人教版数学七年级下册-平行线的性质及平移(提高)知识讲解
- 格式:doc
- 大小:327.50 KB
- 文档页数:9
专题02 平行线的性质知识网络重难突破知识点一 平行线的性质(1)两条平行线被第三条直线所截,同位角相等; 简单说成:两直线平行,同位角相等. 几何语言表述:(如图)a b Q P12∠∠∴=(两直线平行,同位角相等)(2)两条平行线被第三条直线所截,内错角相等; 简单说成:两直线平行,内错角相等. 几何语言表述:(如图)a b Q P32∠∠∴=(两直线平行,内错角相等)(3)两条平行线被第三条直线所截,同旁内角互补; 简单说成:两直线平行,同旁内角互补. 几何语言表述:(如图)a b Q P34180∠∠︒∴+=(两直线平行,同旁内角互补)注意:①任意两条直线被第三条直线所截,构成的同位角、内错角不一定相等,构成的同旁内角也不一定互补; ②特别注意前提条件“两直线平行”,只有两直线平行,才有同位角相等,内错角相等,同旁内角互补.典例1(2018春•建邺区期末)如图,直线//a b ,三角板的直角顶点放在直线b 上,若165∠=︒,则2∠= .【解答】解:已知直线//a b,3165∴∠=∠=︒(两直线平行,同位角相等),∠=︒(已知),490234180∠+∠+∠=︒(已知直线),∴∠=︒-︒-︒=︒.2180659025故答案为:25︒.典例2(2019春•鼓楼区期中)如图,一个人从A点出发沿北偏东30︒方向走到B点,若这个人再从B点沿南偏东15︒方向走到C点则ABC∠等于()A.15︒B.30︒C.45︒D.165︒【解答】解:由题意可知301545∠=︒+︒=︒ABC故选:C.典例3(2019春•秦淮区期中)把一张对边互相平行的纸条折成如图那样,EF 是折痕,若32EFB ∠=︒,则D FD ∠'的度数为 .【解答】解:EF Q 是折痕,32EFB ∠=︒,//AC BD '', 32C EF GEG ∴∠'=∠=︒, 64C EG ∴∠'=︒,//CE FD Q ,64D FD EGB ∴∠'=∠=︒.故答案为:64︒. 典例4(2019春•秦淮区期中)如图,//AB CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,35EGF ∠=︒,求EFG ∠的度数.【解答】解://AB CD Q ,35EGF ∠=︒, 35AEG EGF ∴∠=∠=︒,180EFG AEF ∠+∠=︒. EG Q 平分AEF ∠,223570AEF AEG ∴∠=∠=⨯︒=︒, 180********EFG AEF ∴∠=︒-∠=︒-︒=︒.知识点二 平行线的判定与性质综合两直线平行的条件与性质经常结合在一起考查,它们虽然与同位角、内错角和同旁内角都有关系,但是已知和结论不同:两直线平行的条件是由角的数量关系确定直线的位置关系; 两直线平行的性质是由直线的位置关系确定角的数量关系。
第13讲平行线的性质与判定知识定位讲解用时:5分钟A、适用范围:人教版初一,基础较好;B、知识点概述:本讲义主要用于人教版初一新课,主要学习平行线的性质与判定,掌握平行线的性质,并能依据平行线的性质进行简单的推理;了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论.掌握平行公理及其推论;掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.知识梳理讲解用时:15分钟平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.①靠:用直尺紧靠三角板一条直角边.①推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.①画:沿着这条斜边画一条直线,所画直线与已知直线平行.判定方法1:同位角相等,两直线平行.如图,几何语言:①①3=①2①AB①CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:①①1=①2①AB①CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:①①4+①2=180°①AB①CD(同旁内角互补,两直线平行)课堂精讲精练【例题1】如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?【答案】(1)A1B1、C1D1、CD;(2)BB1、BC、AA1、AD、C1C、B1C1、A1D1、D1D.【解析】解:(1)AB∥A1B1∥C1D1∥CD,即和AB平行的线段有A1B1、C1D1、CD;(2)AB⊥BB1,AB⊥BC,AB⊥AA1,AB⊥AD,AB⊥C1C,AB⊥B1C1,AB⊥A1D1,AB⊥D1D,即和AB垂直的直线有BB1、BC、AA1、AD、C1C、B1C1、A1D1、D1D.讲解用时:5分钟解题思路:(1)根据平行线的判定结合图形得出AB∥A1B1∥C1D1∥CD,即可得出答案;(2)根据垂直定义和平行线性质结合图形推出AB⊥BB1,AB⊥BC,AB⊥AA1,AB⊥AD,AB⊥C1C,AB⊥B1C1,AB⊥A1D1,AB⊥D1D,即可得出答案.教学建议:本题考查了平行线,认识立体图形和垂线等知识点,主要考查学生的观察图形的能力和理解能力,能找出符合条件的所有答案是解此题的关键.难度: 4 适应场景:当堂例题例题来源:无【练习1.1】下列说法中正确的是()A.不相交的两条直线叫做平行线B.相等的角是对顶角C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直【答案】C.【解析】解:A、在同一平面内,不相交的两条直线叫做平行线,故A错误;B、相等的角是对顶角,故B错误;C、过直线外一点,能且只能作一条已知直线的平行线,故C正确;D、应在同一平面内才行,故错误.故选:C.讲解用时:3分钟解题思路:根据平行线、对顶角的定义、垂线的定义回答即可.教学建议:本题主要考查的是平行线、对顶角、垂线,掌握相关定义是解题的关键.难度: 3 适应场景:当堂练习例题来源:无【例题2】下列说法正确的序号有①有且只有一条直线与已知直线平行;②平行于同一条直线的两直线平行;③不相等的角一定不是对顶角;④过直线外一点作直线的垂线段,叫做点到直线的距离;⑤若直线AB与CD没有交点,则AB∥CD.【答案】②③.【解析】解:①经过直线外一点有且只有一条直线平行于这条直线,故错误;②平行于同一条直线的两直线平行,故正确;③对顶角一定相等,所以不相等的角一定不是对顶角,故正确;④从直线外一点到已知直线的垂线段的长度叫做点到直线的距离,故错误;⑤没有说明在同一平面内,故错误;故答案为:②③.讲解用时:6分钟解题思路::根据平行线的公理及推论、对顶角的性质、点到直线距离的定义逐一判断即可.教学建议:本题主要考查平行线的公理及推论、对顶角的性质、点到直线距离,掌握并理解其定义、性质及公理是关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【答案】B.【解析】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.