概率论和数理统计知识点与练习题集
- 格式:doc
- 大小:1.59 MB
- 文档页数:35
概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21− (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A)41414121 (B)161814121(C)1631614121 (D)81834121−3. 设延续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=− (B) 21)21(==X P(C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为延续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞−=x x F b d )() (B) X a P <(≤⎰=b ax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞−=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ).(A)⎰ba x x F d )( (B)⎰bax x f d )((C) )()(a f b f − (D) )()(b F a F −6. 下列函数中可以作为延续型随机变量的密度函数的是( ).知识归纳整理7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+−)(x Φ1)(=x (C) Φ=−)(a Φ)(a (D) 2)(=<a x P Φ1)(−a9. 下列数组中,不能作为随机变量分布列的是( ).(A ) 61,61,31,31 (B)104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23−=X Y ( ).(A) )3,2(−N (B) )3,4(−N (C) )3,4(2−N (D) )3,2(2−N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p(C) 1- p (D) p−1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E 求知若饥,虚心若愚。
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( )(A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A )365 (B )364 (C )363 (D )3623.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( )(A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-00)(2x x ce x f x ,则=EX ( )(A )21(B )1 (C )2 (D )41 5.下列各函数中可以作为某随机变量的分布函数的是( )(A )+∞<<∞-+=x x x F ,11)(21 (B )⎪⎩⎪⎨⎧≤>+=0001)(2x x x x x F(C )+∞<<∞-=-x e x F x ,)(3 (D )+∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( )(A ))2(2y f X - (B ))2(y f X - (C ))2(21y f X -- (D ))2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y X Y Y jXi 61818121321,且X 与Y 相互独立,则=h ( ) (A )81(B )83 (C )41 (D )31 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( )(A )3 (B )6 (C )10 (D )129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是( )(A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)(答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++(C )321321321A A A A A A A A A ++ (D )321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为( A )(A )2242 (B )2412C C (C )24!2A (D )!4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( D ) (A ))()|(A P B A P = (B ))()()(B P A P AB P = (C ))()()|(B P A P B A P = (D )0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX ( A )(A )32(B )1 (C )38 (D )316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-00)1()(x x e x A x F x,则=A ( B )(A )0 (B )1 (C )2 (D )3 6.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为( D )(A ))3(3y f X - (B ))3(y f X - (C ))3(31y f X -- (D ))3(31y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表hgp f e d x c b a x p y y y X Y Y jXi 61818121321,且X 与Y 相互独立,则=e ( B ) (A )81(B )41 (C )83 (D )31 8.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D ( C )(A )-14 (B )13 (C )40 (D )41 9.