构,人类细胞中大部分为46条(23对)染色体。
二、遗传规律2.1 孟德尔遗传规律:也称为分离定律,包括基因的分离和基因的自由组合两个基本规律。
它说明了同一个性状的个体在遗传过程中所存在的比例关系。
2.2 补偿现象:指在个体两个同等基因的情况下,一个基因表型发生异常变化,另一个基因可以弥补,使得最终表型呈现正常状态。
2.3 基因型和表型:基因型是指个体所携带的基因组成,表型是由基因型决定的个体的外部表现。
三、基因的遗传与变异3.1 基因的传递规律:通过表型推测基因型和逆推基因型推测表型。
3.2 隐性遗传:当一个个体携带了一个隐性基因时,表现为正常表型,但可以传递给下一代。
3.3 交叉亲和:指在同一个染色体上的两个或多个基因之间发生重新组合的现象。
3.4 突变:指基因发生变异,产生不同于亲代的基因型或表型。
四、遗传的应用4.1 遗传的规律在育种中的应用:通过选择优良个体进行繁殖,以获取更好的遗传特性。
4.2 遗传工程:利用基因技术改变生物体的基因组,以实现人为的遗传改良或获取特定目的的功能。
4.3 环境因素对遗传的影响:环境因素可以影响基因的表达和遗传的变异。
五、遗传疾病5.1 单基因遗传疾病:由单个基因突变导致的疾病,如遗传性聋哑症、血友病等。
5.2 多基因遗传疾病:由多个基因相互作用或与环境因素相互作用导致的疾病,如高血压、糖尿病等。
六、遗传的伦理道德问题6.1 选择性育种和人类优生学:涉及到选择性别、智力、外貌等因素的育种和人类优生问题。
遗传学知识点遗传学是研究遗传现象和遗传规律的科学领域,它研究的对象是生物的遗传信息的传递和变异。
本文将介绍一些常见的遗传学知识点,帮助读者更好地理解遗传学的基本原理和应用。
一、遗传物质遗传物质是指决定个体遗传特征的物质,包括DNA和RNA。
DNA 是双螺旋结构的分子,在细胞中起着存储、复制和传递遗传信息的作用。
RNA是由DNA转录而成的单链分子,参与蛋白质的合成。
二、基因基因是指位于染色体上的遗传信息的基本单位。
它决定了一个个体的遗传特征。
人类基因由核苷酸序列组成,它们按照一定顺序排列,编码了蛋白质的合成。
基因的突变和重组是遗传变异的基础。
三、遗传规律遗传规律是指遗传现象中存在的一些普遍规律。
其中最著名的是孟德尔的遗传规律,它包括显性和隐性遗传、基因分离和基因自由组合两个方面。
孟德尔的遗传规律为后来的遗传学发展奠定了基础。
四、遗传性状遗传性状是个体所具备的遗传特征,包括形态、生理、行为等方面的特征。
遗传性状可以通过基因的表达来确定,例如眼睛的颜色、血型等。
有些遗传性状是显性的,即只需一个显性基因即可表达;而有些是隐性的,需要两个隐性基因才能表达。
五、遗传病遗传病是由于基因突变引起的疾病。
遗传病可以分为常染色体遗传和性染色体遗传两类。
常染色体遗传包括显性遗传、隐性遗传和连锁遗传等,而性染色体遗传则包括X连锁和Y连锁遗传。
六、基因工程基因工程是指利用遗传学知识进行人为的基因操作。
它可以用于治疗遗传病、改良农作物、开发新药等方面。
基因工程的应用是遗传学在实践中的重要体现,有着广阔的前景。
七、进化与遗传进化是物种适应环境变化而产生的变异和适应的过程。
遗传是进化的基础,通过遗传物质的传递和变异,物种才能不断适应环境。
遗传学研究了进化的遗传基础和遗传机制。
综上所述,遗传学是一门重要的科学领域,它研究的是生物遗传信息的传递和变异。
遗传学的知识有助于我们理解个体遗传特征的形成原理和遗传病的发生机制。
同时,基因工程等应用也为人类的生活带来了许多福祉。
知识清单遗传的物质基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一节、遗传的物质基础知识点一、DNA是主要的遗传物质1、染色体主要由和组成。