讲解用时:5分钟解题思路:根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).教学建议:本题考查了平行公里和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.难度: 4 适应场景:当堂练习例题来源:无【例题3】如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.【答案】A.【解析】证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)讲解用时:6分钟解题思路:由条件可先证明EH∥AB,再利用平行线的性质可得到∠3=∠ADE=∠B,可证明DE∥BC.教学建议:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.难度: 4 适应场景:当堂例题例题来源:无如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE 的是()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【答案】B.【解析】解:延长AC交DE于F,当∠β﹣∠α=90°时,∵∠ACD=90°,∴∠β﹣∠α=∠ACD,∴∠β﹣∠ACD=∠α,∴∠AFD=∠α,∴AB∥DE,故选:B.讲解用时:5分钟解题思路:延长AC交DE于F,根据三角形内角与外角的关系可得∠AFD=∠α,进而可得AB∥DE.教学建议:此题主要考查了平行线的判定,关键是掌握内错角相等,两直线平行.难度: 4 适应场景:当堂例题例题来源:无如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.【答案】240°.【解析】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.讲解用时:5分钟解题思路:过C作CG∥AB,过D作DH∥EF,依据AB∥EF,可得AB∥EF∥CG∥DH,进而得出∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,可得∠BCD+∠CDE=35°+180°+25°=240°.教学建议:本题主要考查了平行线的性质,解题时注意运用:两直线平行,同旁内角互补;两直线平行,内错角相等.难度: 4 适应场景:当堂例题例题来源:无如图,把一张长方形纸带沿着直线GF折叠,∠CGF=30°,则∠1的度数是.【答案】60°【解析】解:∵把一张长方形纸带沿着直线GF折叠,∠CGF=30°,∴∠EGF=∠FGC=30°,∵AD∥BC,∴∠CGF=∠GFE=30°,∴∠2=60°,∵GE∥FH,∴∠1=∠2=60°,故答案为:60°讲解用时:5分钟解题思路:根据平行线的性质可得∠CGF=∠GFE=30°再根据折叠可得:∠EGF=∠FGC=30°,再利用平行线的性质进而得到答案.教学建议:此题主要考查了平行线的性质,要熟练掌握平行线性质的运用.难度: 3 适应场景:当堂练习例题来源:无已知直线l1∥l2,l3和l1,l2分别交于C,D两点,点A,B分别在线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.如图1,有一动点P在线段CD之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明【答案】解:∠2=∠1+∠3.证明:如图①,过点P作PE∥l 1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;【解析】解:∠2=∠1+∠3.证明:如图①,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;讲解用时:5分钟解题思路:过点P作PE∥l1,根据l1∥l2可知PE∥l2,故可得出∠1=∠APE,∠3=∠BPE.再由∠2=∠APE+∠BPE即可得出结论;教学建议:本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.难度: 4 适应场景:当堂练习例题来源:无【例题5】已知直线a∥b∥c,a与b相距6cm,由a与c相距为4cm,求b与c之间的距离是多少?【答案】2cm或10cm.【解析】解:①如图1,当a在b、c之间时,b与c之间距离为6+4=10(cm);②如图2,c在b、a之间时,b与c之间距离为6﹣4=2(cm);即b与c之间的距离是2cm或10cm.讲解用时:5分钟解题思路:本题主要利用平行线之间的距离的定义作答.要分类讨论:①当a 在b、c之间时;②c在b、a之间时.教学建议:此题考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.难度: 3 适应场景:当堂例题例题来源:无如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S=10cm2,△ABDS△ACD为()A.10B.9C.8D.7【答案】A.【解析】=10cm2,解∵四边形ABCD中,AD∥BC,AC与BD相交于点O,S△ABD∴△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,∴S=10cm2,△ACD故选:A.讲解用时:5分钟解题思路:根据题意可知△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,从而可以得到S的值.△ACD教学建议: 本题考查平行线间的距离,解题的关键是找到两个三角形之间的关系,同底等高.难度: 3 适应场景:当堂练习例题来源:无如图:AB∥CD,AD∥BC,AD=5,BE=8,△DCE的面积为6,则四边形ABCD的面积为.【答案】20.【解析】解:作DG⊥BC于G,AH⊥BC于H,∴四边形ABCD是平行四边形,∴BC=AD=5,又BE=8,∴CE=3,又△DCE的面积为6,∴DG=4,∴四边形ABCD的面积=BC×AH=20,故答案为:20.讲解用时:6分钟解题思路:作DG⊥BC,AH⊥BC,根据△DCE的面积为6,求出DG,根据两平行线间的距离相等得到AH的长,根据平行四边形的面积公式得到答案.教学建议: 本题考查的是平行线间的距离,掌握两平行线间的距离相等和平行四边形的性质以及面积公式是解题的关键.难度: 4 适应场景:当堂练习例题来源:无【例题6】命题“线段垂直平分线上的点到线段两端的距离相等”的逆命题是.【答案】到线段两端的距离相等的点在线段垂直平分线上.【解析】解:命题“线段垂直平分线上的点到线段两端的距离相等”的逆命题是到线段两端的距离相等的点在线段垂直平分线上,故答案为:到线段两端的距离相等的点在线段垂直平分线上.讲解用时:5分钟解题思路:把原命题的题设与结论交换得到逆命题.教学建议:本题考查了命题与定理的知识,解题的关键是能够区分原命题的题设和结论.难度: 3 适应场景:当堂例题例题来源:无【练习6.1】写出一个能说明命题“若|a|>|b|,则a>b”是假命题的反例.