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是( D ) (A )X 与Y 相互独立 (B )EY EX Y X E +=+)( (C )DY DX DXY ⋅= (D )EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球(不放回).已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==,Λ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E , 3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = . 答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从[0,1]上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72. 0.9763. 314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.(1)求取到的是白球的概率;(2)若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润(万元),则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E (万元)四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: (1)5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;(2),,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y ,两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数。
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以 A i 表示事件“第 i 次击中目标”,则事件“三次 中至多击中目标一次”的正确表示为( )(A ) A 1 A 2 A 3()AA AA AAB 1 2 1 3 2 3(C ) A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2 A 3 ( ) A 1 A 2 A 3D2.掷两颗均匀的骰子,它们出现的点数之和等于 8 的概率为( )(A ) 5 (B ) 4 (C ) 3(D ) 2363636363.设随机事件 A 与 B 互不相容,且 P( A)0 ,P(B)0 ,则( )( A ) P(A)1 P(B)( B ) P( AB)P( A)P(B)( C ) P(A B)1(D ) P( AB) 14.随机变量 X 的概率密度为 f ( x)ce2xx,则 EX ()x 0(A )1(B )1(C )2(D )1245.下列各函数中可以作为某随机变量的分布函数的是()(A ) F 1( x)1,x(B ) F 2 (x)x x21 xx1x 0(C )F 3 (x) e x, xF (x ) 31 arctan x ,x(D ) 4 426.已知随机变量 X 的概率密度为 f X (x) ,令Y2X ,则 Y 的概率密度f Y (y) 为()(A ) 2 f ( 2 y)( ) f X ( y )( ) 1f X ( y )222 ( D ) 1 f X ( y)2 27.已知二维随机向量(X,Y)的分布及边缘分布如表Yy 2y 3p i XXy 1x 1 a 1 8 b c,且 X 与 Y 相互独立,则 h ()x 2 1 8 d e fp Y j1 6gh(A )1(B )3(C )1(D )188 4 38.设随机变量 X ~ U [1,5] ,随机变量 Y ~ N (2,4) ,且 X 与 Y 相互独立,则 E(2XY Y) ()(A )3(B )6 (C )10 (D )129.设 X 与Y 为任意二个随机变量,方差均存在且为正,若EXYEX EY ,则下列结论不正确的是()(A ) X 与 Y 相互独立(B ) X 与Y 不相关(C )cov( X ,Y)(D )D ( XY)DXDY答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以 A i 表示事件“第 i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为(C )(A ) A 1 A 2 A 3BA 2 A 1 A 3 A 2 A 3()A 1(C )A A AAA 3AA( )A 31A 23121A2 3D A 1A 2 2.将两封信随机地投入 4 个邮筒中,则未向前两个邮筒中投信的概率为(A )2 1(C )2!2(A )22(B )C 22(D ) 2!4C 4 A 44!3.设随机事件 A 与 B 互不相容,且 P( A) 0 , P( B)0,则( D )( A )( D )P(A|B) P( A)(B ) P( AB) P( A)P(B)P( A)(C ) P(A | B)P( B)P(A|B) 04.随机变量 X 的概率密度为 f ( x)2x x (0,a) ,则 EX ( A )其他(A )2(B )1(C )8(D )163335.随机变量 X 的分布函数 F ( x)A (1 x)e x x 0,则 A ( B )x(A )0(B )1(C )2(D )36.已知随机变量 X 的概率密度为 f X (x) ,令 Y3X ,则 Y 的概率密度f Y (y) 为( D )(A )3 f ( 3y)( ) f X ( y )( ) 1f X ( y )( )1f X ( y )33 3337.已知二维随机向量(X,Y)的分布及边缘分布如表Yy 1y 2y 3p i XX( B )x 1 a 1 8 b c,且 X 与 Y 相互独立,则 ex 2 1 8 d e fp Y j1 6gh(A )1(B )1(C )3(D )184838.设随机变量 X ,Y 相互独立,且 X ~ b(16 , 0.5) , Y 服从参数为 9 的泊松分布,则 D ( X2Y 1)( C )(A)-14(B)13(C)40(D)41 9.