悬索桥的受力分析与施工控制(54页)
- 格式:ppt
- 大小:2.92 MB
- 文档页数:9
一般力学与力学基础的悬索桥分析方法悬索桥是一种以悬吊物体(如钢索)为主要构件,通过锚固在两端并形成拱形曲线支撑桥面的特殊桥梁结构。
悬索桥在现代桥梁设计中占据重要地位,广泛应用于大跨度桥梁的建设。
为了确保悬索桥的安全性和稳定性,一般力学与力学基础的分析方法被广泛运用于悬索桥的设计和施工中。
一、载荷分析悬索桥承受着来自桥面荷载、行车荷载、风荷载和温度荷载等多种荷载。
为了准确分析悬索桥的受力情况,首先需要进行载荷分析。
通过测量和分析桥梁所受到的各种荷载,可以确定悬索桥的最大荷载,进而设计合适的结构以满足荷载要求。
二、结构力学分析悬索桥的结构力学分析是确定桥梁各部分的内力和变形,以评估结构的可靠性和安全性。
分析时需考虑到桥梁的自重、外力作用、桥梁材料的力学特性等因素。
通过应力分析和变形分析,可以确定各部分的受力情况,从而为结构设计和加固提供依据。
三、模型建立悬索桥的结构分析离不开准确的模型建立。
模型建立涉及桥梁的几何形状、材料特性、约束条件等。
在建立模型时,可以采用有限元方法等数值分析方法,将复杂的桥梁结构简化为节点和单元,通过计算机模拟桥梁受力过程,得出各部分的应力和变形情况。
四、钢索分析悬索桥的主要构件是钢索,因此钢索的分析与设计至关重要。
在钢索的分析中,需要考虑到钢索的受力特点、工作状态和疲劳寿命等因素。
通过对钢索的应力分析和疲劳寿命评估,可以确保悬索桥的安全性以及钢索的使用寿命。
五、动力分析悬索桥在运行过程中会受到各种动力荷载的作用,如行车荷载引起的振动、风荷载引起的横向摆振等。
为了确保桥梁在运行状态下的稳定性,需要进行动力分析。
通过对悬索桥的振动频率、振型和振幅等参数的分析,可以得出相应的动力响应,为工程师提供重要参考。
综上所述,一般力学与力学基础的悬索桥分析方法是确保悬索桥结构安全性和稳定性的重要手段。
通过结合载荷分析、结构力学分析、模型建立、钢索分析和动力分析等方法,可以全面评估悬索桥的结构性能,并提供科学依据以指导工程设计和施工。
悬索桥施工安全控制要点主要包括以下几个方面:施工前准备、施工过程中的安全控制、施工人员培训和监督管理。
一、施工前准备:1. 确定施工方案和施工方法,根据桥梁的设计和结构特点,对施工步骤进行详细规划,确保施工过程中安全和有效。
2. 对施工现场进行勘察,评估地质、气象和水文等方面的影响因素,确保施工环境安全。
3. 编制详细的施工进度计划,并合理分配施工人力、物力和财力等资源。
二、施工过程中的安全控制:1. 悬索桥施工过程中应设置安全警示标志,明确工作区域和施工通道,保证施工现场的安全有序。
2. 施工过程中严格遵守悬索桥设计规范和相关施工标准,确保施工质量和结构安全。
3. 在施工过程中,应加强对设备和材料的监管和检查,确保其质量合格。
4. 悬索桥施工中,应加强对承力索、悬索桥主体结构和支座的安全监测,及时发现和处理安全隐患。
5. 加强施工场地的安全设施,包括建立防护网和警示标识,确保施工人员的人身安全。
三、施工人员培训和监督管理:1. 对施工人员进行必要的安全教育和培训,提高工人的安全意识和风险防范能力。
2. 建立完善的施工组织机构和责任体系,明确安全生产责任人和有关人员的职责和义务。
3. 在施工过程中,要加强对施工人员的监督和管理,确保施工操作符合规范要求,并及时纠正不安全行为。
4. 注重施工现场的安全检查和隐患排查,定期进行安全评估和检测,及时处理施工中的安全问题。
以上是悬索桥施工安全控制的一些要点,施工过程中需要注重细节,严格执行相关安全规程和标准,确保悬索桥的施工安全和结构稳定。
同时,加强施工过程中的培训和管理,提高施工人员的安全意识和技术水平,为悬索桥的施工质量和安全提供保障。
1. 桥面应力定性分析 已知应力方程给定默认弹性模量1*103、泊松比为0.3、密度为1以及水平、竖直方向初始应力为0的情况下,使用MA TLAB 的PDE 工具箱的结构力学模型求解,可定性分析给定一定拉力下,桥面的整体应力,运行结果图如下。