【答案】a=﹣5,b=1(答案不唯一).【解析】解:因为a=﹣5,b=1时,满足|a|>|b|,不满足a>b,所以a=﹣5,b=1可作为说明命题“若|a|>|b|,则a>b”是假命题的反例.故答案为a=﹣5,b=1.讲解用时:5分钟解题思路:写出a、b的值满足|a|>|b|,不满足a>b即可.教学建议:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.难度: 3 适应场景:当堂练习例题来源:无【练习6.2】在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当x1=x2且y1=y2时,A=B.有下列四个命题:①若有A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊙B=0;②若有A⊕B=B⊕C,则A=C;③若有A⊙B=B⊙C,则A=C;④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立.其中正确的命题为(只填序号)【答案】①②④.【解析】解:①∵A(1,2),B(2,﹣1),∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣1),即A⊕B=(3,1),A⊙B=0,故①正确;②设C(x3,y3),则A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕B=B⊕C,所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,所以A=C,故②正确;③A⊙B=x1x2+y1y2,B⊙C=x2x3+y2y3,而A⊙B=B⊙C,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C,故③不正确;④因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),所以(A⊕B)⊕C=A⊕(B⊕C),故④正确.综上所述,正确的命题为①②④.故答案为:①②④.讲解用时:5分钟解题思路:①根据新定义的运算法则,可计算出A⊕B=(3,1),A⊗B=0;②设C(x3,y3),根据新定义得A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),则x1+x2=x2+x3,y1+y2=y2+y3,于是得到x1=x3,y1=y3,然后根据新定义即可得到A=C;③由于A⊙B=x1x2+y1y2,B⊙C=x2x3+y2y3,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C;④根据新定义的运算法则,可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3).教学建议:本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.难度: 4 适应场景:当堂练习例题来源:无【例题7】在足球、篮球、网球和垒球中,小张、小王、小李和小刘分别喜欢其中的一种,根据下面的提示,判断小刘喜欢的是()①小张不喜欢网球;②小王不喜欢足球;③小王和小李都是既不喜欢篮球也不喜欢网球.A.足球B.篮球C.网球D.垒球【答案】C.【解析】解:由小王和小李都是既不喜欢篮球也不喜欢网球,得小王喜欢足球、垒球;小王不喜欢足球,得小王喜欢垒球,小李喜欢足球.由小张不喜欢网球,得小张喜欢篮球,只剩下网球,故小刘喜欢网球,故选:C.讲解用时:5分钟解题思路:由③可知小王喜欢足球、垒球,又由②可知小王喜欢垒球,所以小李喜欢足球,由此为突破口,找出小张和小刘喜欢的项目.教学建议:本题考查了推理论证,利用所给条件中的逻辑关系认真分析,从而推理出正确结论是解题关键.难度: 3 适应场景:当堂例题例题来源:无【练习7.1】某参观团依据下列约束条件,从A、B、C、D、E五个地方选定参观地点:(1)如果去A地,那么也必须去B地;(2)D、E两地至少去一处;(3)B、C两地只去一处;(4)C、D两地都去或都不去;(5)如果去E地,那么A、D两地也必须去依据上述条件,你认为参观团只能去.【答案】30°或90°.【解析】解:由②知,D、E两地至少去一地,若去E地,则由⑤也必须去A、D地,由于①和④必须去B、C两地,但与③矛盾,所以不能去E地,因此必须去D地.由④也必须去C地,再由③知,不能去B地,从而由①知也不能去A地,故参观团只能去C、D两地.故答案为:C、D两地.讲解用时:5分钟解题思路:根据题中告诉的条件,可运用假设法进行推理,若得出矛盾则否定之,若得不出矛盾则推理正确.教学建议:此题主要考查了推理论证,解答这类题目,可根据题中告诉的已知条件,运用假设法进行推理即可难度: 4 适应场景:当堂练习例题来源:无【例题8】如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为.【答案】24cm2.【解析】解:∵边长为8cm的正方形ABCD先向上平移4cm,∴阴影部分的长为8﹣4=4m,∵向右平移2cm,∴阴影部分的宽为8﹣2=6cm,∴阴影部分的面积为6×4=24cm2.故答案为:24cm2.讲解用时:5分钟解题思路:阴影部分为长方形,根据平移的性质可得阴影部分是长为6,宽为4,让长乘宽即为阴影部分的面积.教学建议:考查了平移的性质,解决本题的关键是利用平移的性质得到阴影部分的边长.难度: 3 适应场景:当堂例题例题来源:无【练习8.1】如图,点O在直线MN上,∠AOB沿直线MN平移到∠CDE的位置,此时OB⊥CD于点F,若∠AOM=58°,则∠EDN的度数为.【答案】32°.【解析】解:由平移可得,AO∥CD,BO∥ED,∵∠AOM=58°,∴∠CDO=58°,又∵OB⊥CD,∴∠BOD=32°,∴∠EDN=∠BOD=32°,故答案为:32°.讲解用时:5分钟解题思路:先根据平移的性质,得出AO∥CD,BO∥ED,再根据平行线的性质以及垂线的定义,即可得出∠EDN的度数.教学建议:本题主要考查了平移的性质的运用,解题时注意:连接各组对应点的线段平行且相等.难度: 3 适应场景:当堂练习例题来源:无【练习8.2】将△ABC沿BC方向平移3个单位得△DEF,若△ABC的周长等于8个单位,则四边形ABFD的周长为()A.8B.12C.14D.16【答案】C.【解析】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于8,∴AB+BC+AC=8,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=8+3+3=14,故选:C.讲解用时:5分钟解题思路:先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=8,通过等线段代换计算四边形ABFD的周长.教学建议:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.