设( X ,Y )为二维随机向量,则X与Y不相关的充分必要条件是( D )(A)X与Y相互独立(B)E( X Y) EX EY(C)DXY DX DY (D)EXY EX EY一、填空题1. 设A , B是两个随机事件, P( A) 0.5,P( A B)0.8,(1) 若A与B互不相容,则 P(B)=;(2)若A与B相互独立,则P(B)=.2.一袋中装有 10 个球,其中 4 个黑球, 6 个白球,先后两次从袋中各取一球(不放回) . 已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为.3. 设离散型随机变量X的概率分布为 P X k3a k,k1, 2, ,则常数 a.4. 设随机变量X的分布函数为0,x0F ( x)ax2,0x21,x2则常数 a,P{1 X 3}=.5.设随机变量 X 的概率分布为X-101P0.30.50.2则 E(3X 23) = .6. 如果随机变量 X 服从 [a, b] 上的均匀分布, 且 E( X ) 3,D( X ) 4 ,则 a =, b =.37. 设随机变量 X , Y 相互独立,且都服从参数为 0.6 的 0 1分布,则 P{X Y}=.8. 设 X , Y 是两个随机变量, E( X )2,E(X 2) 20 , E(Y)3 ,E(Y 2) 34 , XY 0.5,则 D( XY) =.答案:1. 0.3 0.62.1 3.1 4.1 , 3 5.,3 44 44.56. 1,57. 0.528. 211. 设 A , B 是两个随机事件, P(A) 0.3, P(AB)P(AB) ,则P(B)= .2. 甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为 0.8 ,0.7 ,0.6 ,则密码能译出的概率为 .3. 设 随 机 变 量 X 的 概 率 分 布 为 P{ X k} k, k 1,2,3,4,5, 则 P{311}=.15X230 , x 04. 设 随 机 变 量 X 的 分 布 函 数 为 F ( x) sin x , 0 x, 则21 , x2P{X}.65.设随机变量 X 服从[1,3]上的均匀分布,则1的数学期望X为.6.设随机变量 X1 , X2相互独立,其概率分布分别为X1 1 2X2 1 2P 1233P1 23 3则 {}=.PX1 X27. 设X,Y是两个随机变量, X ~ N(0,32),Y ~ N(1, 42) ,X与Y相互独立,则 X Y ~.8. 设随机变量X1 , X 2相互独立,且都服从[0,1]上的均匀分布,则D(3X1X2).9.设随机变量X和Y的相关系数为0.5, E(X)E(Y) 0, E(X 2) E(Y2) 2,则 E(X Y)2 = .答案:1.0.72.0.9763.14.0.5 35.1ln 3 26.57.N(1,52)8.59. 696二、有三个箱子,第一个箱子中有 3 个黑球 1 个白球,第二个箱子中有 3 个黑球 3 个白球,第三个箱子中有 3 个黑球 5 个白球 .现随机地选取一个箱子,再从这个箱子中任取 1 个球 . (1)求取到的是白球的概率;(2)若已知取出的球是白球,求它属于第二个箱子的概率 .解:设事件 A i表示该球取自第i个箱子 (i1,2,3) ,事件B表示取到白球 .311131511P( B)P( A i )P(B | A i )4363824i 13P(A2B) P( A2 )P(B | A2)1336 P(A2 |B)11P(B)P(B)244 11三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是 0.2 .在一天中,若三部机器均无故障,则该厂可获取利润 2 万元;若只有一部机器发生故障,则该厂仍可获取利润 1万元;若有两部或三部机器发生故障,则该厂就要亏损 0.5 万元.求该厂一天可获取的平均利润 .设随机变量 X 表示该厂一天所获的利润(万元),则 X 可能取2,1, 0.5 ,且P{ X2}0.830.512 ,P{ X1}C310.2 0.820.384,P{ X0.5} 1 0.512 0.384 0.104.所以 E(X) 20.512 1 0.384 ( 0.5)0.104 1.356 (万元)4xy, 0 x 1,0 y 1四、设随机向量 ( X ,Y) 的密度函数为 f (x, y),.0 其它(1)求P{X Y};(2) 求 X , Y 的边缘密度,并判断 X 与Y 的独立性 .解:(1)1 1 12)dx 0.5 ;P{X Y}f ( x, y)dxdy0 dx x 4xydy 0 2x(1 xx y(2)12x, 0 x1 f X ( x)f (x, y)dy0 4xydy,其它 ,12 y, 0 y1 f Y (y)f (x, y)dx0 4xydx,其它 ,由 f X (x) f Y ( y) f (x, y) 知随机变量 X ,Y 相互独立 .五、 设随机变量 X 的密度函数为 f X ( x)3x 2, 0 x1,求随机变量0 , 其它Y 2 X 1的密度函数 .解法一: Y 的分布函数为F Y ( y) P{Y y} P{ 2X1 y} P{ Xy 1} F X (y1)22,两边对 y 求导,得f Y ( y)1y 1 3 ( y 1) 2 3( y 1) 2, 0y 11即 1 y 3f X ()2 28222,其它解法二:因为 y 2x 1是 0 x1 上单调连续函数,所以f Y ( y) f X ( h( y)) |dh( y)|3( y 1)21 3 ( y 1) 2 , 0 h( y) y 11即 1 y 322 2 2 2 dy,其它注: x h( y)y 1 为 y 2x 1的反函数。
概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。
2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。
3.a,b为随机事件,则p(ab)?0.3。
p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。
25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。
36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。
