LC振荡器、集成电路振荡器(讲课用)资料
- 格式:pdf
- 大小:3.59 MB
- 文档页数:36
模拟集成电路振荡器类别
集成电路振荡器是一种能够产生稳定的周期性信号的电路。
根据工作原理和应用领域的不同,常见的集成电路振荡器可以分为以下几类:
1. RC 振荡器:使用电阻 (R) 和电容 (C) 组成的谐振电路来实现振荡。
其中最简单的是 RC 相位移振荡器和 RC 时钟振荡器。
2. LC 振荡器:使用电感 (L) 和电容 (C) 组成的谐振电路来实现振荡。
常见的 LC 振荡器包括 LC 震荡电路、Colpitts 振荡器和 Hartley 振荡器。
3. 晶体振荡器:通过利用晶体的压电效应,在晶体中产生机械振动并将其转换为电信号来实现振荡。
常见的晶体振荡器有石英晶体振荡器和陶瓷谐振器。
4. 压控振荡器 (VCO):通过改变输入电压来调节输出频率的振荡器。
VCO 在射频应用中广泛使用,例如无线通信系统和频率合成器。
5. 锁相环振荡器 (PLL):通过反馈机制来控制输出信号与参考信号之间的相位差,从而实现稳定的频率和相位输出。
PLL 在时钟同步、频率合成和数据通信等领域中得到广泛应用。
这些是常见的集成电路振荡器类别,每种类别有不同的工作原理和应用特点,适用于不同的电子系统和应用场景。
实验三 LC正弦波振荡器一、实验目的1.熟悉电容三点式振荡器(考毕兹电路)、改进型电容三点式振荡器(克拉泼电路及西勒电路)的电路特点、结构及工作原理。
2.掌握振荡器静态工作点调整方法。
3.掌握晶体管(振荡管)工作状态、反馈大小对振荡幅度与波形的影响。
4.掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
5.掌握振荡回路Q值对频率稳定度的影响。
5.比较不同LC振荡器和晶体振荡器频率稳定度,加深振荡器频率稳定度的理解。
二、预习要求1.复习LC振荡器的工作原理。
2.分析图3-7电路的工作原理,及各元件的作用,并按小信号调谐放大器模的 (设晶体管的β值为100)。
式设置晶体管静态工作点,计算电流IC仿真要求:1.按图3-7构建仿真电路,实现各种结构的振荡器2.以克拉泼电路振荡器为原型,改变振荡回路参数测量振荡器输出3.改变反馈系数,观测振荡器输出4.改变负载电阻,观测振荡器输出5.试构建西勒电路,完成2-4内容。
三、实验内容:1)分析电路结构,正确连接电路,使电路分别构成三种不同的振荡电路。
2)研究反馈大小及工作点对振荡器电路振荡频率、幅度及波形的影响。
3)研究振荡回路Q值变化对频率稳定度的影响4)研究克拉泼电路中电容C1003-1、C1003-2、C1003-3对振荡频率及幅度的影响。
5)研究西勒电路中电容C1004对振荡频率及幅度的影响。
四、实验原理1.实验原理:正弦波振荡器是指振荡波形接近理想正弦波的振荡器,这是应用非常广泛的一类电路,产生正弦信号的振荡电路形式很多,但归纳起来,不外是RC、LC和晶体振荡器三种形式。
在本实验中,我们研究的主要是LC三点式振荡器振荡器。
1电路特点:图3-7为实验电路,V1001及周边元件构成了电容反馈振荡电路及石英晶体振荡电路。
V1002构成射极输出器。
S1001、S1002、S1003、J1001分别连接在不同位置时,就可分别构成考毕兹、克拉泼和西勒三种不同的LC振荡器以及石英晶体振荡器。
LC 振荡器简介LC 振荡器的选频网络是 LC 谐振电路。
它们的振荡频率都比较高,常见电路有 3 种。
( 1 )变压器反馈 LC 振荡电路图 1 ( a )是变压器反馈 LC 振荡电路。
晶体管 VT 是共发射极放大器。
变压器 T 的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反馈信号。
接通电源时, LC 回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率f 0 相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1 、 L2 的耦合又送回到晶体管 V 的基极。
从图 1 ( b )看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。
因此电路的振荡迅速加强并最后稳定下来。
变压器反馈 LC 振荡电路的特点是:频率范围宽、容易起振,但频率稳定度不高。
它的振荡频率是: f 0 =1 /2π LC 。
常用于产生几十千赫到几十兆赫的正弦波信号。
( 2 )电感三点式振荡电路图 2 ( a )是另一种常用的电感三点式振荡电路。
图中电感 L1 、 L2 和电容 C 组成起选频作用的谐振电路。
从 L2 上取出反馈电压加到晶体管 VT 的基极。
