2017年福建师大附中创新人才培养实验班自主招生考试数学样卷(附答案及评分标准)
- 格式:pdf
- 大小:466.60 KB
- 文档页数:6
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前福建省2017年初中毕业和高中阶段学校招生考试数学 ...................................................... 1 福建2017年初中毕业和高中阶段学校招生考试数学答案解析. (4)福建省2017年初中毕业和高中阶段学校招生考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是( )A .3-B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )AB C D 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4xB .22xC .24x D .4x 5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形6.不等式组20,30x x -⎧⎨+⎩≤>的解集是( )A .32x -<≤B .32x -≤<C .2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C .BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.计算0|2|3--= .12.如图,ABC △中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 . 15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度. 16.已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)先化简,再求值:21(1)1aa a --,其中21a =-.18.(本小题满分8分)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CE ===.求证:A D =∠∠.19.(本小题满分8分)如图,ABC △中,90BAC =︒∠,AD BC ⊥,垂足为D .求作ABC ∠的平分线,分别交AD ,AC 于,P Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只.”试用列方程(组)解应用题的方法求出问题的解.21.(本小题满分8分)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD =︒∠.(1)若4AB =,求CD 的长;(2)若,BC AD AD AP ==,求证:PD 是O 的切线.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)小明在某次作业中得到如下结果:2222sin 7sin 830.12+0.99=0.9945︒+︒≈, 2222sin 22sin 680.37+0.93=1.0018︒+︒≈, 2222sin 29sin 610.48+0.87=0.9873︒+︒≈, 2222sin 37sin 530.60+0.80=1.0000︒+︒≈, 2222sin 45sin 45(+(=122︒+︒≈. 据此,小明猜想:对于任意锐角α:均有22sin sin (90)1αα+︒-=.(1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6同时,愿,(1)写出,a b 的值;(2)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段,AC BC 上的点,且四边形PEFD 为矩形.(1)若PCD △是等腰三角形,求AP 的长; (2)若AP ,求CF 的长.25.(本小题满分14分)已知直线2y x m =+与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N . (ⅰ)若112a -≤≤-,求线段MN 长度的取值范围; (ⅱ)求QMN △面积的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
福建师大附中2017-2018学年下学期期末考试(实验班)高二理科数学试卷一、选择题(每小题5分,共70分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.复数(i 为虚数单位)的共轭复数是( )A. 1+iB. 1−iC. −1+iD. −1−i 2.设随机变量X 服从正态分布2(,)N μσ,若(4)(0)P x P x >=<,则μ=( ) A .1 B .2 C .3 D .4 3.计算( )A . 1B .C .D .4.抛掷一枚质地均匀的骰子两次,记事件A ={两次的点数均为奇数},B ={两次的点数之和小于7},则()P B A =( )A .13 B .49 C.59 D .235. 设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ).A . D (ξ)减小B . D (ξ)增大C .D (ξ)先减小后增大 D . D (ξ)先增大后减小 6.若20182018012018(12)x a a x a x -=+++L )(R x ∈,则20181222018222a a a +++L 的值为( ) A .2 B .0 C .-1 D .-214.已知函数()()210{ 21(0)xxx f x e x x x +≥=++<,若函数()()1y f f x a =--有三个零点,则实数a 的取值范围是( )A. (]11123e ⎛⎫+⋃ ⎪⎝⎭,,B. (]1111233e e ⎛⎫⎧⎫+⋃⋃+⎨⎬ ⎪⎝⎭⎩⎭,, C. [)1111233e e ⎛⎫⎧⎫+⋃⋃+⎨⎬ ⎪⎝⎭⎩⎭,, D. (]21123e ⎛⎫+⋃ ⎪⎝⎭,,二、填空题(每小题5分,共20分)15. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答). 16.若23250125(3)(2)(2)(2)x x a a x a x a x +=+++++++L ,则=2a ___________.17. ____________.(用组合数表示)18.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是______________.(用数字表示)三、解答题(要求写出过程,共60分) 19. (本小题满分10分) 已知复数i a a z )1(2121-++=,i R a i a z ,()1(22∈++=是虚数单位). (Ⅰ)若复数21z z +在复平面内对应的点在第四象限,求实数a 的取值范围; (Ⅱ)若虚数1z 是实系数一元二次方程0442=+-m x x 的根,求实数m 的值.20. (本小题满分10分)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同,曲线C 的极坐标方程为()2cos sin ρθθ=+ (1)求曲线C 的直角坐标方程;(2)直线12:{ (1x tl t y ==为参数)与曲线C 交于,A B 两点,于y 轴交于点E ,求11EA EB +的值。
福建省师⼤附中2017届⾼三期中考试:数学理(含答案)word版福建省师⼤附中 2017届⾼三期中考试数学试题(理)(满分:150分,时间:120分钟)说明:请将答案填写在答卷纸上,考试结束后只交答案卷.⼀、选择题:(每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项符合要求)1、已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B = ()A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x >2、复数i 215+的共轭复数为()A .-31035-IB .-i 31035+C .1+2iD .1-2i3、已知等差数列}{n a 的前13项之和为39,则876a a a ++等于()A .6B .9C . 12D .184、已知,a b R ?,则“33log log a b >”是 “11()()22a b<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、已知O 为ABC ?的重⼼,设 AB a AC b ==,,则OB=()A .2133a b -+B .1122a b -+C .2133a b -D .1122a b -6、命题p :),0[+∞∈?x ,1)2(log 3≤x ,则()A .p 是假命题,p ?:1)2(log ),,0[030>+∞∈?x xB .p 是假命题,p ?:1)2(log ),,0[3≥+∞∈?x xC .p 是真命题,p ?:),0[0+∞∈?x ,1)2(log 03>xD .p 是真命题,p ?:1)2(log ),,0[3≥+∞∈?x x7、曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为()A .12-B .12 C.2-D.28、函数()sin()f x A x ω?=+(其中0,||2A π><)的图象如图所⽰,为了得到x x g 2sin )(=的图像,则只需将()f x 的图像()A .向右平移6π个长度单位 B .向右平移12π个长度单位C .向左平移6π个长度单位D .向左平移12π个长度单位9、如图,设点A 是单位圆上的⼀定点,动点P 从点A 出发在圆上按逆时针⽅向旋转⼀周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数()d f l =的图象⼤致是()10、在ABC ?中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是()A .(0,6π] B .(0,3π] C .[6π,π) D .[3π,π) 11、如下图所⽰,由若⼲个点组成形如三⾓形的图形,每条边(包括两个端点)有(1,)n n n N >∈个点,每个图形总的点数记为n a ,则233445201020119999a a a a a a a a ++++= ()A .20102009B .20102011C .20092011D .2011201012、对于函数()f x ,若存在区间[,]M a b =(其中a b <),使得{|(),},y y f x x M M =∈=则称区间M为函数()f x 的⼀个“稳定区间”。