难度: 4 适应场景:当堂练习例题来源:无课后作业【作业1】如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2﹣∠3B.∠1+∠3﹣∠2C.180°+∠3﹣∠1﹣∠2D.∠2+∠3﹣∠1﹣180°【答案】D.【解析】解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠2﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,故选:D.讲解用时:5分钟难度:4 适应场景:练习题例题来源:无【作业2】下列图形中,由∠1=∠2,能推出AB∥CD的是()A.B.C.D.【答案】B【解析】解:如图所示:∥∥1=∥2(已知),∠2=∠3(对顶角相等)∴∠1=∠3∴AB∥CD(同位角相等,两直线平行),故选B讲解用时:4分钟难度: 3 适应场景:练习题例题来源:无【作业3】如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【答案】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN =10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).讲解用时:6分钟难度: 3 适应场景:练习题例题来源:无【作业4】判断下列语句是否是命题,如果是,请写出它的题设和结论.(1)同位角相等;(2)对顶角相等;(3)画一条5厘米的线段.【答案】(1)是命题,这个命题的题设是:如果两个角是同位角;结论是:这两个角相等,是假命题.(2)是命题,这个命题的题设是:两个角是对顶角;结论是:这两个角相等,是真命题.(3)不是命题.【解析】解:(1)是命题,这个命题的题设是:如果两个角是同位角;结论是:这两个角相等,这个命题是一个错误的命题,即假命题.(2)是命题,这个命题的题设是:两个角是对顶角;结论是:这两个角相等,这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.讲解用时:4分钟难度: 3 适应场景:练习题例题来源:无【作业5】如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【答案】960㎡.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无。
七年级数学下《平行线的性质》知识点总结归纳一、平行线的性质1.同位角相等:两条平行线被一条横截线所截,形成的同位角相等。
2.内错角相等:两条平行线被一条横截线所截,形成的内错角相等。
3.同旁内角互补:两条平行线被一条横截线所截,形成的同旁内角互补,即角度和为180°。
二、性质的应用1.计算平行线的距离:利用平行线的性质,可以计算两条平行线之间的距离。
2.判断角度大小:利用平行线的性质,可以判断两条直线之间的角度大小。
3.解决实际问题:平行线的性质在实际生活中有广泛的应用,如建筑、机械制造等领域。
三、注意事项1.平行线的性质是在同一平面内,两条不相交的直线所具备的属性。
因此,确定两条线是否平行,首先需要确定它们是否在同一平面内。
2.平行线的性质需要通过横截线来体现,因此在证明或应用性质时,需要明确横截线的位置。
3.在实际应用中,需要根据具体情境判断两条线是否平行,并选择适当的方法来解决问题。
四、相关定理与概念1.平行线的判定定理:同位角相等、内错角相等、同旁内角互补等。
2.垂直线的性质:垂直于同一条直线的两条直线互相平行。
3.平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
五、易错点提醒1.学生在应用性质时,容易出现混淆,将判定定理和性质混淆使用。
需要明确的是,判定定理用于判断两条直线是否平行,而性质用于说明平行线之间的关系或推导其他结论。
2.对于同旁内角互补的理解,学生容易出现误区,认为同旁内角之和为90°而非180°。
需要强调的是,同旁内角互补是指它们的角度和为180°,不是90°。
3.在实际解决问题时,学生容易忽略题目中的限制条件或隐藏条件,导致解题错误。
需要提醒学生认真审题,注意细节,以免出现不必要的错误。
平行线的性质及平移(基础)知识讲解责编:某老师【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.(2015•泰安)如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【思路点拨】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,同旁内角互补解答.【答案】B .【解析】解:∵AB ∥CD ,∠1=58°,∴∠EFD=∠1=58°,∵FG 平分∠EFD ,∴∠GFD=∠EFD=×58°=29°,∵AB ∥CD ,∴∠FGB=180°﹣∠GFD=151°.【总结升华】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】(2015•河北模拟)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE=S△ABD=5.类型三、图形的平移3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.4.(湖南益阳)如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°【解析】根据平移的特征可知:∠EBD=∠CAB=50°而∠ABC=100°所以∠CBE=180°-∠EBD-∠ABC=180°-50°-100°=30°【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△BED.则有AC=BE,AB=BD,BC=DE,∠A=∠EBD,∠C=∠E,∠ABC=∠BDE.举一反三:【变式】 (上海静安区一模)如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+ ∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。
若直线a平行于直线b,则记作,读作。
注意:一定要在同一平面内。
且一定要时直线。
2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。
②将直尺与三角尺的另一直角边紧靠在一起。
③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。
④沿着三角尺该直角边画直线。
【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。
有且只有:存在且唯一。
2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即若c b b a ∥,∥, 则a c 。
3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。