可见在无桥墩支持的状态下,中心处所受应力最大。
2.成桥状态的近似计算假定:忽略梁体剪切变形、吊杆的伸缩和倾斜变形对结构受力的影响,将离散的吊杆简化为一连续膜。
微小索段的平衡方程为:qdx y d H 22q -=在成桥后竖向荷载p(x)作用下,荷载集度由q 变为q p ,外力作用下主缆和加劲梁产生挠度,主缆挠度由y 变为(y+),主缆水平拉力H q 变为(H p +H q ),根据上式方程有:H d y dx H H d dx q H d ydx p p q p q 222222++=--()η将以上两式相减可得:)q q (dx d )H H (dx y d H p 22q p 22p --=η++以加劲梁为研究对象,在p(x)作用下加劲梁上的竖向荷载为:q(x)=p(x)-(-q +q p )加劲梁的弹性方程为:p2222q q )x (p )x (q )dx d E I (dx d -+==η设EI 为常数,将上式代入整理得:EI d dx H H d dx p x H d y dx q p p 442222ηη-+=+()()得到挠度理论的基本微分方程。
由于Hp 是p(x)的函数,因此这一微分方程是非线性的。
此外,方程中Hq 、Hp 和均为未知,求解时还需要一个补充方程,利用全桥主缆长度变化的水平投影为零这一边界条件:00=∆⎰Ldx 或H E Adx t dx dy dx d dx dx pC CLL L c o s c o s 302000ϕαϕη+-=⎰⎰⎰式中:L -两锚碇间的水平距离。
式中第三项进行分部积分,并利用x=0和x=L=0的边界条件,有:⎰⎰⎰=-=LLL Ldxl fdx dx y d dxdydx dx d dx dy 022208ηηηη代入整理后得:)1(0t Lp c c ptL dx L A E H αηγ-=⎰⎰⎰⎰=-+L L LCC p dx dx d dx dy dxt dx A E H 002030cos cos ηϕαϕ⎪⎪⎭⎪⎪⎬⎫===-=⎰⎰,sec ,sec ,81203222Lt Lp dx L dx L l fdx y d ϕϕγ。
悬索桥施工的监测与控制悬索桥的构造方式是19世纪初被发明的,现在许多桥梁使用这种结构方式。
现代悬索桥,是由索桥演变而来。
适用范围以大跨度及特大跨度公路桥为主,当今大跨度桥梁全采用此结构。
是大跨径桥梁的主要形式。
悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。
悬索桥的主要承重构件是悬索,它主要承受拉力,一般用抗拉强度高的钢材(钢丝、钢绞线、钢缆等)制作。
由于悬索桥可以充分利用材料的强度,并具有用料省、自重轻的特点,因此悬索桥在各种体系桥梁中的跨越能力最大,跨径可以达到1000米以上。
1998年建成的日本明石海峡桥的跨径为1991米,是目前世界上跨径最大的桥梁。
悬索桥的主要缺点是刚度小,在荷载作用下容易产生较大的挠度和振动,需注意采取相应的措施。
1.施工监控主要任务根据实际的施工工序,按照已完成工程的结构状态和施工过程,收集现场的参数和数据,对桥跨结构进行实时理论分析和结构验算,分析施工误差状态,采用变形预警体系对施工状态进行安全度评价和风险预警,根据分析验算结果调整控制参数,预测后续施工过程的结构形状,提出后续施工过程应采取的措施和调整后的设计参数。
[说明]悬索桥是一种结构合理的桥梁型式,它能使材料充分发挥各自的特长,这一特点使悬索桥成为大跨度桥梁中最具竞争能力的桥型之一。
对桥梁结构的施工过程进行合理的施工控制是使桥梁施工过程和成桥状态与设计要求尽可能接近的重要保证,是增加结构施工安全性的一个重要手段。
与其它桥型相比,悬索桥相对较柔,施工过程中工况变化繁多,形状变化很大,结构具有强烈的几何非线性,悬索桥成桥后对误调整的手段有限,从施工一开始就进行完整和全面的施工监控是很有必要的。
一般说来,对于悬索桥,设计给出的是成桥理想状态,要想将这种状态在现场有计划、安全、经济地实现,就必须对实际施工过程进行精确的分析、严格的监测与测量,即进行全面的施工监控。