福建省师大附中2017-2018学年高二数学下学期期中试题 理(实验班)一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求)1.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴为极轴建立极坐标系,直线的极坐标方程为3cos 4sin 90ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离 C .直线过圆心 D .相交但直线不过圆心2.已知)(x f 的导函数()f x '的图象如右图所示,那么函数)(x f 的图象最有可能的是( )3.从一楼到二楼的楼梯共有n 级台阶,每步只能跨上1级或2级, 走完这n 级台阶共有()f n 种走法,则下面的猜想正确的是( ) A. ()()()()123f n f n f n n =-+-≥ B. ()()()212f n f n n =-≥ C. ()()()2112f n f n n =--≥ D. ()()()()123f n f n f n n =--≥4.已知,15441544,833833,322322 =+=+=++∈=+R t a ta t a ,,88, 则=+t a ( )A 、70B 、68C 、69D 、715. 若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系, 则线段y =1-x (0≤x ≤1)的极坐标方程为( ). A .ρ=cos θ+sin θ, π02θ≤≤ B .1cos +sin ρθθ=,π04θ≤≤ C .1cos +sin ρθθ=,π02θ≤≤ D .ρ=cos θ+sin θ, π04θ≤≤6.已知函数()y f x =的图象在区间[],a b 上是连续不断的,如果存在[]0,x a b ∈,使得ABCD()()0·bx af x dx f x eb a=-⎰成立,则称0x 为函数()f x 在[],a b 上的“好点”,那么函数()22f x x x =+在[]1,1-上的“好点”的个数为( )A. 1B. 2C. 3D. 47.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A .43 B .2 C .83 D.38.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 值所在的范围是( )A. ()3,4B. ()4,5C. ()5,6D. ()6,79.若210()+2()d f x x f x x =⎰,则10()d f x x ⎰=( )A .-1B .13 C .13- D .1 10. 已知函数f (x )是定义在R 上的可导函数,其导函数记为f ′(x ),若对于任意实数x ,有f (x )>f ′(x ),且y=f(x)-1为奇函数,则不等式f (x )<e x 的解集为( ) A .(﹣∞,0) B .(0,+∞)C .(﹣∞,e 4) D .(e 4,+∞)11.已知函数)(x g 满足)1()(xg x g =,当]3,1[∈x 时,x x g ln )(=,若函数mx x g x f -=)()(在区间]3,31[上有三个不同零点,则实数m 的取值范围是( )A .)1,33ln [e B .)3,33ln [eC .)1,3[ln eD .)3,0(e 12.如图的倒三角形数阵满足:(1)第1行的n 个数分别是:1,3,5,…,2n-1;(2)从第2行起,各行中的每一个数都等于它肩上的两数之和;(3)数阵共有n 行(如:第3行的第4个数为36).问:当n=2018时,第34行的第17个数是( )A. 201823333+⋅B.392C. 34233⋅D. 382 13.方程()()()22222e 1240()x x x xt x x e t R --+--=∈g 的不等实根的个数为( )A. 1B. 3C. 5D. 1或5 二、填空题(每小题5分,共25分)1 3 5 7 9 11 ……4 8 12 16 20 …… 12 20 28 36 …… ………………… …………… …… .14.=+-⎰-dx x x )19(3332______________. 15. 已知函数m e x x x f x ---=)22()(2有三个不同的零点,则m 的取值范围为 . 16. 射线3πθ=(0>ρ)与曲线θρsin 2:1=C 的异于极点的交点为A ,与曲线2C :θρ22cos 12+=的交点为B ,则|AB|= .17. 太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列有关说法中:①对于圆22:1O x y +=的所有非常数函数的太极函数中,一定不能为偶函数;②函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;③存在圆O ,使得()11x x e f x e +=-是圆O 的一个太极函数;④直线()()12110m x m y +-+-=所对应的函数一定是圆()()()222:210O x y R R -+-=>的太极函数;⑤若函数()()3f x kx kx k R =-∈是圆22:1O x y +=的太极函数,则()2,2.k ∈-所有正确的是__________. 18.已知函数)0(ln )(>+=a x a x x f ,若))(1,21(,2121x x x x ≠∈∀,|11||)()(|2121x x x f x f ->-, 则正数a 的取值范围为 . 三、解答题(要求写出过程,共60分)19. (本小题满分12分) 已知过点()0,1P -的直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中, 曲线C 的方程为()22sin cos00a a θρθ-=>.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于点M ,N ,且PM ,MN ,PN 成等比数列,求a 的值.20. (本小题满分12分) 为了提高经济效益,某食品厂进行杏仁的深加工,每公斤杏仁的成本20元,并且每公斤杏仁的加工费为t 元(t 为常数,且25t ≤≤,设该食品厂每公斤杏仁的出厂价为x 元(2540x ≤≤),销售量q ,且(0,)x kq k k R e=>∈(e 为自然对数的底)。
福建师大附中2017-2018学年上学期期末考试卷(实验班)高二理科数学·选修2-1一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求)1.向量),1,2(y x --=,),1,,1(--=x 若∥,则y x +=( ) A .-2 B .0 C .1 D .22.若双曲线22221x y a b-=)0,0(>>b a )A. 2y x =±B. y =C. 12y x =± D. y x = 3.下列命题中是真命题的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题; ②“正多边形都相似”的逆命题; ③“若m>0,则x 2+x -m=0有实根”的逆否命题; ④“29x =,则3x =”的否命题. A .①②③④ B .①③④ C .②③④ D .①④ 4.若1>k ,则关于y x ,的方程1)-1222-=+k y x k (表示的曲线是( )A.焦点在x 轴上的椭圆B.焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D.焦点在y 轴上的双曲线5.与圆1)3(:221=++y x C 外切,且与圆93-x :C 222=+y )(外切的动圆圆心P 的 轨迹方程是( )A. )01822<=-x y x ( B . 1822=-y x C. )015422<=-x y x ( D. 15422=-y x 学6.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,E 为PD 中点,若=,=,=,则=( )A .B .C .D .7.设12,F F 是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则21F PF ∆的面积为( )A.4B.6C.22D.248.正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是( ) A.,43ππ⎡⎤⎢⎥⎣⎦ B. ,42ππ⎡⎤⎢⎥⎣⎦ C. ,62ππ⎡⎤⎢⎥⎣⎦ D. ,63ππ⎡⎤⎢⎥⎣⎦9.已知P 为抛物线y x 22=的动点,点P 在x 轴上的射影为M ,点A 的坐标是)217,6(, 则|PA|+|PM|的最小值是( )A.221 B.10 C.219D.8 10.给出以下命题:①若cos <,>=﹣,则异面直线MN 与PQ 所成角的余弦值为﹣;②若平面α与β的法向量分别是与,则平面α⊥β;③已知A 、B 、C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足,则点M ∈平面ABC ;④若向量、、是空间的一个基底,则向量、、也是空间的一个基底;则其中正确的命题个数是( )A .1B .2C .3D .411.过双曲线)0,0(12222>>=-b a by a x 的左焦点F(-c,0)作圆222a y x =+的切线,切点为E ,延长FE 交抛物线cx y 42=于点P ,若是若E 是线段FP 中点,则双曲线的离心率为( )A.215+ B. 5+1 C.25D. 512.如图,正方体中,为底面上的动点,于,且,则点的轨迹是( )A. 线段B. 圆弧C. 椭圆的一部分D. 抛物线的一部分13.