【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。
《平行线》全章复习与巩固(提高)知识讲解责编:康红梅【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. 找出下图中的同位角、内错角、同旁内角 (只限用数字表示的角).【答案与解析】解:图中同位角有: ∠1与∠3, ∠6与∠3.内错角有: ∠1与∠4, ∠4与∠6.同旁内角有: ∠1与∠2, ∠5与∠6.【总结升华】两条直线被第三条直线所截,构成的八个角中同位角有4对,内错角有2对,同旁内角有2对.举一反三:【变式】找出下图中的同位角、内错角、同旁内角 (只限用数字表示的角).【答案】解:图中同位角有: ∠1与∠4内错角有: ∠1与∠7, ∠3与∠6 ,∠2与∠5同旁内角有: ∠2与∠7, ∠7与∠6,∠2与∠6, ∠3与∠5, ∠3与∠4, ∠4与∠5 类型二、平行线的判定和性质2. (2016春•广水市期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【思路点拨】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=12∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【答案与解析】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=12∠AOC=12×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=14∠AOC=14×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°【总结升华】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是(). A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.【答案】900°3.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,若角相等或互补,就判断直线是否平行;若两直线平行就应联想到角相等或互补.举一反三:【变式】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.【答案】证明:∵∠ABC =∠ADC, ∴11ABC ADC 22∠∠=(等式性质).又∵BF 、DE 分别平分∠ABC 与∠ADC,∴∠1=ABC 21∠,∠2=ADC 21∠(角平分线的定义). ∴∠1=∠2 (等量代换).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB ∥DC(内错角相等,两直线平行).类型三、图形的平移4.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是( )A .18B .16C .12D .8【思路点拨】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【答案】B【解析】图①到图②是将一个等腰三角形由下方平移到上方.图③到图④是将右边的小长方形平移到左侧,所以图④中阴影部分的面积与边长为2的正方形的面积是相等的,图⑤是由4个图④组成的,所以图⑤的面积是4×4=16.【总结升华】平移是由平移的方向和距离决定的.平移的性质是平移前后,图形的形状、大小不变.举一反三:【变式】(2015.镇海区模拟)如图,两个全等的直角三角形重叠在一起,将其中一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.42【答案】A类型四、综合应用5. 将一条两边沿互相平行的纸带按如图折叠,当∠1∶∠2=2∶3,则∠2的度数为().A.22.5° B.45° C.67.5° D.30°【思路点拨】由∠1∶∠2=2∶3,设∠1=2x,∠2=3x,根据a与b平行的性质和折叠的性质列出关于x的方程,求出方程的解得到x的值,即可确定出∠2的度.【答案】C【解析】解:由∠1:∠2=2:3,设∠1=2x,∠2=3x,∵a∥b,∴∠1=∠3=2x,由折叠可得:∠3+∠2=∠4,即∠4=5x,∵∠2+∠4=180°,即3x+5x=180°,解得:x=22.5°,则∠2=3x=67.5°.故选C.【总结升华】此题考查了平行线的性质,以及折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C6.如图所示,张大爷有一块四边形的耕地中间有一条折线小路MPN,现分别将折线小路改直而不影响道路两旁的耕地面积,应如何改道?请说明理由,并画出改道的图形.【答案与解析】解:(1)连接MN;(2)过P作QH∥MN交AD于Q,BC于H;(3)连NQ(MH)为所建直道,如下图.理由:∵QH∥MN,∴S△MNQ=S△MNP(等底等高的两个三角形面积相等),∴五边形ABNPM的面积等于四边形ABNQ的面积,∴五边形CDMPN的面积等于四边形CDQN的面积.即不影响道路两旁的耕地面积.【总结升华】利用“平行线间的距离处处相等”可以将三角形的面积进行等积转化.。
七年级下平行线平移知识点平面几何是数学中的重要分支之一,其中平行线平移是其中一个必要的知识点。
本文将介绍七年级下学期的平行线平移知识点。
一、什么是平移?在平面几何中,平移是指将一个平面图形按照指定方向和距离移动到另一个位置的过程。
平移后,图形的大小和形状不变。
二、什么是平移对称?在平面几何中,平移对称是指对于一个平面图形,在平移变换下重合的图形仍然是它本身。
平行线在平移对称下仍然保持平行。
三、怎样进行平行线平移?平行线平移是指将一个图形沿着一条平行线移动到另一个位置的过程。
平移后,图形既保持原来的大小又保持平行。
平行线平移有以下步骤:1.选择一个图形和一条平行线2.选择要平移的方向和距离3.沿着平移的方向将图形移动到另一个位置4.画出移动后的图形四、平行线平移的性质1. 平移变换是保距离和保角度的变换。
2. 平移变换保持图形的大小和形状不变。
3. 平移变换后的图形与原图形的位置和方向相同。
4. 平移变换下的平行线仍然保持平行。
五、例题解析1. 如图,ABCD是一个平行四边形,通过将BC平移向左移动5个单位和将AD平移向上移动3个单位,可以得到一个新的平行四边形EFGH。
求ABCD和EFGH的面积比例。
解:首先通过平移可以得到EF和HG平行于AB,EG和FH平行于CD。
因此,EFGH是一个平行四边形。
以BC为平移向量,将平行四边形ABCD平移得到平行四边形E'F'G'H'。
根据题目中的信息,我们可以确定E'和F'的坐标分别是(0,3)和(-5,3)。
因此,EF的长度为5,EG的长度为3,因此ABCD和EFGH 的面积比为5∶3。
六、总结本文介绍了七年级下学期的平行线平移知识点,包括平移定义、平移对称、平行线平移的步骤和性质,以及一个例题解析。