从图 2 ( b )看到,晶体管的输入电压和反馈电压是同相的,满足相位平衡条件的,因此电路能起振。
由于晶体管的 3 个极是分别接在电感的 3 个点上的,因此被称为电感三点式振荡电路。
电感三点式振荡电路的特点是:频率范围宽、容易起振,但输出含有较多高次调波,波形较差。
它的振荡频率是: f 0 =1/2π LC ,其中 L=L1 + L2 + 2M 。
常用于产生几十兆赫以下的正弦波信号。
( 3 )电容三点式振荡电路还有一种常用的振荡电路是电容三点式振荡电路,见图 3 ( a )。
图中电感 L 和电容 C1 、 C2 组成起选频作用的谐振电路,从电容 C2 上取出反馈电压加到晶体管VT 的基极。
从图 3 ( b )看到,晶体管的输入电压和反馈电压同相,满足相位平衡条件,因此电路能起振。
高频信号发生器主要用来向各种电子设备和电路提供高频能量或者高频标准信号,以便测试各种电子设备和电路的电气特性。
一般采用LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
为此,振荡器是电子技术领域中最基本的电子线路。
振荡器主要分为晶体振荡器和LC振荡器,本次课设采用LC振荡器。
LC振荡器中的基本电路就是通常所说的三点式振荡器,即LC回路的三个端点与晶体管的三个电极分别连接而成的电路。
其中三点式又分为两种基本电路。
根据反馈网络由电容还是电感完成的分为电容反馈振荡器和电感反馈振荡器。
同时为了提高振荡器的稳定度,通过对电容三点式振荡器的改进可以得到克拉泼振荡器和西勒振荡器两种改进型的电容反馈振荡器。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
1、电感反馈三点式振荡器:电感三点式振荡器(哈特莱振荡器),其原理电路如图所示:电感反馈振荡电路的优点是:由于1L和2L之间有互感存在,所以容易起振。
其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。
这种电路的主要缺点是:与电容反馈振荡电路相比,其振荡波形不够好。
这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,故对于LC回路中的高次谐波反馈较强,波形失真较大。
其次是当工作频率较高时,由于1L和2L上的分布电容和晶体管的极间电容均并联于1L与2L两端,这样,反馈系数F随频率变化而变化。
工作频率愈高,分布参数的影响也愈严重,甚至可能使F减小到满足不了起振条件。
因此,这种电路尽管它的工作频率也能达到甚高频波段,但是在甚高频波段里,优先选择的还是电容反馈振荡器。
2、电容三点式振荡器:电容三点式振荡器(考毕兹振荡器),其原理电路如图:振荡频率近似为:与电感三端振荡电路相比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减少,波形更加接近于正弦波。
LC振荡器知识1.什么是振荡?振荡器必须具备什么条件才能振荡?答:如图1-28所示电路,开关S打到位置1时,电容C就被充电到电源电压,再将开关S从1切换到2的位置,使电容C与电感L并联起来,这时电容C 就向电感L放电。
在C刚放电时,由于电感中的电流不能突变,因此放电电流从零开始,逐渐增大,而电容C的端电压逐渐减小。
此时电容C中的电能逐渐变为电感 L中的磁能;当电容中的电荷放完,其端电压等于零时,这时电容不再放电,但由于电感中的电流不能突变,因此,电流并不会突然消失,而是按照原来的方向继续 流动,电感L反过来向电容C充电,电容两端重新出现电荷,但此时电容两端的电压极性与原来电容两端电压极性相反。
在L向C反向充电的过程中,电感L的电流 逐渐减小,电容C上的电压逐渐增大,使电感中的磁能又变成电容中的电能。
当电容的端电压达到最大值时,C又向L充电,其过程与前述相同,只是放电电流方向相反。
就这样电能和磁能反复地相互转换,我们把这种现象称为振荡。
振荡器实质是一种满足自激振荡条件的反馈放大器,它可以产生正弦波信号或非正弦波信号。
能产生正弦波信号的振荡器称为正弦波振荡器,其电路称为正弦 波振荡电路。
正弦波振荡电路是一个满足自激振荡条件的正反馈放大电路,有时也称为反馈振荡电路。
正弦波振荡器产生持续振荡有两个条件,其一为振幅平衡条件 (∣AF│=AF=1);其二为相位平衡条件(φa+φf=2nπ,n=0,1,2,……)。
这里设式中,φa为基本放大电路输出信号与输入信号之间的相位差;φf为反馈信号与输出信号之问的相位差。
2.正弦波振荡电路由哪几部分组成?各部分有什么作用?答:正弦波振荡电路由四部分组成,即放大电路、反馈网络、选频网络和稳幅环节。
(1)放大电路具有一定的电压放大倍数,其作用是对选择出来的某一频率的信号进行放大。