在等腰梯形ABCD 中, //AB CD ,且2,1,2A B A D C D x ===,其中()0,1x ∈,以,A B 为焦点且过点D 的双曲线的离心率为1e ,以,C D 为焦点且过点A 的椭圆的离心率为2e ,若对任意()0,1x ∈,不等式12t e e <+恒成立,则t 的最大值是( )A. B. C. 2 D.二、填空题(每小题5分,共25分)14.直线l 与双曲线x 2﹣4y 2=4相交于A 、B 两点,若点P (4,1)为线段AB 的中点,则直线l 的方程是 . 15. 已知1:12p x ≤≤, ()():10q x a x a --->,若p ⌝是q ⌝的必要非充分条件,则a 的取值范围为__________.16.某桥的桥洞呈抛物线形,桥下水面宽16m ,当水面上涨2m 时,水面宽变为12m ,此时桥洞顶部距水面高度为_________米.17.在直三棱柱A 1B 1C 1﹣ABC 中,∠BAC=2π,AB=AC=AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为____________.18.已知椭圆22221x y a b +=(0a b >>,长轴AB 上的100等分点从左到右依次为点1M ,2M ,⋅⋅⋅,99M ,过i M (1i =,2,⋅⋅⋅,99)点作斜率为k (0k ≠)的直线i l (1i =,2,⋅⋅⋅,99),依次交椭圆上半部分于点1P ,3P ,5P ,⋅⋅⋅,197P ,交椭圆下半部分于点2P ,4P ,6P ,⋅⋅⋅,198P ,则198条直线1AP ,2AP ,⋅⋅⋅,198AP 的斜率乘积为 .三、解答题(要求写出过程,共60分) 19. (本小题满分8分)已知命题p :方程11222=-+m y x 表示焦点在y 轴的椭圆,命题q :关于x 的方程0422=+-m x x 没有实数根。
福建师大附中2017-2018学年下学期期末考试(实验班)高二理科数学试卷一、选择题(每小题5分,共70分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.复数(i 为虚数单位)的共轭复数是( )A. 1+iB. 1−iC. −1+iD. −1−i 2.设随机变量X 服从正态分布2(,)N μσ,若(4)(0)P x P x >=<,则μ=( ) A .1 B .2 C .3 D .43.计算( )A. 1 B .C .D .4.抛掷一枚质地均匀的骰子两次,记事件A ={两次的点数均为奇数},B ={两次的点数之和小于7},则()P B A =( )A .13 B .49 C.59 D .235. 设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ).A. D (ξ)减小B. D (ξ)增大C. D (ξ)先减小后增大D. D (ξ)先增大后减小 6.若20182018012018(12)x a a x a x -=+++L )(R x ∈,则20181222018222a a a +++L 的值为( ) A .2 B .0 C .-1 D .-27. 我校校友数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. B. C. D.8.已知随机变量X 满足5)1(=-X E ,5)1(=-X D ,则下列说法正确的是( )A .5)(,5)(=-=X D X EB .4)(,4)(-=-=X D X EC .5)(,5)(-=-=XD XE D .5)(,4)(=-=X D X E9. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A. 18B.24C.30D.36 10. 已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知()16145P ξ==,且该产品的次品率不超过40%,则这10件产品的次品率为( ) A .10%B .20%C .30%D .40%11. 如图,修建一条公路需要一段环湖弯曲路段(虚线部分)与两条直道(实线部分)平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )A .321122y x x x =--B .3211322y x x x =-- C .314y x x =- D .3211242y x x x =+-12.2018辆)均服从正态分布则这个收费口每天至少有一个超过700辆的概率为( ) A.1125 B. 12125 C. 61125 D. 6412513.某种植基地将编号分别为1,2,3, 4,5,6的六个不同品种的马铃薯种在如图所示的这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F 这两块实验田上,则不同的种植方法有 ( )A. 360种B. 432种C. 456种D. 480种14.已知函数()()210{ 21(0)xxx f x e x x x +≥=++<,若函数()()1y f f x a =--有三个零点,则实数a 的取值范围是( ) A. (]11123e ⎛⎫+⋃ ⎪⎝⎭,, B. (]1111233e e ⎛⎫⎧⎫+⋃⋃+⎨⎬ ⎪⎝⎭⎩⎭,, C. [)1111233e e ⎛⎫⎧⎫+⋃⋃+⎨⎬ ⎪⎝⎭⎩⎭,, D. (]21123e ⎛⎫+⋃ ⎪⎝⎭,,二、填空题(每小题5分,共20分)15. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答). 16.若23250125(3)(2)(2)(2)x x a a x a x a x +=+++++++L ,则=2a ___________.17. ____________.(用组合数表示)18.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是______________.(用数字表示)三、解答题(要求写出过程,共60分) 19. (本小题满分10分) 已知复数i a a z )1(2121-++=,i R a i a z ,()1(22∈++=是虚数单位).(Ⅰ)若复数21z z +在复平面内对应的点在第四象限,求实数a 的取值范围; (Ⅱ)若虚数1z 是实系数一元二次方程0442=+-m x x 的根,求实数m 的值.20. (本小题满分10分)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同,曲线C 的极坐标方程为()2cos sin ρθθ=+ (1)求曲线C 的直角坐标方程;(2)直线12:{(12x tl t y ==+为参数)与曲线C 交于,A B 两点,于y 轴交于点E ,求11EA EB+的值。
福建师大附中2016-2017学年高二(上)期末数学试卷(理科)(解+析版)一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax 2(a >0)的焦点到准线距离为1,则a=( )A .4B .2C .D .2.双曲线的焦点到渐近线的距离为( )A .B .2C .D .13.方程(t 为参数)表示的曲线是( )A .双曲线B .双曲线的上支C .双曲线的下支D .圆4.已知0<θ<,则双曲线与C 2:﹣=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.若正数x ,y 满足xy 2=4,则x +2y 的最小值是( )A .3B .C .4D .6.下列命题:其中正确命题的个数是( ) (1)“若a ≤b ,则am 2≤bm 2”的逆命题; (2)“全等三角形面积相等”的否命题;(3)“若a >1,则关于x 的不等式ax 2≥0的解集为R”的逆否命题; (4)“命题“p ∨q 为假”是命题“p ∧q 为假”的充分不必要条件” A .1B .2C .3D .47.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.29.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.812.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e ∈().若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.20.(10分)在平面直角坐标系xOy 中,已知点Q (1,2),P 是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P 的轨迹C 的方程;(2)过点F (1,0)作倾斜角为60°的直线L ,交曲线C 于A ,B 两点,求△AOB 的面积.21.(14分)已知椭圆C : =1(a >b >0)的顶点B 到左焦点F 1的距离为2,离心率e=.(1)求椭圆C 的方程;(2)若点A 为椭圆C 的右頂点,过点A 作互相垂直的两条射线,与椭圆C 分別交于不同的两点M ,N (M ,N 不与左、右顶点重合),试判断直线MN 是否过定点,若过定点,求出该定点的坐标; 若不过定点,请说明理由.[选修4-4:坐标系与参数方程]22.(12分)在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),M 为C 1上的动点,P 点满足=2,点P 的轨迹为曲线C 2.(Ⅰ)求C 2的普通方程;(Ⅱ) 设点(x ,y )在曲线C 2上,求x +2y 的取值范围.[选修4-5:不等式选讲]23.(12分)已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).2016-2017学年福建师大附中高二(上)期末数学试卷(理科)参考答案与试题解+析一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax2(a>0)的焦点到准线距离为1,则a=()A.4 B.2 C.D.【考点】抛物线的简单性质.【分析】抛物线y=ax2(a>0)化为,可得.再利用抛物线y=ax2(a>0)的焦点到准线的距离为1,即可得出结论.【解答】解:抛物线方程化为,∴,∴焦点到准线距离为,∴,故选D.【点评】本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.2.