7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。
8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。
339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。
5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。
12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。
319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。
15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。
0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。
概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。
(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)假设()0,P A = 那么A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。
(B )(8)假设P(A)P(B)≤,那么⊂A B 。
(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
《概率论与数理统计》练习题一、单项选择题1. A 、B 为两事件,则B A ⋃=( )A .B A ⋃ B .A ∪BC .A BD .A ∩B 2.对任意的事件A 、B ,有( )A .0)(=AB P ,则AB 不可能事件 B .1)(=⋃B A P ,则B A ⋃为必然事件C .)()()(B P A P B A P -=-D .)()()(AB P A P B A P -=⋂ 3.事件A 、B 互不相容,则( )A .1)(=⋃B A P B .1)(=⋂B A PC .)()()(B P A P AB P =D .)(1)(AB P A P -= 4.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =5.任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为( ) A .363 B .364 C .365 D .3626.已知A 、B 、C 两两独立,21)()()(===C P B P A P ,51)(=ABC P ,则)(C AB P 等于( )A .401 B .201 C .101 D .417.事件A 、B 互为对立事件等价于( )(1)A 、B 互不相容 (2)A 、B 相互独立(3)Ω=⋃B A (4)A 、B 构成对样本空间的一个剖分 8.A 、B 为两个事件,则)(B A P -=( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P - 9.1A 、2A 、3A 为三个事件,则( )A .若321,,A A A 相互独立,则321,,A A A 两两独立;B .若321,,A A A 两两独立,则321,,A A A 相互独立;C .若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立;D .若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立10.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2B .0.4C .0.6D .0.811.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 12.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A 13.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )14.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151B .51C .154D .3115.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=116.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1D .P (A |B )=017.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25C .0.375D .0.5018.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A19.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )20.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .121.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5722.X 的密度为⎩⎨⎧∈=其它,0],0[,2)(A x x x f ,则A=( )A .41 B .21 C .1 D .223.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)3(F ( ) A . 0 B .3.0 C .8.0 D .1 24.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(4x cx x f 则常数c =( )A .51 B .41 C .4 D .525.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)1(F ( ) A .4.0 B .2.0 C .6.0 D .126.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e31 B .3eC .11--eD .1311--e27.