希望本文可以帮助学生们更好地理解和掌握这个知识点。
七年级平行线与平移知识点平移和平行线是初中数学中十分重要的一个章节。
初中数学中有一个非常重要的定理——平行线与平移定理,这个定理在初中数学学习中起到了至关重要的作用。
那么接下来就让我们来了解一下七年级平行线与平移的重要知识点吧。
一、平行线的基本概念在欧氏几何中,平行线指的是在同一平面内没有交点的两条直线。
平行线可以用符号“||”表示,相交的直线叫做交线。
平行线和交线的关系可以用平行关系、垂直关系等多种关系来表达。
初中数学学习中主要是关注平行关系和垂直关系。
二、平移的概念及性质平移是指在平面上将图形整体移动到另一个位置的变换。
平移变换后的图形与原图形的形状大小相同,位置不同。
平移变换可以用一个向量或坐标表示。
平移的性质有:1. 保形性:平移变换后的图形与原图形形状相同。
2. 保大小性:平移变换后的图形与原图形大小相同。
3. 保角度性:平移变换后的图形与原图形的角度是相等的。
三、平移的平行关系平移变换可以用矩阵表示。
若一个图形经过平移变换得到另一个图形,则称这两个图形平移关系。
平移关系中,相同的图形从一个平面移动到另一个平面,所移动的距离是相等的,方向也相同。
如果两个图形的关系是平移关系,那么这两个图形之间一定是平行的。
平行关系和平移关系是密切相关的。
四、平行线的性质平行线的性质包括1. 平行线的夹角等于对角线所夹的锐角或钝角。
2. 平行线交相等的交角。
3. 平行线所包含的角等于对应的内角。
5. 线段所在的平行线,线段长度是一样的。
5. 两条直线如果分别和一条过这两条直线上的点的直线平行,则这两条直线互相平行。
六、点、线段和直线的平移关系在平移变换中,点与点之间保持距离不变,线段和线段之间也保持距离不变,直线与直线之间还是平行的。
在平移变换中,图形的所有点、线段和直线都同时平移了一段距离。
七、训练技巧七年级平行线和平移知识点的训练技巧包括:1.掌握基本的理论知识。
2.进行练习,理解基本知识的实际应用。
平行线的性质及平移(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.【高清课堂:平行线的性质及命题403103平行线的性质和判定小结】要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1、(2016·陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B.【解析】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°-50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠AED=180°﹣∠EAB=180°-65°=115°.【总结升华】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.举一反三:【变式】(广安)如图所示,已知a∥b∥c,∠1=105°,∠2=140°,则∠3的度数是()A.75°B.65°C.55°D.50°【答案】B类型二、两平行线间的距离2、下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、命题3.判断下列语句是否是命题,如果是,请写出它的题设和结论.(1)同位角相等;(2)对顶角相等;(3)画一条5厘米的线段.【答案与解析】解:(1)是命题,这个命题的题设是:如果两个角是同位角;结论是:这两个角相等,这个命题是一个错误的命题,即假命题.(2)是命题,这个命题的题设是:两个角是对顶角;结论是:这两个角相等,这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.【总结升华】命题必须对某件事情作出“是什么”或“不是什么”的判断,如疑问句、反问句等不是命题,值得注意的是错误的命题也是命题.判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.举一反三:【变式】下列命题是假命题的是()A.锐角小于90° B.平角等于两直角 C.若a>b,则a2>b2 D.若a2≠b2,则a≠b 【答案】C类型四、平移4.如图所示,①、②两图中,哪个图形中的一个三角形可以经过另一个三角形平移得到?【答案与解析】解:图①DE和AC平行,但不相等,DE和BC相等,但不平行,不符合平移的特征,无论怎样平移其中一个三角形也得不到另一个三角形.图②符合平移的特征,三角形PQR沿射线PM方向移动PM长即可得到三角形MNO.所以,图②中一个三角形可以经过另一个三角形平移得到.【总结升华】平移变换的实质是图形沿直线运动,它的形状、大小都不发生变化,否则就不是平移变换.举一反三:【变式】(2015•临淄区一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC 的周长为16cm,则四边形ABFD的周长为.【答案】20cm.解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.5、(苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型五、平行的性质与判定综合应用6、(湖南模拟)如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填入“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【答案与解析】解:三个论断分别可以组成①②⇒③;①③⇒②;②③⇒①三种不同情形的命题,选择其中任何一个即可.以①②⇒③为例,说明如下已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,∠B=∠E,AB∥DE,试说明BC∥EF.理由叙述:因为AB∥DE,所以∠B=∠CKD.又因为∠B=∠E,所以∠E=∠CKD,所以BC∥EF.【总结升华】此类问题具有较强的灵活性,解决这类题的基本思路是先写出可能的结果,再判断其是否正确.【高清课堂:平行线的性质及命题403103 平行线的性质练习1】举一反三:【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .【答案】115°7、如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N 与∠MP1 P2+∠P2ND的关系,并证明你的结论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的结论.【答案与解析】解:(1)75°;(2)结论:∠AMP1+∠P1 P2N=∠MP1 P2+∠P2ND证明:如图,分别过P1,P2作P1Q1∥AB,P2Q2∥AB.又∵AB∥CD,∴∠AMP1=∠1,∠2=∠3,∠4=∠P2ND.∴∠AMP1+∠P1 P2N=∠AMP1+∠3+∠4=∠1+∠2+∠P2ND=∠MP1 P2+∠P2ND.(3)∠BMP1+∠P1 P2P3+∠P3 ND=∠MP1 P2+∠P2 P3N.【总结升华】通过作平行线,问题便迅速得到解决.举一反三:【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D;提示:如图,过点B作BE∥AM.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来. 【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