双曲线的焦点到渐近线的距离为()A .B .2C .D .1【考点】双曲线的简单性质.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣4,0),(4,0),渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:A【点评】本题考查双曲线的标准方程,以及双曲线的简单性质,点到直线的距离公式的应用,属于基础题.3.方程(t 为参数)表示的曲线是( )A .双曲线B .双曲线的上支C .双曲线的下支D .圆 【考点】参数方程化成普通方程.【分析】方程(t 为参数),消去参数,即可得出表示的曲线.【解答】解:(t 为参数),可得x +y=2•2t ,y ﹣x=2•2﹣t ,∴(x +y )(y ﹣x )=4(y >x >0),即y 2﹣x 2=4(y >x >0),∴方程(t 为参数)表示的曲线是双曲线的上支,故选B .【点评】本题考查参数方程与普通方程的互化,考查学生的计算能力,比较基础.4.已知0<θ<,则双曲线与C 2:﹣=1的( )A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【考点】双曲线的简单性质.【分析】根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.【解答】解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.【点评】本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.5.若正数x,y满足xy2=4,则x+2y的最小值是()A.3B.C.4D.【考点】基本不等式.【分析】变形利用基本不等式的性质即可得出.【解答】解:∵正数x,y满足xy2=4,∴x=.则x+2y=+2y=+y+y=,当且仅当y=,x=2时取等号.∴x+2y的最小值是,故选:A.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.6.下列命题:其中正确命题的个数是()(1)“若a≤b,则am2≤bm2”的逆命题;(2)“全等三角形面积相等”的否命题;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;(4)“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】(1)原命题的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)原命题的否命题为:“不全等三角形面积不相等”,即可判断出正误;(3)由于原命题正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真,即可判断出正误.【解答】解:(1)“若a≤b,则am2≤bm2”的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)“全等三角形面积相等”的否命题为:“不全等三角形面积不相等”,不正确;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真.∴“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”,正确.综上可知:正确的命题只有(3)(4).故选:B.【点评】本题考查了简易逻辑的判定,考查了推理能力与计算能力,属于中档题.7.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由△F1PF2是底角为30°的等腰三角形,得|PF1|=|F1F2|且∠PF1F2=120°,设交x轴于点M,可得|PF1|=2|F1M|,由此建立关于a、c的等式,解之即可求得椭圆E的离心率.【解答】解:设交x轴于点M,∵△F1PF2是底角为30°的等腰三角形∴∠PF1F2=120°,|PF1|=|F2F1|,且|PF1|=2|F1M|.∵P为直线上一点,∴2(﹣c+)=2c,解之得3a=4c∴椭圆E的离心率为e==故选:C【点评】本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.2【考点】抛物线的简单性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF 的方程为y=﹣2(x ﹣2),与y 2=8x 联立可得x=1, ∴|QF |=d=1+2=3, 故选:B .【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.9.已知椭圆E :的右焦点为F (3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为(1,﹣1),则E 的方程为( )A .B .C .D .【考点】椭圆的标准方程.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x 1+x 2=2,y 1+y 2=﹣2,利用斜率计算公式可得==.于是得到,化为a 2=2b 2,再利用c=3=,即可解得a 2,b 2.进而得到椭圆的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】双曲线的简单性质.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】圆与圆锥曲线的综合;抛物线的简单性质.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.12.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)【考点】椭圆的简单性质.【分析】作出简图,则>,则e=.【解答】解:由题意,如图若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,由∠APO>45°,即sin∠APO>sin45°,即>,则e=,故选A.【点评】本题考查了椭圆的基本性质应用,属于基础题.二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是¬p:∃x∈A,2x∉B.【考点】命题的否定.【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈A,2x∈B 的否定是:¬p:∃x∈A,2x∉B;故答案为:¬p:∃x∈A,2x∉B;【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.【考点】抛物线的简单性质.【分析】求出抛物线的焦点坐标,利用线段AB中点M的纵坐标为4,通过y1+y2+p 求解即可.【解答】解:抛物线x2=8y焦点F(0,2),过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,可得y1+y2=8.则|AB|=y1+y2+p=8+4=12,故答案为:12;【点评】本题考查抛物线的简单性质的应用,考查计算能力.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.【考点】双曲线的简单性质.【分析】根据双曲线方程为x2﹣y2=1,可得焦距F1F2=2,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到|PF1|﹣|PF2|=±2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值为.【解答】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为9.【考点】双曲线的定义;双曲线的简单性质;双曲线的应用.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.【点评】本题主要考查了双曲线的定义,考查了学生对双曲线定义的灵活运用.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.【考点】抛物线的应用.【分析】先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.【解答】解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.【点评】本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是﹣=1(x>3).【考点】轨迹方程.【分析】根据图可得:|CA|﹣|CB|为定值,利用根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,从而写出其方程即得.【解答】解:如图,△ABC与圆的切点分别为E、F、G,则有|AE|=|AG|=8,|BF|=|BG|=2,|CE|=|CF|,所以|CA|﹣|CB|=8﹣2=6.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为﹣=1(x>3).故答案为:﹣=1(x>3).【点评】本题考查轨迹方程,利用的是定义法,定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2008秋•泰州期末)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e∈().若p或q 为真命题,p且q为假命题,求实数m的取值范围.【考点】椭圆的简单性质;复合命题的真假;双曲线的简单性质.【分析】由p真与q真分别求得m的范围,利用复合命题的真假判断即可求得符合题意的实数m的取值范围.【解答】解:p真,则有9﹣m>2m>0,即0<m<3…2分q真,则有m>0,且e2=1+=1+∈(,2),即<m<5…4分若p或q为真命题,p且q为假命题,则p、q一真一假.①若p真、q假,则0<m<3,且m≥5或m≤,即0<m≤;…6分②若p假、q真,则m≥3或m≤0,且<m<5,即3≤m<5…8分故实数m的取值范围为0<m≤或3≤m<5…10分【点评】本题考查椭圆与双曲线的简单性质,考查复合命题的真假判断,考查集合的交补运算,属于中档题.20.