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41 B .31C .3D .428.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )C .41 D .8329.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .130.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N31.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是( )A .5.0B .6.0C .66.0D .7.032.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.027.0 B.081.0 C.0.189 D.0.21633.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)=( )A.2.0B.6.0C.7.0D.0.834.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41 B.31C.21 D.3235.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x fB .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f36.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,3,则P{X ≥1}=( )C .2719D .272637.设二维随机变量(X ,Y )的分布律为Y X1231 2101 103102 101102 101则P{XY=2}=( ) A .51 B .103 C .21D .5338.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x 21 B .2x C .y21D .2y39.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-] B .[2π,0] C .]π,0[D .[23π,0]40.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它21210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6 C .0.66 D .0.741.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31D .2142.设随机变量X ,Y 相互独立,其联合分布为则有( ) A .92,91==βα B .91,92==βα C .32,31==βαD .31,32==βα43.设随机变量X 的分布律为X 0 1 2 P0.3 0.2 0.5则P {X <1}=( )A .0B .0.2C .0.3D .0.544.下列函数中可作为某随机变量的概率密度的是( )A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x x B .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1xD .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,45.随机变量X 服从二项分布)2.0,10(B ,则( ) A .==DX EX 2 B .==DX EX 6.1C .=EX 2,=DX 6.1D .=EX 6.1,=DX 246.X 可取无穷多个值 ,2,1,0,其概率分布为普阿松分布)3(P ,则( ) A .DX EX ==3 B .DX EX ==31 C .EX =3,DX =31 D .EX =31,DX =9147.随机向量),(Y X 有25,36==DY DX ,协方差12=XYσ,则)()(=-Y X DA .1B .37C .61D .8548.设X~B(10, 31), 则=)X (E )X (D ( )A.31 B.32 C.1D.31049.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.;0x e 1x2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=4150.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( ) A.91 B.31C.98D.151.设二维随机变量(X ,Y )的分布律为Y X 010 131 3131则E (XY )=( ) A .91- B .0 C .91D .3152.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21 D .253.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP n n ( )A .=0B .=1C .> 0D .不存在54.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( )A .25- B .21C .2D .555.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( )A .2161B .361C .61 D .156.设总体X 服从),(2σμN ,n X X X ,,21为其样本,则SX n Y )(μ-=服从( ))(.)1(.)1,0(.)1(.2n t D n t C N B n x A --57.设总体X 服从),(2σμN ,,,21X X …n X ,为其样本,则∑=-=n i iXY 122)(1μσ服从( ))(.)1(.)(.)1(.22n t D n t C n x B n x A --58.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( )A .np p )1(- B .np p )1(-C .)1(p np -D .)1(p np -59.