2.施工监控的目的通过施工监控,保证施工过程中结构的安全,确保完成的结构不论是内力或线形都满足设计的要求。
悬索桥施工安全控制要点悬索桥是一种特殊的桥梁结构,具有悬挂在两个或多个支撑柱上的主悬索和连接在主悬索下的拱形支撑梁。
悬索桥的施工是一个复杂而危险的过程,需要严格控制安全风险。
下面是悬索桥施工安全控制的要点:一、制定科学合理的施工方案悬索桥施工之前,必须进行详细的工程调查和技术论证,确定施工方案。
施工方案应综合考虑地理环境、土壤条件、水文气象、交通条件等因素,注重临时设施的布置和运输组织,以保证施工的安全性和顺利性。
同时,需要编制应急预案,以应对突发情况。
二、建立完善的安全管理体系在悬索桥施工中,必须建立完善的安全管理体系,明确责任和权益的划分。
施工单位应派出专门的安全管理人员,对施工现场进行全天候监督和管理,及时发现和解决安全问题。
同时,还需建立健全的协调机构,加强相关部门之间的沟通和协作。
三、合理配置安全设备和防护措施悬索桥施工过程中必须配备足够的安全设备,如安全帽、防护绳、防滑鞋等。
在高空作业时,要使用安全绳索和安全吊篮,确保施工人员的安全。
此外,还应设置明显的安全警示标志,指示施工现场的危险区域,提醒工作人员注意安全。
四、加强施工人员的培训和安全教育施工单位需要对参与施工的人员进行必要的安全培训和岗前教育。
培训应包括悬索桥施工的安全注意事项、使用安全设备的方法和技巧、应急处理措施等。
通过教育和培训,提高施工人员的安全意识和技能水平,降低施工事故的发生率。
五、定期进行安全检查和隐患排查悬索桥施工过程中,应定期进行安全检查和隐患排查,及时发现和处理安全隐患。
检查内容包括施工设备的完好性和正常运行情况、施工现场的卫生清洁状况、安全防护措施的符合性等。
对于发现的问题和隐患,要及时整改,确保施工的安全进行。
六、遵循严格的操作规程和工序悬索桥施工过程中,要严格按照相关的操作规程和工序进行操作。
施工人员必须遵循安全操作流程,防止违章施工和不合理行为。
在高空作业时,要特别注意操作的稳定性和平衡性,确保施工过程的安全可控。
悬索桥的受力分析一、选题在前面的PreSentation 部分,我与张玉青同学合作完成了上海东海大桥的建模,在此次的实例分析中,我参考了《ANSYSfc木工程实例应用》中的悬索桥部分,并在建模的基础上对其进行受力分析和施工过程中跨中挠度变化情况的分析。
二、实例1•问题的描述材料性能悬索和吊杆:E=2.5e11, μ=0.1, P g=1e4梁:E=3.0e11, μ=0.1, P C=Ie4截面尺寸悬索:A=I吊杆:A=0.02梁:A=0.5, H=1, 1=1/24几何参数:桥长400m双索塔,自桥面算起塔高20m全桥模型成对称分布。
两塔之间跨度为200m,左右塔距岸边各100m悬索间距为10m初始条件:悬索和吊杆初应变为ε=1e-5。
边界条件:悬索两端铰支,大梁布置成简支结构。
以上都统一采用国际单位制。
2.悬索桥结构的建模把悬索体系的主要承重结构模拟为由铰链环组成的在节点上加荷载的悬挂索链。
这种模型不但能很好地表现实际节点索链的性质,还能表现由金属丝。
股或索组成的缆的性质,由于它不具有抗弯的能力,所以用LINK180单元模拟是非常好的,计算的精度和索长度的选取有很大的关系,同时要考虑索的应力变化问题。
当给索缆装配加劲梁时,由于加劲梁还只是外荷载,不参与结构受力,所以可以将缆索结构当成是受集中荷载的体系。
荷载按照实际的情况阶段施加。
当桥建成之后,可以将缆索和加劲梁当做一个整体来分析,在条件允许的情况下可以一次性施加活载在桥上来模拟其受力分析。
三、建模过程及分析过程1. 设置单元及材料参数定义单元类型定义材料属性实常数定义截面2. 建模生成区段模型主缆单元类型为1号,材料类型为1,截面实常数R1 ;悬索单元类型为1号,实常数为2,桥面主梁单元类型为2号,材料类型为2号,截面实常数为1。
定义局部坐标在X=100处生成局部坐标系,新的坐标系代号必须大于10 ,再将局部坐标系设为当前坐标系,以当前坐标系的YZ面为对称面,镜像生成另一区段模型。