(10分)(2016秋•马尾区校级期末)在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P的轨迹C的方程;(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB 的面积.【考点】轨迹方程.【分析】(1)由+=,得,即可求点P的轨迹C的方程;(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,利用韦达定理,即可求△AOB的面积.【解答】解:(1)设点P的坐标为P(x,y),则k OP=,k OQ=2,k PQ=,由+=,得.整理得点P的轨迹的方程为:y2=4x(y≠0,y≠2);(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,则y1+y2=,y1y2=﹣4,∴S==.【点评】本题考查斜率的计算,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.21.(14分)(2016秋•马尾区校级期末)已知椭圆C:=1(a>b>0)的顶点B到左焦点F1的距离为2,离心率e=.(1)求椭圆C的方程;(2)若点A为椭圆C的右頂点,过点A作互相垂直的两条射线,与椭圆C分別交于不同的两点M,N(M,N不与左、右顶点重合),试判断直线MN是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)由已知列出关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,△MNA为等腰直角三角形,求出M的坐标,可得直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,联立直线方程和椭圆方程,得(1+k2)x2+8kmx+4m2﹣4=0,由判别式大于0可得4k2﹣m2+1>0,再由AM⊥AN,且椭圆的右顶点A为(2,0),由向量数量积为0解得m=﹣2k或,然后分类求得直线MN的方程得答案.【解答】解:(1)由题意可知:,解得:,故椭圆的标准方程为;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,MN⊥x轴,△MNA为等腰直角三角形,∴|y1|=|2﹣x1|,又,M,N不与左、右顶点重合,解得,此时,直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,由方程组,得(1+k2)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(1+k2)(4m2﹣4)>0,整理得4k2﹣m2+1>0,.由已知AM⊥AN,且椭圆的右顶点A为(2,0),∴,,即,整理得5m2+16km+12k2=0,解得m=﹣2k或,均满足△=4k2﹣m2+1>0成立.当m=﹣2k时,直线l的方程y=kx﹣2k过顶点(2,0),与题意矛盾舍去.当时,直线l的方程,过定点,故直线过定点,且定点是.【点评】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,考查计算能力,是中档题.[选修4-4:坐标系与参数方程]22.(12分)(2016秋•马尾区校级期末)在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),M 为C 1上的动点,P 点满足=2,点P 的轨迹为曲线C 2.(Ⅰ)求C 2的普通方程;(Ⅱ) 设点(x ,y )在曲线C 2上,求x +2y 的取值范围.【考点】参数方程化成普通方程;轨迹方程.【分析】(Ⅰ)设点的坐标为p (x ,y ),根据题意,用x 、y 表示出点M 的坐标,然后根据M 是C 1上的动点,代入求出C 2的参数方程即可;(Ⅱ)令x=3cosθ,y=2sinθ,则x +2y=3cosθ+4sinθ=5()=5sin (θ+φ)即可,【解答】解:(Ⅰ)设P (x ,y ),则由条件知M ().由于M 点在C 1上,所以,即,消去参数α得即C 2的普通方程为(Ⅱ) 由椭圆的参数方程可得x=3cosθ,y=2sinθ,则x +2y=3cosθ+4sinθ=5()=5sin (θ+φ),其中tanφ=.∴x +2y 的取值范围是[﹣5,5].【点评】本题考查轨迹方程的求解,及参数方程的应用,属于基础题.[选修4-5:不等式选讲]23.(12分)(2016•福建模拟)已知函数f (x )=|x +1|.(I )求不等式f (x )<|2x +1|﹣1的解集M ;(Ⅱ)设a ,b ∈M ,证明:f (ab )>f (a )﹣f (﹣b ).【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得|a+1|>0,|b|﹣1>0,化简f(ab)﹣[f(a)﹣f(﹣b)]为|a+1|•(|b|﹣1|)>0,从而证得不等式成立.【解答】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1,∴①,或②,或③.解①求得x<﹣1;解②求得x∈∅;解③求得x>1.故要求的不等式的解集M={x|x<﹣1或x>1}.(Ⅱ)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1| =|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.【点评】本题主要考查绝对值不等式的解法,绝对值三角不等式,属于中档题.。
XXX2017年自主招生考试数学试题 Word版含答案1.XXX2017年面向全省自主招生考试《科学素养》测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分)1.已知$a=\frac{5+35-3}{5-35+3}$,$b=$,则二次根式$a^3b+ab^3+19$的值是()A、6.B、7.C、8.D、92.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()begin{cases}4x\geq3(x+1)\\2x-<a\end{cases}$A、$\frac{3}{452}$B、$\frac{1}{993}$C、$\frac{1}{452}$ D、$\frac{1}{165}$3.已知一次函数$y=kx+b$的图像经过点(3,0),且与坐标轴围成的三角形的面积为6,满足条件的函数有()A、2个B、3个C、4个D、5个4.若实数$a\neq b$,且a、b满足$a^2-8a+5=0$,$b^2-8b+5=.$则A、-20.B、2.C、2或20.D、2或205.对于每个非零自然数n,抛物线$y=x-\frac{b-1}{a-1}$的值为$\frac{2n+1}{n(n+1)}$,其中$x+$与x轴交于A$_n$、B$_n$以及A$_{2017}$、B$_{2017}$的值是()表示这两点间的距离,则A、$\frac{2017}{2016}+\frac{2018}{2017}$B、$\frac{2016}{2017}+\frac{2018}{2017}$ C、$\frac{2016}{2017}+\frac{2017}{2016}$ D、$\frac{2017}{2016}+\frac{2017}{2016}$6.已知$a,b,c$是$\triangle ABC$的三边,则下列式子一定正确的是()A、$a^2+b^2+c^2>ab+bc+ac$B、$\frac{a+bc}{a+b+1c+1}c$ D、$a^3+b^3>c^3$7.如图,从$\triangle ABC$各顶点作平行线$AD\parallel EB\parallel FC$,各与其对边或其延长线相交于D,E,F.若$\triangle ABC$的面积为1,则$\triangle DEF$的面积为()A、3.B、3C、D、28.半径为2.5的圆$\odot O$中,直径AB的不同侧有定点C和动点P,已知$A、$\frac{169}{25}$B、$\frac{32}{43}$C、$\frac{3}{4}$ D、$\frac{5}{6}$二、填空题(本大题共7小题,每小题5分,共35分)9.若分式方程$\frac{x-a}{x+1}=a$无解,则$a$的值为_________满足$a<1$,则方程$\frac{x-a}{x+1}=a$的解为$x=\frac{a}{1-a}$,当$a\geq1$时,分母$x+1$始终大于分子$x-a$,方程无解。
2016-2017学年福建师大附中高一(上)期末数学试卷一、选择题:每小题5分,共65分.在给出的A,B,C,D四个选项中,只有一项符合题目要求.1.直线的倾斜角为()A.30o B.150o C.60o D.120o2.若方程x2+y2﹣x+y+m=0表示圆,则实数m的取值范围是()A.m<B.m>C.m<0 D.m≤3.下列说法正确的是()A.截距相等的直线都可以用方程表示B.方程x+my﹣2=0(m∈R)不能表示平行y轴的直线C.经过点P(1,1),倾斜角为θ的直线方程为y﹣1=tanθ(x﹣1)D.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线方程为4.已知两直线l1:x+my+4=0,l2:(m﹣1)x+3my+3m=0.若l1∥l2,则m的值为()A.0 B.0或4 C.﹣1或 D.5.已知m,n是两条直线,α,β是两个平面,则下列命题中正确的是()A.m⊥α,α⊥β,m∥n⇒n∥βB.m∥α,α∩β=n⇒n∥mC.α∥β,m∥α,m⊥n,⇒n⊥βD.m⊥α,n⊥β,m∥n⇒α∥β6.如图:在正方体ABCD﹣A1B1C1D1中,设直线A1B与平面A1DCB1所成角为θ1,二面角A1﹣DC﹣A的大小为θ2,则θ1,θ2为()A.45o,30o B.30o,45o C.30o,60o D.60o,45o7.圆(x﹣1)2+(y﹣2)2=1关于直线x﹣y﹣2=0对称的圆的方程为()A.(x﹣4)2+(y+1)2=1 B.(x+4)2+(y+1)2=1 C.(x+2)2+(y+4)2=1 D.(x ﹣2)2+(y+1)2=18.如图,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,当底面ABC水平放置时,液面高为()A.7 B.6 C.4 D.29.