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22YX +( )A .)2,0(NB .)2(2χC .)2(tD .)1,1(F60.记F 1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( ) A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=61.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04)D .N (0,1.6)62.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )A .)10(2σμ,N B .)(2σμ,NC .)10(2σμ,N D .)10(2σμ,N63.设X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则样本方差S 2=( ) A .∑=-ni iX X n12)(1B .∑=--ni iX X n 12)(11C .∑=-ni iX X n12)(1D .∑=--ni iX X n 12)(1164.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX X n 12)(11B .∑=--ni iX n 12)(11μC .∑=-ni iX X n12)(1D .∑=-+ni iX n 12)(11μ65.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ 66.总体X 服从)(λP ,其中0>λ为未知参数,n X X X ,,21为样本,则下面说法错误的是( ) A .X 是E X 的无偏估计量 B .X 是DX 的无偏估计量 C .X 是EX 的矩估计量 D .X 是2λ的无偏估计量 67.矩估计必然是( )(1)无偏估计 (2)总体矩的函数 (3)样本矩的函数 (4)极大似然估计 68.设θˆ是未知参数θ的一个估计量,若θθ=)ˆ(E ,则θˆ是θ的( ) A .极大似然估计 B .矩估计 C .无偏估计 D .有偏估计二、填空题1. A 、B 为两事件,8.0)(=⋃B A P ,2.0)(=A P ,4.0)(=B P ,则=-)(A B P 。
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
第一章概率论的基本概念§概率的定义一、概率的性质(1)1P.≤A)(0≤(2)0)P,1φ(=P.S)(=(3)()()()()P A B P A P B P AB.⋃=+-(4))AP-=.P(A(1)(5))PABBA=PP--.特别地,若A=()()(P(AB)AB⊂,-,)=P-()BPAP≥.(A(B()))PAP(B例设,A B为随机事件, ()0.4,()0.3P A B⋃=P A P B A,则()_____.=-=解:,3.0APBBP()()()()0.7P A B P A P B P AB⋃=+-=P-AB()()(==-)§ 条件概率一、 条件概率定义 设B A ,是两个事件,且0)(>A P ,称)|(A B P =)()(A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。
二、全概率公式 全概率公式:12,,,n A A A 为样本空间S 的一个事件组,且满足:(1)12,,,n A A A 互不相容,且),,2,1(0)(n i A P i =>;(2) 12⋃⋃⋃=n A A A S .则对S 中的任意一个事件B 都有)()()()()()()(2211n n A B P A P A B P A P A B P A P B P +++=例设有一仓库有一批产品,已知其中50%、30%、20%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为201,151,101,现从这批产品中任取一件,求取得正品的概率解 以1A 、2A 、3A 表示诸事件“取得的这箱产品分别是甲、乙、丙厂生产”;以B 表示事件“取得的产品为正品”,于是:;2019)|(,1514)|(,109)|(,0102)(,103)(,105)(321321======A B P A B P A B P A P A P A P 按全概率公式 ,有:112233()(|)()(|)()(|)()=++P B P B A P A P B A P A P B A P A 92.010220191031514105109=⋅+⋅+⋅=三、 贝叶斯公式设B 是样本空间S 的一个事件,12,,,n A A A 为S 的一个事件组,且满足:(1)12,,,n A A A 互不相容,且),,2,1(0)(n i A P i =>; (2) 12⋃⋃⋃=n A A A S .则)()()()()()()()()|(11n n k k k k A B P A P A B P A P A B P A P B P B A P B A P ++==这个公式称为贝叶斯公式。
例:有甲乙两个袋子,甲袋中有4个白球,5个红球,乙袋中有4个白球,4个红球.今从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,(1)问此球是红球的概率(2)若已知取得的是红球,则从甲袋放入乙袋的是红球的概率是多少解:设A 1表示从甲袋放入乙袋的一球是红球,则A 1表示从甲袋放入乙袋的一球是白球,设A 2:表示从乙袋取的一球是红球,则814194949595)()|()()|()(11121122=⨯+⨯=+=A P A A P A P A A P A P )(12112255()(|)99(2) (|)41()81⨯==P A P A A P A A P A .§ 事件的独立性一、 事件的独立性定义. 若两事件A ,B 满足)()()(B P A P AB P =,则称A ,B 相互独立。
第二章随机变量及其分布§ 一维随机变量一、 随机变量与分布函数定义 设E 为一随机试验,S 为E 的样本空间,若()X X ω=,S ω∈为单值实函数,则称X 为随机变量。