6.8.2、悬索桥中央扣梁段的安装施工安全控制要点:中央扣梁段的安装需重点解决好以下问题,以确保施工安全。
1、高空漂浮状态下螺栓群的定位连接;2、加劲梁吊装引起主缆线形的变化导致中央扣索夹两端局部应力的增加。
3、在跨中梁段吊装前,应先将中央扣索夹下半部按照设计要求预先用高强螺栓连接好,随加劲梁一同吊装,吊装到位后用增设的临时吊杆固定在临时索夹上,待加劲梁线形基本形成后,再进行中央扣索夹上半部的安装及螺栓的紧固。
主缆施工安全防范措施主缆架设施工过程中,除了要按照猫道架设一般安全防范措施进行外,还需要特别注意以下几点:1.在主缆架设施工牵引行进过程中,须有2人全程跟踪,特别注意临时承重绳在受力后出现下挠故障;2.钢丝束还应注意防扭转、磨损及钢丝鼓丝等。
如若出现以上情况,应先对故障进行排除,再进行下步施工;3.在主缆架设施工过程中,必须严格按照施工技术交底来进行,安全交底工作交底到个人;4.临时锚固后应及时将锚跨鼓出的钢丝用木锤敲顺,绝不能将鼓丝留在锚跨内;5.在索股牵引过程中,使索股始终保持一定的反拉力,克服索盘转动惯性引起的“呼啦圈”等不良现象;6.进行主缆架设施工的队伍必须经过严格培训的,经验丰富的人员,工作中保持信息畅通,严格监控,保障安全。
6.8.5、主缆索股架设施工安全控制要点:1、研制主缆放索支架,提高放索质量在索股牵引过程中,使索股始终保持一定的反拉力,克服索盘转动惯性引起的“呼啦圈”等不良现象。
2、克服索股牵引过程中的散丝现象时应该注意的安全问题1)、保持放索速度与牵引速度的一致性,在索股牵拉期间,主缆索股始终保持一定的张力,避免索盘上的索股松散下垂磨损而导致散丝。
2)、加密塔顶、散索鞍支墩位置处的托滚,在不影响索股横移入鞍的情况下,尽可能增大塔顶、散索鞍支墩处索股滚筒所组成的曲线的竖向曲率半径。
3)、全部采用尼龙托滚,对索股缠包带有较好的保护,防止缠包带断裂造成的散丝。
3、克服主缆索股牵引过程中的扭转现象时应该注意的安全问题1)、猫道设计时,合理分布猫道承重索的间距等,尽可能减小荷载造成的猫道倾斜。
悬索桥得受力分析一、选题在前面得presentation部分,我与张玉青同学合作完成了上海东海大桥得建模,在此次得实例分析中,我参考了《ANSYS土木工程实例应用》中得悬索桥部分,并在建模得基础上对其进行受力分析与施工过程中跨中挠度变化情况得分析。
二、实例1.问题得描述●材料性能悬索与吊杆:E=2、5e11,μ=0、1,ρɡ=1e4梁:E=3、0e11,μ=0、1,ρɡ=1e4●截面尺寸悬索:A=1吊杆:A=0、02梁:A=0、5,H=1,I=1/24●几何参数:桥长400m,双索塔,自桥面算起塔高20m。
全桥模型成对称分布。
两塔之间跨度为200m,左右塔距岸边各100m。
悬索间距为10m。
●初始条件:悬索与吊杆初应变为ε=1e5。
●边界条件:悬索两端铰支,大梁布置成简支结构。
以上都统一采用国际单位制。
2.悬索桥结构得建模把悬索体系得主要承重结构模拟为由铰链环组成得在节点上加荷载得悬挂索链。
这种模型不但能很好地表现实际节点索链得性质,还能表现由金属丝。
股或索组成得缆得性质,由于它不具有抗弯得能力,所以用LINK180单元模拟就是非常好得,计算得精度与索长度得选取有很大得关系,同时要考虑索得应力变化问题。
当给索缆装配加劲梁时,由于加劲梁还只就是外荷载,不参与结构受力,所以可以将缆索结构当成就是受集中荷载得体系。
荷载按照实际得情况阶段施加。
当桥建成之后,可以将缆索与加劲梁当做一个整体来分析,在条件允许得情况下可以一次性施加活载在桥上来模拟其受力分析。
三、建模过程及分析过程1.设置单元及材料参数➢定义单元类型➢定义材料属性➢实常数➢定义截面2.建模➢生成区段模型主缆单元类型为1号,材料类型为1,截面实常数R1;悬索单元类型为1号,实常数为 2,桥面主梁单元类型为2号,材料类型为2号,截面实常数为1。
➢定义局部坐标在X=100处生成局部坐标系,新得坐标系代号必须大于10,再将局部坐标系设为当前坐标系,以当前坐标系得YZ面为对称面,镜像生成另一区段模型。