其中是一切生命活动的体现者。
是生命活动的控制者。
2、实验的共同思路是:3、DNA是遗传物质的直接证据(1)、肺炎状球菌转化实验A、关于肺炎双球菌的知识点:①类型:S型细菌:菌落,菌体夹膜,毒性R型细菌:菌落,菌体夹膜,毒性②肺炎双球菌属于生物,其结构特点包括:;;。
B、①格里菲斯实验结论:②艾弗里实验结论:(2)、噬菌体侵染细菌试验方法:。
A、噬菌体是一种专门在细菌体内的病毒,仅由和组成。
B、实验过程:用同位素35S和32P分别标记噬菌体的和。
标记过程:首先在分别含有放射性同位素和放射性同位素的培养基中培养,再用上述大肠杆菌培养,得到。
(注意:不能用培养基直接培养病毒。
)实验过程中噬菌体的没有进入细菌体内,噬菌体的进入了细菌体内。
噬菌体在细菌体内利用的原料,合成。
C、结论:。
噬菌体侵染细菌试验没有证明蛋白质不是遗传物质。
3、生物的遗传物质细胞生物(真核、原核)非细胞生物(病毒)核酸DNA RNA 遗传物质所以是主要的遗传物质。
记忆点:①病毒的遗传物质为DNA或RNA。
②具有细胞结构的生物遗传物质为DNA。
③生物的遗传物质为DNA或RNA,只要含有DNA则DNA即为遗传物质,无DNA仅有RNA时,RNA作为遗传物质。
第一节、遗传的物质基础知识点一、DNA是主要的遗传物质1、染色体主要由 DNA 和蛋白质组成。
其中蛋白质是一切生命活动的体现者。
是生命活动的控制者。
2、实验的共同思路是:设法把DNA与蛋白质分开,单独直接地观察DNA的作用。
3、DNA是遗传物质的直接证据(1)、肺炎状球菌转化实验A、关于肺炎双球菌的知识点:①类型:S型细菌:菌落光滑,菌体有夹膜,有毒性R型细菌:菌落粗糙,菌体无夹膜,无毒性②肺炎双球菌属于原核生物,其结构特点包括:有核膜包被的细胞核;只有核糖体一种细胞器; DNA不与蛋白质结合构成染色体。
遗传学基础知识点遗传学是生物学中的一个重要分支,研究个体间遗传信息的传递、表现和变异。
在遗传学的学习过程中,有一些基础知识点是必须要掌握的。
本文将围绕这些基础知识点展开讨论。
1. 遗传物质的本质遗传物质是指携带遗传信息的生物分子,主要包括DNA和RNA。
DNA是双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,形成基因和染色体。
RNA则在蛋白质合成中起着重要作用。
2. 孟德尔遗传定律孟德尔是遗传学的奠基人,他根据豌豆杂交实验提出了一系列遗传定律,包括隔离定律、自由组合定律和性联和定律。
这些定律揭示了遗传物质的传递规律。
3. 遗传的分子基础遗传信息的传递和表达是通过DNA分子进行的。
DNA分子在细胞分裂时复制,通过核糖体和tRNA、mRNA参与蛋白质合成,从而实现基因的表达。
4. 遗传性状的表现遗传性状是由基因决定的,在有性繁殖中通过配子随机组合形成。
一对等位基因可以表现为显性和隐性,而性状的表现受到基因型和环境的影响。
5. 遗传变异基因在不同个体间可以发生变异,包括基因突变、基因互作和基因重组等。
这种变异是进化的基础,可以导致个体的遗传多样性。
6. 遗传病与遗传咨询遗传病是由基因突变引起的遗传性疾病,如地中海贫血、囊性纤维化等。
遗传咨询是通过遗传学知识对个体的遗传信息进行评估和风险预测,提供个性化的健康建议。
通过对上述基础知识点的了解,可以更好地理解遗传学的基本原理和应用。
遗传学作为一门重要的生物学学科,为人类健康和生物多样性的研究提供了理论基础和实践指导。
希望本文能够对您的遗传学学习有所帮助。
高一生物遗传知识点总结生物学是一门涉及生命起源、进化以及生物种类研究的学科,而遗传学则是生物学的一个重要分支。