平行线的性质及平移(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2)两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、图形的平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3.作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【答案与解析】解:作PM∥AB,交AC于点M,如图:∵AB∥CD∴∠CAB+∠ACD=180°∵PA平分∠CAB,PC平分∠ACD∴∠1+∠4=90°∵AB∥PM∥CD∴∠1=∠2,∠3=∠4∴∠2+∠3=90°∴∠APC=90°【总结升华】平行线与角的关系非常密切,平行线的性质都是以角的关系来体现,在求角度的过程中,如果能够适时运用平行线的性质,将会使问题的解决显得简便快捷.举一反三:【变式】(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【答案】B解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.类型二、两平行线间的距离2举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、图形的平移3.如图所示,①、②两图中,哪个图形中的一个三角形可以经过另一个三角形平移得到?【答案与解析】解:图①DE和AC平行,但不相等,DE和BC相等,但不平行,不符合平移的特征,无论怎样平移其中一个三角形也得不到另一个三角形.图②符合平移的特征,三角形PQR沿射线PM方向移动PM长即可得到三角形MNO.所以,图②中一个三角形可以经过另一个三角形平移得到.【总结升华】平移变换的实质是图形沿直线运动,它的形状、大小都不发生变化,否则就不是平移变换.举一反三:【变式】下面生活中的物体的运动情况可以看成平移的是(填写序号).(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).【答案】(2)(6).解:(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).4.(2015春•天津期末)某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.【思路点拨】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【答案】200m.【解析】解:∵荷塘中小桥的总长为100米,∴荷塘周长为:2×100=200(m)故答案为:200m.【总结升华】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题关键.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(湖南模拟)如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【答案与解析】解:三个论断分别可以组成①②⇒③;①③⇒②;②③⇒①三种不同情形的命题,选择其中任何一个即可.以①②⇒③为例,说明如下已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,∠B=∠E,AB∥DE,试说明BC∥EF.理由叙述:因为AB∥DE,所以∠B=∠CKD.又因为∠B=∠E,所以∠E=∠CKD,所以BC∥EF.【总结升华】此类问题具有较强的灵活性,解决这类题的基本思路是先写出可能的结果,再判断其是否正确.【高清课堂:平行线的性质及命题403103平行线的性质练习1】举一反三:【变式】已知,如图,∠1=∠2,∠3=65°,则∠4=.【答案】115°6.如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1P2N 与∠MP1P2+∠P2ND的关系,并证明你的结论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的结论.【答案与解析】解:(1)75°;(2)结论:∠AMP1+∠P1P2N=∠MP1P2+∠P2ND证明:如图,分别过P1,P2作P1Q1∥AB,P2Q2∥AB.又∵AB∥CD,∴∠AMP1=∠1,∠2=∠3,∠4=∠P2ND.∴∠AMP1+∠P1P2N=∠AMP1+∠3+∠4=∠1+∠2+∠P2ND=∠MP1P2+∠P2ND.(3)∠BMP1+∠P1P2P3+∠P3ND=∠MP1P2+∠P2P3N.【总结升华】通过作平行线,问题便迅速得到解决.举一反三:【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°【答案】D。
《平行线的性质》知识全解课标要求1.了解平行线的性质,并能运用它进行简单的运算和证明;2.能够运用“两直线平行,同位角相等”这一基本事实证明平行线的性质(两直线平行,内错角相等;两直线平行,同旁内角互补);3.通过观察——实验——猜想——证明的过程体验探索性质的方法,激发学生学习兴趣,培养学生严谨的学风. 知识结构内容解析 1.平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.2.试一试用符号语言表达上述三个性质.学生独立思考回答,教师组织学生互相补充,并出示准确形式. 如图:平行线的性质 两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补21ac b32a c56a cb性质1.∵ a ∥b , 性质2.∵ a ∥b , 性质3.∵ a ∥b , ∴ ∠1=∠2. ∴ ∠2=∠3. ∴ ∠5+∠6=180o. 帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.3.你能根据平行线的性质1说出性质2、3成立的道理吗?例如:如图, ∵ a ∥b ,∴ ∠1=∠2.( ) 又∵ ∠3= ,(对顶角相等) ∴ ∠2=∠3.类似的,对于性质3请写出推理过程. 重点难点平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定本节课的重点为:探究平行线的性质.由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定本节课的难点为:明确平行线的性质和判定的区别.