定义 设X 为一个随机变量,x 为任意实数,称函数)()(x X P x F ≤=分布函数的性质(1) 1)(,0)(=+∞=-∞F F .(2) )(x F 是自变量x 的非降函数,即当21x x <时,必有)()(21x F x F ≤.因为当21x x <时有0)()()(2112≥≤<=-x X x P x F x F ,从而)()(21x F x F ≤. (3) )(x F 对自变量x 右连续,即对任意实数x ,)()0(x F x F =+RXx§ 一维离散型随机变量一、离散型随机变量定义 离散型随机变量X 只可能取有限个或可列个值,设X 可能取的值为,....,...,,21n x x x .定义 设离散型随机变量X 可能取的值为,....,...,,21n x x x ,且X 取这些值的概率为:k k p x X P ==)( (,...),...,2,1n k =则称上述一系列等式为随机变量X 的分布律。
由概率的定义知,离散型随机变量X 的概率分布具有以下两个性质: (1) ,......)2,1(,0=≥k p k(非负性)(2) 1=∑kkp (归一性)二、 几种常用的离散型分布 1. 0—1分布如果随机变量X 只可能取0和1两个值,且它的分布列为)10(,1)0(,)1(<<-====p p X P p X P ,则称X服从0—1分布。
其分布律为:2.二项分布如果随机变量X 只可能取的值为0,1,2,…,n,它的分布律为k n k k n q p C k X P -==)( ,(),...2,1,0n k =其中p q p -=<<1,10,则称X 服从参数为p n ,的二项分布,记为),(~p n b X3.泊松分布如果随机变量X 所有可能取的值为0,1,2,…,它取各个值的概率为,...)2,1,0(,!)(===-k e k k XP kλλ,其中0λ>是常数,则称X 服从参数为λ的泊松分布,记为~()πλX .例:设~()X πλ,{1}{2},P X P X ===则(1)_______.==P X 例: 设随机变量1~(2,)2Xb ,则{1}==P X .§ 连续型随机变量的概率密度一、概率密度的概念定义 设随机变量X 的的分布函数为()F x ,如果存在一个非负可积函数)(x f ,使得对于任意实数x ,有:⎰∞-=xdt t f x F )()(则称X 为连续型随机变量,而)(x f 称为X 的概率密度。
由概率密度的定义及概率的性质可知概率密度)(x f 必须满足: (1) )(x f ≥0 ; (2) ⎰+∞∞-=1)(dx x f ;(3) 对于任意实数b a ,,且b a ≤有⎰=-=≤<ba dx x f a Fb F b X a P )()()(}{;(4)若)(x f 在点x 处连续,则有)()('x f x F =.例 设随机变量X 具有概率密度⎩⎨⎧≤>=-0,00,)(3x x Ke x f x(1)试确定常数K ; (2)求(0.1)P X >; (3)求()F x .解(1)由⎰+∞∞-=1)(dx x f ,即⎰+∞∞-dx x f )(=133)3(31033030==-=--=∞+--∞+-∞+⎰⎰Ke K x d Ke dx Ke x xx 得3K =.于是X 的概率密度⎩⎨⎧≤>=-0,00,3)(3x x e x f x ;(2)(0.1)P X >=⎰+∞1.0)(dx x f =7408.0331.0=-+∞⎰dx e x ;(3)由定义()F x =⎰∞-xdt t f )(。
当0≤x 时,()F x =0;当0>x 时,()F x =⎰∞-x dt t f )(=x x xe dx e 33013---=⎰所以⎩⎨⎧≤>-=-0,00,1)(3x x e x F x .二、几个常用的连续型随机变量的分布 1. 均匀分布如果随机变量X 的概率密度为1,()0,a xb f x b a⎧≤≤⎪=-⎨⎪⎩其他则称X 服从],[b a 上的均匀分布,记为),(~b a U X 。
2. 指数分布如果随机变量X 的概率密度为1>0(;)0x x ef x θθθ-⎧⎪=⎨⎪⎩其他则称X 服从参数为θ的指数分布。
3. 正态分布如果随机变量X 的概率密度为)(,21)(22)(21+∞<<-∞=--x ex f x μσσπ;其中μσσ,,0>为常数,则称X 服从参数为μσ,的正态分布,记为),(~2σμN X . 特别的,当1,02==σμ时,称X服从标准正态分布,即)1,0(~N X ,概率密度为 )(,21)(22+∞<<-∞=-x ex x πϕ标准正态分布的分布函数为 ⎰⎰∞--∞-==Φxt xdt edx x x 2221)()(πϕ对于标准正态分布的分布函数,有下列等式)(1)(x x Φ-=-Φ21)0(=Φ定理 如果),(~2σμN X 则)1,0(~N X σμ-推论 如),(~2σμN X ,则)()()()(}{σμσμ-Φ--Φ=-=<<a b a F b F b X a P例设)4,5.1(~N X,求)5.3(≤X P ;解)5.3(≤X P =8413.0)1()25.15.3()5.3(=Φ=-Φ=F .例设随机变量~(1,4)X N ,则{1}≤=P X .§随机变量函数的分布一、 离散型随机变量的函数的分布 例设X 的分布律为求21Y X =-的分布律。
解 因为Y 的可能取值为3,1,1,3--,而且{3}{1}0.1P Y P X =-==-=,{1}{0}0.2P Y P X =-===, {1}{1}0.3P Y P X ====,{3}{2}0.4P Y P X ==== 因而,Y 的分布律为二、 连续型随机变量的函数的分布设X 是连续型随机变量,已知)(x f X 为其概率密度,那么应当如何确定随机变量)(X g Y =的概率密度)(x f Y 呢例设连续型随机变量X 具有概率密度)(x f X ,求随机变量Y kX b =+(其中,k b 为常数且0k ≠)的概率密度)(x f Y . 解 设Y 的分布函数为)(y F Y ,当0k >,则()Y F y =(){}{}{}()--=≤=+≤=≤=Y X y b y bF y P Y y P kX b y P X F k k上式两边对y 求导数得)(1)(kb y f k y f X Y -=当0k <,则()Y F y ={}{}{}1()--≤=+≤=≥=-Y y b y bP Y y P kX b y P X F k k上式两边对y求导数得1()()Y X y bf y f k k-=-于是)(||1)(kb y f k y f X Y -=第三章 二维随机变量及其分布§二维随机变量及分布函数定义 设S 为随机试验E 的样本空间,X ,Y 是定义在S 上的随机变量,则称有序数组(,)X Y 为二维随机变量或称为二维随机向量。