遗传学研究了生物遗传信息的传递、变异和表达等现象。
在高一生物学学习中,我们接触到了许多关于遗传学的基础知识。
本文将对高一生物遗传知识进行总结,帮助我们更好地理解和记忆这些概念。
一、遗传的基本概念1. 遗传物质:DNA是生物体内遗传物质的主要组成部分,它携带着生物的遗传信息。
2. 基因:基因是决定个体性状的功能单位,它存在于DNA链上,通过遗传方式传递给后代。
3. 染色体:染色体是由DNA和蛋白质组成的细长物体,存在于细胞核中,对基因的组织和保护起重要作用。
二、遗传的基本规律1. 孟德尔遗传定律:a. 第一定律:同种纯合子的自交后代表现出相同的性状,称为纯合子性状。
b. 第二定律:基因分离定律,描述了同种基因的不同等位基因的随机分离规律。
c. 第三定律:独立遗传定律,指出不同基因对性状的遗传是相互独立的。
2. 遗传变异:a. 突变:指遗传物质发生的突然而不可逆转的变化,是遗传变异的重要原因。
b. 重组:染色体间的交换和重组现象,导致了基因的重新组合。
三、遗传的分子基础1. DNA的结构:DNA由磷酸、糖和碱基组成,形成双螺旋结构,碱基之间通过氢键相互连接。
2. DNA复制:DNA复制是指在细胞分裂过程中,DNA通过半保存性复制,产生两条完全相同的DNA分子。
3. 转录和翻译:基因的表达过程包括转录和翻译两个阶段,其中转录将DNA信息转录成RNA,翻译将RNA信息翻译成蛋白质。
四、遗传的规律与方法1. 适应与进化:适应是物种在环境变化中对环境的适应能力,而进化是物种从一个祖先物种演变成新物种的过程。
2. 遗传工程:遗传工程是通过改变生物遗传物质来研究和改良生物的方法,如转基因技术等。
3. 育种方法:人工选择和杂交育种是改良作物和畜种的常用方法。
五、生物的多样性和个体性状遗传1. 突变体与自然选择:突变体是指基因突变导致的个体性状发生明显变化的个体,自然选择则是环境选择对个体适应度的影响。
遗传学知识点总结一、遗传物质的结构与功能1. DNA的结构DNA是生物体内的遗传物质,是由脱氧核糖核酸(Deoxyribonucleic Acid)组成的长链分子。
DNA的结构包括磷酸基团、脱氧核糖糖分子和碱基,其中碱基包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)和鸟嘧啶(Cytosine)。
2. DNA的功能DNA携带了生物体的遗传信息,其功能包括遗传信息的存储、复制、传递和表达。
DNA通过蛋白质合成过程中的转录和翻译来表达遗传信息,从而控制生物体的内部结构和功能。
3. RNA的结构与功能RNA是核糖核酸(Ribonucleic Acid)的缩写,其结构与DNA类似,但在碱基配对中胸腺嘧啶被尿嘧啶(Uracil)代替。
RNA主要包括mRNA、tRNA和rRNA等,具有遗传信息传递和调控蛋白质合成的功能。
二、遗传信息的传递与表达1. 遗传信息的传递遗传信息的传递是指生物体将DNA携带的遗传信息传递给下一代的过程,其中包括有丝分裂和减数分裂两种方式。
有丝分裂是体细胞的有丝分裂,其目的是细胞增殖;减数分裂是生殖细胞的有丝分裂,其目的是产生生殖细胞。
2. 遗传信息的表达遗传信息的表达是指DNA携带的遗传信息通过转录和翻译的过程表达为蛋白质的过程。
蛋白质是生物体内大部分功能酶和结构蛋白的主要组成部分,控制着生物体的内部结构和功能。
三、遗传变异与突变1. 遗传变异遗传变异是指生物体在遗传信息传递和表达过程中发生的基因型、表现型及遗传频率的变化。
遗传变异是生物种群适应环境变化及进化的基础。
2. 突变突变是指生物体的DNA分子发生的永久性的基因突变,其结果是导致个体遗传信息的改变,从而影响表型的性状。