根据电路需要可采用单级放大电路或多级放大电路。
(2)反馈网络是反馈信号所经过的电路,其作用是将输出信号反馈到输入端,引入自激振荡所需的正反馈,一般反馈网络由线性元件R、L和C按需要组成。
LC正弦波振荡器作频率可达到几百兆赫。
与发射极相连接的两个电抗元件同为电感时的三点式电路, 称为电感三点式电路, 也称为哈特莱电路。
二、电感三点式电路(又称哈特莱电路,Hartley )图3.2.6(a)为电感三点式振荡器电路。
其中 21,L L 是回路电感, C 是回路电容, c C 和e C 是耦合电容,b C 是旁路电容, 3L 和4L 是高频扼流圈。
(b)图为其共基组态交流等效电路。
利用类似于电容三点式振荡器的分析方法, 也可以求得电感三点式振荡器振幅起振条件和振荡频率, 区别在于这里以自耦变压器耦合代替了电容耦合。
振荡角频率LC 10=ω 其中 122L L L M M =++,为互感系数起振条件e L m ng g n g +>'1其中接入系数ML L ML N N n 22121312±++==LLR g'1'=ee r g 1=本电路反馈系数2122f L Mk n L L M +==+±二、电容三点式电路(又称考毕兹电路,Coplitts)图3.2.4(a)是电容三点式电路一种常见形式,(b)是其高频等效电路。
图中1C,2C是回路电容, L是回路电感, b C和c C分别是高频旁路电容和耦合电容。
一般来说, 旁路电容和耦合电容的电容值至少要比回路电容值大一个数量级以上。
有些电路里还接有高频扼流圈, 其作用是为直流提供通路而又不影响谐振回路工作特性。
对于高频振荡信号, 旁路电容和耦合电容可近似为短路, 高频扼流圈可近似为开路。
由于电容三点式电路已满足反馈振荡器的相位条件, 只要再满足振幅起振条件就可以正常工作。
因为晶体管放大器的增益随输入信号振幅变化的特性与因为jB G V g V im f +=.', .'.ff Vn V =所以 环路增益)1(''...L C j g g ng jBG ng V V T e L mmif ωω-++=+==振荡角频率LC 10=ω 由此可求的振幅起振的条件为: 1''>+eL mg g ng 即:eL e L m ng g n g g n g +=+>'''1)(1其中e e b e e L L r r g R R g 11,1'0'=+==β 本电路的反馈系数112f C k n C C ==+ ,f k 的取值一般为 21~81。
l c振荡§3.2 LC正弦波振荡器主要介绍三点式振荡器和差分对管振荡器.2.1三点式振荡电路一、电路的组成法则与发射极相连的为两个同性电抗,另一个(接在集电极与基极间)为异性电抗。
证明:如图c所示(理想)由于回路谐振:X1+X2+X3≈0由于Vo与Vi反相(共射)f是Vo在X3、X2支路中X2上的电压即为了满足相位平衡条件,Vf就必须与Vo反相,因而X2必须与X1为同性质电抗,再由1+X2+X3≈0可知X3应为异性电抗。
二、三点式振荡电路电容三点式振荡电路(反馈信号是电容上的电压)电感三点式振荡电路(反馈信号是电感上的电压)电容三点式振荡电路两图的区别是交流接地电极方式不同,所以反馈方式也不同;(a)反馈电压加到三极管的基极,(b)反馈电压加到三极管的发射极就交流通路而言,不论三极管哪一个极交流接地,它们都是由可变增益器件(三极管)和移相网络(并联谐振回来)组成,且满足三点式振荡电路的组成法则。
电路中,作为可变增益器件的三极管必须由偏置电路设置合适的静态工作点,以保证起振时工作在放大区,提供足够的增益,满足起振条件;起振后,振荡振幅增长,直到三极管呈现非线性特性时,放大器的增益将随振荡幅度增大而减小,同时,偏置电路产生的自给偏置效应又进一步加速放大器增益的下降。
a)VBB=VCCRB2/(RB1+RB2)B = RB1∥RB2BEQ=VBQ-VEQBQ=VBB-IBQRBEQ=IEQREb)当vi增大到三极管非线性区时,vi的一部分进入截止区,三极管的集电极电流和基极电流已不再是正弦波而是失真的脉冲波(不对称性图c),它们的平均值IC0、IB0将大于静态值ICQ、IBQ,且随vi的增大而增大,结果是VB0减小,相应的VBE0减小,从而达到稳幅的效果。
同理可分析电感三点式振荡电路(反馈信号是电感上的电压)。
三、电容三点式振荡电路的起振条件由放大器增益分析和相位〔φT(ωosc)=2nπ〕、幅度〔T(ωosc)>1或Vf >Vi〕的起振条件可推导出:相位起振条件为振幅起振条件为下面对上述起振条件作简要的讨论、振荡角频率ωosc由相位条件可推出其中(总电容)、(固有谐振频率)上式表明,电容三点式振荡器的振荡频率ωosc不仅与ωo有关,而且还与gi、g’L即回路固有谐振电阻Re0、外接电阻RL和Ri有关,且ωosc>ωo 。