教法导引根据本节课的教学目标和重点、难点,确定本节课的教学方式为启发探究式.从学生熟悉的生活实例出发,通过独立思考、动手操作、小组合作交流等数学活动,逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,挖掘学习潜能;同时在教学过程中对不同层次的学生分别进行指导,让每个学生都能得到一定的发展.另外,注意现代信息技术与学科教学的整合,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具.利用几何画板制作图形,并让图形动起231abc来,借助测量功能度量角的度数,有助于学生在观察图形运动变化的过程中,发现其中不变的位置关系和数量关系,从而发现图形的性质,变抽象为直观,变复杂为简单,加快了教学节奏,扩大课堂容量,提高课堂教学效益.学法建议:由于前面学习了平行线的判定方法,了解到研究平行线与两条直线被第三条直线所截形成的角,学生很自然地会想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系.因此,根据教材的一个思考栏目,引入对平行线性质的研究.注意分清性质与判定的不同之处.根据教材设置的一个通过测量探索平行线特征的探究活动,通过任意画平行线的一些截线,来探索两条平行线被第三条直线所截形成的同位角、内错角、同旁内角之间的关系.从而且得出平行线的三条性质.在探索得出三条平行线的性质后,根据教材的一个思考可以自己由性质1推出性质2、性质3,在进行推导时,可以回顾课本例题,这个问题就是已知同位角相等,推导出内错角也相等,同旁内角互补.有利于学生循序渐进地引导自己思考,使自己初步养成言之有据的习惯,从而能逐步进行简单推理.前面学过平行线的判定,这部分内容是平行线的性质,怎样区别判定和性质,是学习的难点.从角的关系去得到两直线的平行,就是判定;从已知直线的平行得到角的相等或互补关系,是平行线的性质.要注意判定与性质的区别.。
平行线的性质及平移(提高)知识讲解撰稿:孙景艳责编:赵炜【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.【高清课堂:平行线的性质及命题403103平行线的性质和判定小结】要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1、如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【答案与解析】解:作PM∥AB,交AC于点M,如图:∵AB∥CD∴∠CAB+∠ACD=180°∵PA平分∠CAB,PC平分∠ACD∴∠1+∠4=90°∵AB∥PM∥CD∴∠1=∠2,∠3=∠4∴∠2+∠3=90°∴∠APC=90°【总结升华】平行线与角的关系非常密切,平行线的性质都是以角的关系来体现,在求角度的过程中,如果能够适时运用平行线的性质,将会使问题的解决显得简便快捷.举一反三:【变式】(广安)如图所示,已知a∥b∥c,∠1=105°,∠2=140°,则∠3的度数是( )A.75°B.65°C.55°D.50°【答案】B类型二、两平行线间的距离2、下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、命题3.判断下列语句是否是命题,如果是,请写出它的题设和结论.(1)同位角相等;(2)对顶角相等;(3)画一条5厘米的线段.【答案与解析】解:(1)是命题,这个命题的题设是:如果两个角是同位角;结论是:这两个角相等,这个命题是一个错误的命题,即假命题.(2)是命题,这个命题的题设是:两个角是对顶角;结论是:这两个角相等,这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.【总结升华】命题必须对某件事情作出“是什么”或“不是什么”的判断,如问句、陈述句就不是命题,值得注意的是错误的命题也是命题.判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.举一反三:【变式】下列命题是假命题的是()A.锐角小于90°B.平角等于两直角C.若a>b,则a2>b2 D.若a2≠b2,则a≠b 【答案】C类型四、平移4.如图所示,①、②两图中,哪个图形中的一个三角形可以经过另一个三角形平移得到?【答案与解析】解:图①DE和AC平行,但不相等,DE和BC相等,但不平行,不符合平移的特征,无论怎样平移其中一个三角形也得不到另一个三角形.图②符合平移的特征,三角形PQR沿射线PM方向移动PM长即可得到三角形MNO.所以,图②中一个三角形可以经过另一个三角形平移得到.【总结升华】平移变换的实质是图形沿直线运动,它的形状、大小都不发生变化,否则就不是平移变换.举一反三:【变式】(山东青州市一模)下列运动:①海浪的运动;②屏幕上一串移动的字幕;③被投掷出去的话球的运动;④沿圆形跑道跑步的运动员,其中属于平移的有________(填写序号).【答案】②5、(苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为( )A.600m2B.551m2C.550m2D.500m2【答案】B类型五、平行的性质与判定综合应用6、(湖南模拟)如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【答案与解析】解:三个论断分别可以组成①②⇒③;①③⇒②;②③⇒①三种不同情形的命题,选择其中任何一个即可.以①②⇒③为例,说明如下已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,∠B=∠E,AB∥DE,试说明BC∥EF.理由叙述:因为AB∥DE,所以∠B=∠CKD.又因为∠B=∠E,所以∠E=∠CKD,所以BC∥EF.【总结升华】此类问题具有较强的灵活性,解决这类题的基本思路是先写出可能的结果,再判断其是否正确.【高清课堂:平行线的性质及命题403103 平行线的性质练习1】举一反三:【变式】已知,如图,∠1=∠2,∠3=65°,则∠4=.【答案】115°7、如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N 与∠MP1 P2+∠P2ND的关系,并证明你的就论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的就论.【答案与解析】解:(1)75°;(2)结论:∠AMP1+∠P1 P2N=∠MP1 P2+∠P2ND证明:如图,分别过P1,P2作P1Q1∥AB,P2Q2∥AB.又∵ AB∥CD,∴∠AMP1=∠1,∠2=∠3,∠4=∠P2ND.∴∠AMP1+∠P1 P2N=∠AMP1+∠3+∠4=∠1+∠2+∠P2ND=∠MP1 P2+∠P2ND.(3)∠BMP1+∠P1 P2P3+∠P3 ND=∠MP1 P2+∠P2 P3N.【总结升华】通过作平行线,问题便迅速得到解决.举一反三:【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( )A.120°B.130°C.140°D.150°【答案】D。