突变是造成遗传变异的重要原因之一。
四、遗传疾病1. 遗传疾病的分类遗传疾病是由单基因或多基因遗传缺陷引起的一类疾病,包括单基因遗传病、多基因遗传病、细胞遗传病和染色体遗传病等。
遗传遗传知识点总结一、基本遗传知识1. 遗传物质:DNA是生物体内的遗传物质,携带着生物体的遗传信息。
DNA是由核糖核酸(RNA)和蛋白质组成的,它决定了生物的遗传性状。
2. 基因:基因是DNA分子上特定的DNA序列,负责携带和表达一个或多个特定的遗传特征。
3. 遗传变异:遗传变异是指在遗传过程中,由于基因重组、突变等原因,导致新的遗传信息出现的现象。
4. 遗传物质的传递:遗传物质的传递是指遗传信息从父母传递给子代的过程。
在有性生殖中,DNA通过卵子和精子传递给下一代。
5. 遗传学定律:孟德尔定律是遗传学的基本定律,包括显性隐性定律、分离定律和自由组合定律。
这些定律总结了基因的遗传规律,对后世的遗传学研究产生了重要影响。
二、遗传物质DNA的结构和功能1. DNA的结构:DNA的结构为双螺旋结构,由磷酸、脱氧核糖和四种不同的碱基(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶)组成。
2. DNA的功能:DNA的主要功能是存储遗传信息,并通过转录和翻译过程,指导蛋白质的合成。
这种转录和翻译过程被称为中心法则。
三、遗传变异与突变1. 遗传变异的原因:遗传变异可以由自然选择、基因重组、突变等多种原因引起。
2. 突变:突变是指遗传物质的变化,包括点突变、插入突变和缺失突变等。
突变可能导致基因功能的改变,从而影响生物的表型特征。
3. 遗传多样性:遗传多样性是指生物个体之间遗传差异的存在。
这种多样性是基因重组和突变等遗传变异的结果。
四、遗传测定与遗传连锁1. 遗传测定:遗传测定是指通过基因型(allele组合)来推测个体表型的方法。
常用的遗传测定方法有孟德尔方格、3:1比例检验、卡方检验等。
2. 遗传连锁:遗传连锁是指两个或多个基因由于位于同一染色体上而具有一定联系,它们的分离程度远小于因出现在不同染色体上而易于分离的基因。
遗传连锁吻合性的大小取决于两个或多个基因间的距离,可以通过连锁图谱来描述。
五、基因组学和人类遗传学1. 基因组学:基因组学是对整个基因组结构和功能的研究,包括基因组测序、基因组比较、功能基因组学等。
遗传方面知识点归纳总结1. 遗传物质遗传物质是决定生物遗传特征的物质基础,位于细胞核中的染色体上。
染色体内含有DNA,DNA是由脱氧核糖核酸组成的,它携带了生物遗传信息。
2. DNA的结构DNA分子由两条螺旋的链组成,每条链上有一系列的碱基,包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
这些碱基以一定的顺序排列,决定了生物的遗传信息。
3. 基因基因是DNA上的一段编码信息,它决定了生物的一些性状,如眼睛的颜色、皮肤的颜色等。
基因是一种遗传单位,它通过编码蛋白质或调控其他基因的表达来影响生物的性状。
4. 遗传的规律遗传遵循一定的规律,主要包括孟德尔遗传规律、连锁性遗传规律和杂交遗传规律。
孟德尔遗传规律指出,生物的性状由一对互补的基因决定,它们在生殖细胞中以随机的方式分离组合。
连锁性遗传规律指出,一些基因会一起传递,因为它们位于同一条染色体上。
杂交遗传规律指出,不同种群的个体进行杂交后,后代的性状可能呈现出一定的比例。
5. 遗传变异遗传变异是生物进化和适应环境的基础。
遗传变异主要包括基因突变、基因重组和基因插入。
基因突变是指DNA分子发生变异,导致基因信息的改变。
基因重组是指染色体上的碱基序列发生重组,导致新的基因组合。