若直线y=x+m与曲线有两个不同的交点,则实数m的取值范围为()A.B.C.D.10.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π11.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.8112.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面B.直线BE与直线AF是异面直线C.平面BCE⊥平面PADD.面PAD与面PBC的交线与BC平行13.如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.二、填空题:每小题5分,共25分.14.已知球O有个内接正方体,且球O的表面积为36π,则正方体的边长为.15.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.16.无论λ取何值,直线(λ+2)x﹣(λ﹣1)y+6λ+3=0必过定点.17.已知圆心为C(0,﹣2),且被直线2x﹣y+3=0截得的弦长为,则圆C的方程为.18.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,则下列结论中正确的是.①EF∥平面ABCD;②平面ACF⊥平面BEF;③三棱锥E﹣ABF的体积为定值;④存在某个位置使得异面直线AE与BF成角30o.三、解答题:要求写出过程,共60分.19.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在的直线方程.20.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.(Ⅰ)求证:DF∥平面ABC;(Ⅱ)求证:平面BDE⊥平面AEB.21.已知线段PQ的端点Q的坐标为(﹣2,3),端点P在圆C:(x﹣8)2+(y﹣1)2=4上运动.(Ⅰ)求线段PQ中点M的轨迹E的方程;(Ⅱ)若一光线从点Q射出,经x轴反射后,与轨迹E相切,求反射光线所在的直线方程.22.如图,在直三棱柱ABC﹣A1B1C1中,底面ABC为等边三角形,CC1=2AC=2.(Ⅰ)求三棱锥C1﹣CB1A的体积;(Ⅱ)在线段BB1上寻找一点F,使得CF⊥AC1,请说明作法和理由.23.已知圆M(M为圆心)的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA、PB,切点为A、B.(1)若∠APB=60°,试求点P的坐标;(2)求证:经过A、P、M三点的圆必过定点,并求出所有定点的坐标.2016-2017学年福建师大附中高一(上)期末数学试卷参考答案与试题解+析一、选择题:每小题5分,共65分.在给出的A,B,C,D四个选项中,只有一项符合题目要求.1.直线的倾斜角为()A.30o B.150o C.60o D.120o【考点】直线的倾斜角.【分析】设直线的倾斜角为θ,θ∈[0°,180°).可得tanθ=﹣,【解答】解:设直线的倾斜角为θ,θ∈[0°,180°).则tanθ=﹣,∴θ=120°.故选:D.2.若方程x2+y2﹣x+y+m=0表示圆,则实数m的取值范围是()A.m<B.m>C.m<0 D.m≤【考点】二元二次方程表示圆的条件.【分析】方程x2+y2﹣x+y+m=0即=﹣m,此方程表示圆时,应有﹣m>0,由此求得实数m的取值范围.【解答】解:方程x2+y2﹣x+y+m=0即=﹣m,此方程表示圆时,应有﹣m>0,解得m<,故选A.3.下列说法正确的是()A.截距相等的直线都可以用方程表示B.方程x+my﹣2=0(m∈R)不能表示平行y轴的直线C.经过点P(1,1),倾斜角为θ的直线方程为y﹣1=tanθ(x﹣1)D.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线方程为【考点】命题的真假判断与应用.【分析】A,截距相等为0的直线都不可以用方程表示;B,当m=0时,方程x+my﹣2=0(m∈R)表示平行y轴的直线;C,倾斜角为θ=900的直线方程不能写成点斜式;D,x1≠x2,直线的斜率存在,可以用点斜式表示.【解答】解:对于A,截距相等为0的直线都不可以用方程表示,故错;对于B,当m=0时,方程x+my﹣2=0(m∈R)表示平行y轴的直线x=2,故错;对于C,经过点P(1,1),倾斜角为θ=900的直线方程不能写成y﹣1=tanθ(x﹣1),故错;对于D,∵x1≠x2,∴直线的斜率存在,可写成,故正确;故选:D.4.已知两直线l1:x+my+4=0,l2:(m﹣1)x+3my+3m=0.若l1∥l2,则m的值为()A.0 B.0或4 C.﹣1或 D.【考点】直线的一般式方程与直线的平行关系.【分析】对m分类讨论,利用两条直线相互平行的充要条件即可得出.【解答】解:①当m=0时,两条直线分别化为:x+4=0,﹣x=0,此时两条直线相互平行,因此m=0.②当m≠0时,两条直线分别化为:y=﹣x﹣,y=﹣x﹣1,由于两条直线相互平行可得:﹣=﹣,且﹣≠﹣1,此时无解,综上可得:m=0.故选:A.5.已知m,n是两条直线,α,β是两个平面,则下列命题中正确的是()A.m⊥α,α⊥β,m∥n⇒n∥βB.m∥α,α∩β=n⇒n∥mC.α∥β,m∥α,m⊥n,⇒n⊥βD.m⊥α,n⊥β,m∥n⇒α∥β【考点】平面与平面之间的位置关系;空间中直线与平面之间的位置关系.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:对于A,m⊥α,α⊥β,m∥n⇒n∥β或n⊂β,不正确;对于B,m∥α,m⊂β,α∩β=n⇒n∥m,不正确;对于C,α∥β,m∥α,m⊥n⇒n、β位置关系不确定,不正确;对于D,m⊥α,m∥n,∴n⊥α,∵n⊥β,∴α∥β,正确,故选D.6.如图:在正方体ABCD﹣A1B1C1D1中,设直线A1B与平面A1DCB1所成角为θ1,二面角A1﹣DC﹣A的大小为θ2,则θ1,θ2为()A.45o,30o B.30o,45o C.30o,60o D.60o,45o【考点】二面角的平面角及求法.【分析】连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【解答】解:连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选:B.7.圆(x﹣1)2+(y﹣2)2=1关于直线x﹣y﹣2=0对称的圆的方程为()A.(x﹣4)2+(y+1)2=1 B.(x+4)2+(y+1)2=1 C.(x+2)2+(y+4)2=1 D.(x ﹣2)2+(y+1)2=1【考点】关于点、直线对称的圆的方程.【分析】求出圆心(1,2)关于直线x﹣y﹣2=0对称的点的坐标,可得要求的对称圆的方程.【解答】解:由于圆心(1,2)关于直线x﹣y﹣2=0对称的点的坐标为(4,﹣1),半径为1,故圆(x﹣1)2+(y﹣2)2=1关于直线x﹣y﹣2=0对称的圆的方程为(x﹣4)2+(y+1)2=1,故选:A.8.如图,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,当底面ABC水平放置时,液面高为()A.7 B.6 C.4 D.2【考点】棱柱、棱锥、棱台的体积.【分析】利用几何体的体积不变,体积相等,转化求解即可.【解答】解:底面ABC的面积设为S,则侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,水的体积为:,当底面ABC水平放置时,液面高为h,水的体积为:Sh=,可得h=6.故选:B.9.若直线y=x+m与曲线有两个不同的交点,则实数m的取值范围为()A.B.C.D.【考点】直线与圆相交的性质.【分析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分,把斜率是1的直线平行移动,即可求得结论.【解答】解:表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时的m值为,直线与曲线有两个交点时的m值为1,则1.故选D.10.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π【考点】棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).【分析】判断旋转后的几何体的形状,然后求解几何体的体积.【解答】解:由题意可知旋转后的几何体如图:将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为圆柱的体积减去圆锥的体积:=.故选:C.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.81【考点】由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:3××2=18,故棱柱的表面积为:18+36+9=54+18.故选:B.12.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面B.直线BE与直线AF是异面直线C.平面BCE⊥平面PADD.面PAD与面PBC的交线与BC平行【考点】平面与平面垂直的判定.【分析】几何体的展开图,复原出几何体,利用异面直线的定义判断A,B的正误;利用直线与平面垂直的判定定理判断C的正误;利用直线与平面平行的判定、性质定理判断D的正误.【解答】解:画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选C.13.如图,在等腰梯形ABCD 中,CD=2AB=2EF=2a ,E ,F 分别是底边AB ,CD 的中点,把四边形BEFC 沿直线EF 折起,使得平面BEFC ⊥平面ADFE .若动点P ∈平面ADFE ,设PB ,PC 与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P 的轨迹围成的图形的面积为( )A .B .C .D .【考点】轨迹方程.【分析】先确定PE=PF ,再以EF 所在直线为x 轴,EF 的垂直平分线为y 轴建立坐标系,求出轨迹方程,即可得出结论. 