基因插入是指外源性DNA被插入到DNA分子中,导致基因组的改变。
6. 染色体异常染色体异常是指染色体在数量或结构上发生异常。
染色体异常包括染色体数目异常和染色体结构异常。
染色体数目异常主要包括三体综合征、21三体综合征和性染色体异常等。
染色体结构异常主要包括缺失、重复、倒位等。
7. 遗传病遗传病是由遗传物质的异常引起的疾病。
遗传病分为单基因遗传病和多基因遗传病。
单基因遗传病是由单个基因突变引起的,如囊性纤维化、地中海贫血等。
多基因遗传病是由多个基因的突变引起的,如糖尿病、高血压等。
8. 基因工程基因工程是利用现代生物技术对生物遗传基因进行调控和改变。
基因工程主要包括基因克隆、转基因技术和基因编辑技术。
高中生物遗传学基础知识点遗传学是高中生物的重要组成部分,它研究的是生物遗传和变异的规律。
掌握好遗传学的基础知识,对于理解生命的奥秘和解决相关的生物学问题具有重要意义。
接下来,让我们一起深入了解高中生物遗传学的基础知识点。
一、遗传物质1、 DNA 是主要的遗传物质大多数生物的遗传物质是 DNA(脱氧核糖核酸),少数病毒的遗传物质是 RNA(核糖核酸)。
DNA 具有独特的双螺旋结构,由两条反向平行的脱氧核苷酸链组成,通过碱基互补配对原则(A 与 T 配对,G 与 C 配对)连接。
2、基因基因是具有遗传效应的 DNA 片段,它控制着生物的性状。
基因通过转录和翻译过程控制蛋白质的合成,从而实现对生物性状的表达。
二、孟德尔遗传定律1、分离定律孟德尔通过豌豆杂交实验提出了分离定律。
该定律指出,在生物体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
例如,对于豌豆的高茎和矮茎这一对相对性状,假设控制高茎的基因是 D,控制矮茎的基因是 d。
纯合高茎(DD)和纯合矮茎(dd)杂交,F1 代均为高茎(Dd)。
F1 自交产生 F2 代,F2 代中高茎(DD、Dd):矮茎(dd)= 3:1。
2、自由组合定律孟德尔还提出了自由组合定律。
该定律指出,控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
例如,豌豆的黄色圆粒和绿色皱粒杂交。
黄色(Y)对绿色(y)为显性,圆粒(R)对皱粒(r)为显性。
纯合的黄色圆粒(YYRR)和绿色皱粒(yyrr)杂交,F1 代均为黄色圆粒(YyRr)。
F1 自交产生 F2 代,F2 代中表现型的比例为 9:3:3:1。
三、减数分裂1、过程减数分裂是有性生殖生物在形成配子时发生的特殊分裂方式。
它包括减数第一次分裂和减数第二次分裂两个阶段。
高考生物复习遗传物质知识点整理
发生时间:有丝分裂间期或减数第一次分裂间期的DNA复制时。
意义:生物变异的根本来源,为生物进化提供了最初原材料。
7.基因重组是指:在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。
发生时间:减数第一次分裂前期或后期。
意义:为生物变异提供了极其丰富的来源。
这是形成生物多样性的重要原因之一对生物的进化有重要意义。
8.可遗传变异的三种来源:基因突变、基因重组、染色体变异。
9.性别决定:雌雄异体的生物决定性别的方式。
10.染色体组:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体叫一个染色体组。
单倍体基因组:由24条双链的DNA组成(包括1-22号常染色体DNA与X、Y性染色体DNA)
人类基因组:人体DNA所携带的全部遗传信息。
人类基因组计划主要内容:绘制人类基因组四张图:遗传图、物理图、序列图、转录图。
DNA测序是测DNA上所有碱基对的序列。
遗传物质知识点的全部内容就是这些,更多精彩内容希望考生及时关注查字典生物网。
初二生物遗传知识点总结
1. 遗传基础
- 遗传是指生物通过基因传递给后代的特征和性状的现象。
- 基因是遗传信息的单位,位于染色体上。
- 染色体是细胞核内的遗传物质,由DNA和蛋白质组成。
2. 遗传规律
- 孟德尔遗传规律:显性和隐性基因的相互作用决定了后代的性状。
- 分离定律:在杂交中,纯合子的分离可以按照一定比例产生将显性性状和隐性性状表现出来的后代。
3. 基因型和表现型
- 基因型是个体所拥有的基因组合。
- 表现型是基因型在外部环境影响下所表现出来的性状。
4. 基因的显性和隐性
- 显性基因表现出来的性状叫做显性性状。
- 隐性基因只在纯合子状态下才会表现出来,叫做隐性性状。
5. 基因的分离和自由组合
- 在畸变分离中,基因可以在染色体分离和自由组合的过程中重新组合。
- 这种重新组合会产生多样性的后代。
6. 染色体的遗传
- 人类的染色体共有46条,其中包括22对体染色体和1对性染色体。
- 性染色体决定了个体的性别。
7. 遗传突变
- 遗传突变是指基因发生突变或染色体结构发生改变的现象。
- 遗传突变可以导致基因型和表现型的改变。
以上是初二生物遗传知识点的总结。
希望对你有帮助!。
(完整版)遗传学知识点归纳(整理)(一)基因、DNA和染色体1.基因:指遗传信息在染色体上的基本单位,是控制个体形态、结构、功能以及遗传特征的遗传物质。
2.DNA:脱氧核糖核酸,是一种大分子聚合物,包含四种碱基,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C),这四种碱基的不同排列组合构成了不同的基因。
3.染色体:指遗传信息在细胞有丝分裂过程中可被观察和测定的可见的结构,是由DNA、蛋白质等构成的细胞核的主要组成部分,人类体细胞中通常有46条染色体(23对),其中一对性染色体决定个体的性别。
4.基因表达:指基因信息从DNA转录成RNA再翻译成蛋白质的过程,是生物体表现出各种形态、性状和生理功能的基础。
5.突变:指基因的突发性的基因变异,可导致个体的遗传特征发生变化,阳性突变可能会导致疾病的发生。
(二)遗传规律1.孟德尔遗传规律:指在同种基因型的个体之间产生的后代,表现出明显的分离和随机性。
2.随机吸配规律:指不论个体(除果蝇外),只要其一对染色体上的基因位点相互独立,其分离组合在后代的频率和概率不受影响而呈随机排列的规律。
3.连锁和基因重组:指一对染色体上的多个基因位点由于位置的接近而具有连锁性,但两个染色体在有丝分裂和减数分裂中的重组作用会破坏连锁基因,从而形成新的联合和分离组合。
4.多因素遗传规律:指人类遗传性状和疾病的发生、发展和表现受多个基因和环境因素相互作用的影响。
5.基因剪接:指在转录过程中RNA前体在剪接过程中剪下不必要的外显子以及与此同时,选择性的保留某些外显子与内含子并将其接合在一起,形成成熟RNA的过程。
(三)遗传学应用1.遗传学诊断:利用遗传学原理对个体遗传信息进行检测和分析,以确定某些遗传性状或疾病的遗传方式和危险程度。
2.基因治疗:指通过利用细胞和基因工程技术,将正常基因导入患者体内来代替缺少或异常的基因,以治疗某些遗传性疾病。
3.基因编辑:指使用CRISPR/Cas9等技术对人类基因进行修饰和编辑,可用于去除病原体基因、纠正遗传缺陷等。
初中生物遗传学知识点归纳遗传学是生物学中一个非常重要的分支学科,主要研究遗传信息在生物体内如何传递和表达的规律。
在初中生物学中,学生会接触到一些基础的遗传学知识,如遗传物质的基本结构、遗传信息的传递方式和表现形式等。