【解答】解:由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF ,θ1=θ2,∴PE=PF .以EF 所在直线为x 轴,EF 的垂直平分线为y 轴建立坐标系,设E (﹣,0),F (,0),P (x ,y ),则(x +)2+y 2= [(x ﹣)2+y 2],∴3x 2+3y 2+5ax +a 2=0,即(x +a )2+y 2=a 2,轨迹为圆,面积为.故选:D .二、填空题:每小题5分,共25分.14.已知球O有个内接正方体,且球O的表面积为36π,则正方体的边长为.【考点】球内接多面体.【分析】设正方体的棱长为x,利用球的内接正方体的对角线即为球的直径、球的表面积计算公式即可得出.【解答】解:设正方体的棱长为x,则=36π,解得x=.故答案为.15.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.【考点】旋转体(圆柱、圆锥、圆台).【分析】由圆锥的侧面展开图是一个半径为2的半圆知,圆锥的轴截面为边长为2的正三角形.【解答】解:∵圆锥的侧面展开图是一个半径为2的半圆,∴圆锥的轴截面为边长为2的正三角形,则圆锥的高h=2×sin60°=.16.无论λ取何值,直线(λ+2)x﹣(λ﹣1)y+6λ+3=0必过定点(﹣3,3).【考点】过两条直线交点的直线系方程.【分析】由条件令参数λ的系数等于零,求得x和y的值,即可得到定点的坐标.【解答】解:直线(λ+2)x﹣(λ﹣1)y+6λ+3=0,即(2x+y+3)+λ(x﹣y+6)=0,由,求得x=﹣3,y=3,可得直线经过定点(﹣3,3).故答案为(﹣3,3).17.已知圆心为C(0,﹣2),且被直线2x﹣y+3=0截得的弦长为,则圆C的方程为x2+(y+2)2=25.【考点】圆的标准方程;圆的一般方程.【分析】先求出弦心距,再根据弦长求出半径,从而求得圆C的方程.【解答】解:由题意可得弦心距d==,故半径r==5,故圆C的方程为x2+(y+2)2=25,故答案为:x2+(y+2)2=25.18.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,则下列结论中正确的是①②③④.①EF∥平面ABCD;②平面ACF⊥平面BEF;③三棱锥E﹣ABF的体积为定值;④存在某个位置使得异面直线AE与BF成角30o.【考点】命题的真假判断与应用.【分析】①,由EF∥平面ABCD判定;②,动点E、F运动过程中,AC始终垂直面BEF;③,三棱锥E﹣ABF的底△BEF的面积为定值,A到面BEF的距离为定值,故其体积为定值,;④,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300.【解答】解:如图:对于①,∵面ABCD∥面A1B1C1D1,EF⊂面A1B1C1D1,∴EF∥平面ABCD,故正确;对于②,动点E、F运动过程中,AC始终垂直面BEF,∴平面ACF⊥平面BEF,故正确;对于③,三棱锥E﹣ABF的底△BEF的面积为定值,A到面BEF的距离为定值,故其体积为定值,故正确;对于④,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故正确.故答案为:①②③④三、解答题:要求写出过程,共60分.19.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在的直线方程.【考点】直线的一般式方程.【分析】(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为x﹣3y+m=0(m≠﹣6),然后由点到直线距离得出=,就可以求出m的值,即可求出结果.【解答】解:(1)因为AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,所以直线AD的斜率为﹣3又因为点T(﹣1,1)在直线AD上,所以AD边所在直线的方程为y﹣1=﹣3(x+1).3x+y+2=0.(2)∵M为矩形ABCD两对角线的交点,则点M到直线AB和直线DC的距离相等∵DC∥AB∴可令DC的直线方程为:x﹣3y+m=0(m≠﹣6)M到直线AB的距离d==∴M到直线BC的距离即:=∴m=2或﹣6,又∵m≠﹣6∴m=2∴DC边所在的直线方程为:x﹣3y+2=020.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.(Ⅰ)求证:DF∥平面ABC;(Ⅱ)求证:平面BDE⊥平面AEB.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)取AB的中点G,连结FG,GC,由三角形中位线定理可得FG∥AE,,结合已知DC∥AE,,可得四边形DCGF为平行四边形,得到FD∥GC,由线面平行的判定可得FD∥平面ABC;(2)由线面垂直的性质可得EA⊥面ABC,得到EA⊥GC,再由△ABC为等边三角形,得CG⊥AB,结合线面垂直的判定可得CG⊥平面EAB,再由面面垂直的判定可得面BDE⊥面EAB.【解答】(1)证明:取AB的中点G,连结FG,GC,∵在△EAB中,FG∥AE,,∵DC∥AE,,∴DC∥FG,FG=DC,∴四边形DCGF为平行四边形,则FD∥GC,又∵FD⊄平面ABC,GC⊂平面ABC,∴FD∥平面ABC;(2)证明:∵EA⊥面ABC,CG⊂平面ABC,∴EA⊥GC,∵△ABC为等边三角形,∴CG⊥AB,又EA∩AB=A,∴CG⊥平面EAB,∵CG∥FD,∴FD⊥面EAB,又∵FD⊂面BDE,∴面BDE⊥面EAB.21.已知线段PQ的端点Q的坐标为(﹣2,3),端点P在圆C:(x﹣8)2+(y﹣1)2=4上运动.(Ⅰ)求线段PQ中点M的轨迹E的方程;(Ⅱ)若一光线从点Q射出,经x轴反射后,与轨迹E相切,求反射光线所在的直线方程.【考点】轨迹方程.【分析】(Ⅰ)设M(x,y),P(x0,y0),利用中点坐标公式,转化为P的坐标,代入圆的方程求解即可.(Ⅱ)设Q(﹣2,3)关于x轴对称点Q'(﹣2,﹣3)设过Q'(﹣2,﹣3)的直线ℓ:y+3=k(x+2),利用点到直线的距离公式化简求解即可.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),则代入轨迹E的方程为(x﹣3)2+(y﹣2)2=1;(Ⅱ)设Q(﹣2,3)关于x轴对称点Q'(﹣2,﹣3)设过Q'(﹣2,﹣3)的直线ℓ:y+3=k(x+2),即kx﹣y+2k﹣3=0∵,(5k﹣5)2=k2+125(k2﹣2k+1)=k2+124k2﹣50k+24=0,(3k﹣4)(4k﹣3)=0,∴或,∴反射光线所在,即4x﹣3y﹣1=0,即3x﹣4y﹣6=0.22.如图,在直三棱柱ABC﹣A1B1C1中,底面ABC为等边三角形,CC1=2AC=2.(Ⅰ)求三棱锥C1﹣CB1A的体积;(Ⅱ)在线段BB1上寻找一点F,使得CF⊥AC1,请说明作法和理由.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(Ⅱ)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线.【解答】解:(Ⅰ)取BC中点E连结AE,在等边三角形ABC中,AE⊥BC,又∵在直三棱柱ABC﹣A1B1C1中,侧面BB1CC1⊥面ABC,面BB1CC1∩面ABC=BC,∴AE⊥面BB1CC1,∴AE为三棱锥B1﹣ACC1的高,又∵AB=AC=BC=1,∴,又∵底面CC1B1为直角三角形,∴===1,∴三棱锥C1﹣CB1A的体积=.(Ⅱ)作法:在BB1上取F,使得,连结CF,CF即为所求直线.证明:如图,在矩形BB1C1C中,连结EC1,∵,,∴,∴Rt△C1CE∽Rt△CBF,∴∠CC1E=∠BCF,又∵∠BCF+∠FCC1=90°,∴∠CC1E+∠FCC1=90°,∴CF⊥EC1,又∵AE⊥面BB1C1C,而CF⊂面BB1C1C,∴AE⊥CF,又∵AE∩EC1=E,∴CF⊥面AEC1,又∵AC1⊂面AEC1,∴CF⊥AC1.- 21 -23.已知圆M (M 为圆心)的方程为x 2+(y ﹣2)2=1,直线l 的方程为x ﹣2y=0,点P 在直线l 上,过P 点作圆M 的切线PA 、PB ,切点为A 、B .(1)若∠APB=60°,试求点P 的坐标;(2)求证:经过A 、P 、M 三点的圆必过定点,并求出所有定点的坐标.【考点】直线和圆的方程的应用.【分析】(1)设P (2m ,m ),代入圆方程,解得m ,进而可知点P 的坐标.(2)设P (2m ,m ),MP的中点,因为PA 是圆M 的切线,进而可知经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到经过A ,P ,M 三点的圆必过定点的坐标.【解答】解:(1)设P (2m ,m ),由题可知,即(2m )2+(m ﹣2)2=4,…解得:故所求点P 的坐标为P (0,0)或. … (2)设P (2m ,m ),MP的中点,因为PA 是圆M 的切线所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为:…化简得:x 2+y 2﹣2y ﹣m (2x +y ﹣2)=0,此式是关于m 的恒等式,故解得或即(0,2)和().…2017年2月13日。