下面是初中生物遗传学知识点的归纳:一、遗传物质的基本结构1.DNA是携带遗传信息的分子,是细胞核和线粒体中的重要物质。
2.DNA的结构为螺旋状的双螺旋结构,由磷酸、糖和碱基组成。
3.DNA的碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。
4.DNA的碱基通过配对规则:A与T配对,G与C配对。
二、基因和染色体1.基因是控制生物遗传特征的遗传信息单元。
2.基因位于染色体上,通过DNA携带和传递。
3.人类有46条染色体,其中23条为来自父母的。
三、遗传信息的传递1.生物通过繁殖将遗传信息传递给下一代。
2.有性生殖是指通过合子的结合来传递遗传信息,产生具有新组合的个体。
3.子代的遗传特征来自父母的基因组合。
四、基因的表达和变异1.基因的表达指基因通过蛋白质的合成表现出来。
2.基因在表达过程中会发生突变,导致个体的基因型和表现型发生变化。
3.突变分为有害突变、有利突变和中立突变。
五、遗传的规律1.孟德尔遗传定律包括单性遗传定律、分离定律和自由组合定律。
2.单性遗传定律指其中一对性状在杂合子后裔中以1:2:1的比例出现。
3.分离定律指一对亲代性状在子代中以3:1的比例出现。
4.自由组合定律指不同性状之间的遗传是相互独立发生的。
六、基因组和DNA复制1.基因组指一个细胞或个体的所有基因的总体称。
2.DNA复制是指在细胞分裂时DNA分子进行复制,确保每个细胞都拥有完整的DNA信息。
3.DNA复制是半保留复制,即每个新合成的DNA分子包含一个新链和一个旧链。
七、变态和染色体遗传1.人类常见的遗传变态有唐氏综合征、血红蛋白病等。
2.染色体遗传指遗传信息传递和表达中染色体的变异和异常所导致的遗传病。
八年级生物的遗传知识点引言:生物学是自然界的研究,遗传学则是其中的一个重要分支。
遗传学研究遗传信息,研究个体遗传变异和垂直遗传,可以说是生物学研究中不可或缺的一部分。
本文将详细讨论八年级生物学中的遗传知识点,帮助学生加深对遗传学知识的掌握。
主题:一、基因概念基因是关系物种生存和发展的基本元素,是遗传物质的基本单位。
基因的主要作用是决定某一特定特征的表现方式,如眼睛颜色、皮肤的色素沉着等。
基因是由DNA分子组成的,位于染色体上。
二、遗传方式1. 显性遗传显性遗传是指表现在个体表面上的遗传特征。
一个显性基因只需要被一个父母所传递,即可在后代中表现出来。
2. 隐性遗传隐性遗传是指不表现在个体表面上的遗传特征。
隐性基因需要从父母双方传递,才可在某些情况下表现出来,例如父母都拥有一个隐性基因时,子女有1/4的机会表现出来。
3. 基因突变基因突变是指基因在修复或复制时出现的错误改变,导致了原本和平的遗传状态的改变。
基因突变分为点突变和染色体结构异常。
三、遗传的途径1. 孟德尔的遗传法则孟德尔遗传法则是微观遗传学中最基础的遗传现象。
他发现遗传物质的表现方式遵循着规律性的分离、配对和表现等。
孟德尔的遗传法则有基因分离定律、自由组合规律、优势与隐形遗传定律。
2. 染色体遗传染色体遗传是对染色体上基因的遗传过程的描述。
染色体遗传可以分为性染色体、常染色体、单基因遗传和多基因遗传等四个方面。
其中单基因遗传又分为显性遗传和隐性遗传两种。
四、遗传疾病1. 常见遗传疾病常见遗传疾病包括唐氏综合症、血友病、苯丙酮尿症等。
这些疾病的发生通常是由单一基因的遗传突变所引起的。
因此,双亲中如果有一个人携带该基因,子女患上该疾病的概率将非常高。
2. 基因治疗基因治疗是一种新型的治疗手段,通过修复或替代患者体内出现遗传突变的基因,达到治疗或预防疾病的目的。
结论:在现代生物学中,遗传学研究已经越来越深入。
遗传学的研究使得我们能够更加深入了解DNA、基因和人类的遗传变异。