2017年福州市初中毕业班质量检测数 学 试 卷(考试时间:120分钟,满分:150分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.下列运算结果为正数的是A .)2(1-+B .)2(1--C .)2(1-⨯D .)2(1-÷ 2.若一个几何体的主视图,左视图,俯视图都是半径相等的圆,则这个几何体是A .圆柱B .圆锥C .球D .正方体 3.数轴上点A ,B 表示的数分别是a ,b ,这两点间的距离是A .b a +B .b a -C .b a +D .b a -4.两个全等的正六边形如图摆放,与△ABC 面积不同的一个三角形是 A .△ABD B .△ABEC .△ABFD .△ABG 5.如图,O 为直线AB 上一点,α=∠AOC ,β=∠BOC ,则β的余角可表示为A .)(21βα+B .α21C .)(21βα-D .β216.在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同.从中任意摸出3个球,下列事件为必然事件的是 A .至少有1个球是红球 B .至少有1个球是白球 C .至少有2个球是红球 D .至少有2个球是白球 7.若m ,n 均为正整数且3222=⋅n m ,64)2(=n m ,则n m mn ++的值为A .10B .11C .12D .138.如图,△ABC 中,︒=∠50ABC ,︒=∠30C ,将△ABC 绕点B 逆时针旋转α(︒0<α≤︒90)得到△DBE .若DE ∥AB ,则α为 A .︒50 B .︒70C .︒80D .︒909.在平面直角坐标系中,已知点A (1,2),B (2,1),C (1-,3-),D (2-,3),其中不可能与点E (1,3)在同一函数图象上的一个点是 A .点A B .点B C .点C D .点DA B C αβ第5题 A B DE 第8题第4题10.P 是抛物线542+-=x x y 上一点,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别是M ,N ,则PN PM +的最小值是A .45B .411 C .3 D .5二、填空题(共6小题,每题4分,满分24分)11.若二次根式3-x 有意义,则x 的取值范围是 . 12.2017年5月12日是第106个国际护士节,从数串“2 017 512”中随机抽取一个数字,抽到数字2的概率是________. 13.计算:=⨯⨯-01720162403342________.14.如图,矩形ABCD 中,2=AB ,点E 在AD 边上,以E 为圆心EA 长为半径的⊙E 与BC 相切,交CD 于点F ,连接EF ,若扇形EAF 的面积为π34,则BC 的长是_______.15.对于锐角α,αtan ______αsin .(填“>”,“<”或“=”) 16.如图,四边形ABCD 中,︒=∠=∠90ADC ABC ,BD 平分∠ABC , ︒=∠60DCB ,8=+BC AB ,则AC 的长是________.三、解答题(共9小题,满分86分)17.(8分)化简:aa a a a a 1)113(2-⋅+-+. 18.(8分)求证:等腰三角形底边中点到两腰距离相等.19.(8分)已知关于x 的一元二次方程012=++mx x ,写出一个无理数m ,使该方程没有实数根,并说明理由.20.(8分)如图,在Rt △ABC 中,︒=∠90C ,1=BC ,2=AC .以点B 为圆心,BC 长为半径画弧交AB 于点D ;以点A 为圆心AD 长为半径画弧,交AC 于点E ,保留作图痕迹,并求ACAE的值.A第20题ABCD第16题B第14题21.(8分)请根据下列图表信息解答问题:(1)表中空缺的数据为_________;(精确到1%) (2)求统计表中年增长率的平均数及中位数; (3)预测2017年的观影人次,并说明理由.22.(10分)如图,大拇指与小拇指尽量张开时,两指间的距离称为指距.某项研究表明,)的一次函数,下表是测得的一组数据(的取值范围) (2)如果李华的指距为22 cm ,那么他的身高约为多少?23.(10分)如图,锐角△ABC 内接于⊙O ,E 为CB 延长线上一点,连接AE 交⊙O 于点D ,BAC E ∠=∠,连接BD . (1)求证:ABC DBE ∠=∠;(2)若︒=∠45E ,3=BE ,5=BC ,求△AEC 的面积.2010~2016年电影行业观影人次统计图2011~2016年电影行业观影人次年增长率统计表年份人次E 第23题24.(12分)如图,□ABCD 中,AB AD 2=,点E 在BC 边上,且AD CE 41=,F 为BD 的中点,连接EF .(1)当︒=∠90ABC ,4=AD 时,连接AF ,求AF 的长; (2)连接DE ,若DE ⊥BC ,求∠BEF 的度数; (3)求证:BCD BEF ∠=∠21.25.(14分)已知抛物线c bx x y ++=2(bc ≠0). (1)若该抛物线的顶点坐标为(c ,b ),求其解析式;(2)点A (m n ,),B (1+m ,n 83),C (6+m ,n )在抛物线c bx x y ++=2上,求△ABC 的面积; (3)在(2)的条件下,抛物线c bx x y ++=2的图象与x 轴交于D (1x ,0),E (2x ,0)(1x <2x )两点,且0<2131x x +<3,求b 的取值范围.ABDEFABCDEF第24题 备用图福州市2017年初中毕业班质量检测数学试卷参考答案与评分标准一、选择题(每小题4分,共40分)1.B 2.C 3.D 4.B 5.C 6.A 7.B 8.C 9.A10.B 二、填空题(每小题4分,共24分)11.x ≥3 12.72 13.1 14.3 15.> 16.638 三、解答题(满分86分) 17.解:原式aa a a a )1)(1(12-+⨯+=4分 )1(2-=a 6分22-=a .8分18.已知:如图,△ABC 中,AC AB =,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .2分求证:DF DE =. 3分证明:连接AD . 4分 ∵AC AB =,D 是BC 的中点,∴AD 平分∠BAC . 6分∵DE ⊥AB ,DF ⊥AC , ∴DF DE =.8分19.解:2=m (m 满足2-<m <2的无理数均可) 2分理由如下:当2=m 时,方程为0122=++x x ,4分 ∵24)2(422-=-=-=∆ac b <0.7分∴当2=m 时,方程012=++mx x 无实数根.8分 20.解:如图所示.3分∵在Rt △ABC 中,1=BC ,2=AC ,∴52122=+=AB . 4分 由作图知:1==BC BD . 5分 ∴15-==AD AE . 7分ABCE F ABCDE∴215-=AC AE . 8分 21.解:(1)9%;3分(2)年增长率的平均数%316%9%52%35%32%27%31=+++++=. 5分年增长率的中位数%5.312%32%31=+=. 6分 (3)预测2017年全国观影人数约为17.97亿(答案从14.84~20.85均可).理由如下:按每年增长率的平均数进行估算,答案为:%)311(72.13+⨯≈17.97.(答案不唯一,言之有理即可得分)8分22.解:(1)设身高y 与指距x 之间的函数关系式为b kx y +=. 1分将⎩⎨⎧==15119y x 与⎩⎨⎧==16020y x 代入上式得:⎩⎨⎧=+=+1602015119b k b k . 3分 解得⎩⎨⎧-==209b k 5分∴y 与x 之间的函数关系式为209-=x y . …①6分 将⎩⎨⎧==16921y x 代入①也符合.(2)当22=x 时,178********=-⨯=-=x y . 9分 因此,李华的身高大约是178 cm . 10分 23.解:(1)∵四边形ADBC 为⊙O 的内接四边形,∴︒=∠+∠180EAC DBC .1分 ∵︒=∠+∠180DBC EBD ,∴BAC BAE EAC DBE ∠+∠=∠=∠.2分 ∵BAC E ∠=∠,∴BAC BAE BAE E ABC ∠+∠=∠+∠=∠.3分 ∴ABC DBE ∠=∠.4分(2)过点A 作AH ⊥BC ,垂足为H .5分 ∵︒=∠45E , ∴︒=∠45EAH .∴EH AH =.∵C C ∠=∠,BAC E ∠=∠,∴△ABC ∽△EAC . 6分 ∴ECACAC BC =. 即40)35(52=+⨯=⋅=EC BC AC .7分 设x AH =,则x EH =,x HC -=8. 在Rt △AHC 中:222AC HC AH =+, 即40)8(22=-+x x .8分 解得:6=x ,2=x . 当2=x 时,EH <BE , ∴点H 在BE 上.∴∠ABC >︒90(不合题意,舍去). ∴6=AH .9分 ∴24682121△=⨯⨯=⋅=AH EC S AEC .10分 24.解:(1)如图,∵四边形ABCD 为平行四边形,∴CD AB =,BC AD =,AD ∥BC .1分 (写出一个结论即给1分) ∴︒=∠+∠180ABC BAD .∴︒=︒-︒=∠-︒=∠9090180180ABC BAD . ∵AB AD 2=,4=AD , ∴2=AB .∴52422222=+=+=AD AB BD .2分 ∵F 为BD 中点, ∴521==BD AF .3分 (2)如图,∵BC AD =,CD AB =,AD CE 41=,AB AD 2=, ∴CE CD 2=,CD BC 2=.AB CDEF∴21==BC CD CD CE .4分 ∵C C ∠=∠,∴△DCE ∽△BCD . 5分 ∴CDE CBD ∠=∠.∵在Rt △CDE 中,21sin ==∠CD CE EDC , ∴︒=∠=∠30CDE CBD .6分 ∵F 为BD 中点, ∴BF BD EF ==21. ∴︒=∠=∠30DBE BEF .7分(3)在BC 边上取中点G ,连接FG .9分 则FG ∥CD . ∴C BGF ∠=∠,BC CD FG 4121==.10分 ∵BC AD CE 4141==,BC CG 21=, ∴BC EC CG GE 41=-=. ∴GE FG =.11分 ∴GFE BEF ∠=∠.∵BEF CFE BEF BGF ∠=∠+∠=∠2 ∴BEF C ∠=∠2.12分25.解:(1)∵依题意得:抛物线的对称轴是c bx =-=2, ∴c b 2-=.1分∴抛物线的解析式可化为c cx x y +-=22. ∵抛物线过顶点(c ,c 2-), ∴c c c c 2222-=+-.2分 化简得032=-c c .解得:01=c (不合题意,舍去),32=c . ∴62-=-=c b .3分ABCDEF ABCEFG D∴抛物线的解析式为362+-=x x y .4分(2)依题意得:抛物线的对称轴为直线3+=m x .6分 ∴设抛物线的顶点为(3+m ,k ).则抛物线的解析式为k m x y +--=2)3(.7分∵抛物线过A (m ,n ),B (1+m ,n 83)两点,∴⎪⎩⎪⎨⎧=+=+n k n k 8349.解得⎩⎨⎧=-=81n k .8分∴1556218521△=⨯⨯=⋅=n AC S ABC .9分 (3)由(2)可知:抛物线的解析式为1)3(2---=m x y .10分 令0=y ,得01)3(2=---m x . ∵1x <2x ,∴21+=m x ,42+=m x .11分 ∵0<2131x x +<3, ∴0<)4(312+++m m <3.12分解得:25-<m <41-.13分 ∵32+=-m b, ∴211-<b <1-.14分。