高考数学理科试题及参考答案新课标I卷新浪微博高考直通车
- 格式:docx
- 大小:464.17 KB
- 文档页数:9
2015年普通高等学校招生全国统一考试理科数学新课标I卷(河南、河北、山西、江西)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分。
考试时间120分钟。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B)2(C)3(D)2 【答案】A考点:1.复数的运算;2.复数的模.(2)sin20°cos10°-con160°sin10°=(A)3(B3(C)12-(D)12【答案】D 【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.考点:诱导公式;两角和与差的正余弦公式(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N, 2n>2n(B)∃n∈N, 2n≤2n(C)∀n∈N, 2n≤2n(D)∃n∈N, 2n=2n【答案】C【解析】试题分析:p ⌝:2,2n n N n ∀∈≤,故选C.考点:特称命题的否定(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A ) (B )(C )(D )【答案】A 【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=,故选A.考点:独立重复试验;互斥事件和概率公式(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF u u u u r •2MF u u u u r<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(23-,23)【答案】A考点:向量数量积;双曲线的标准方程(6)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x + 1,若f(x+1) = f(x),则x的取值范围是()A. x∈RB. x∈[0,1]C. x∈[-1,0]D. x∈(-∞,-1)∪(0,+∞)答案:D解析:由题意知,f(x+1) = 2(x+1) + 1 = 2x + 3,f(x) = 2x + 1,所以2x + 3 = 2x + 1,解得x = -1,因此x的取值范围为(-∞,-1)∪(0,+∞)。
2. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:C解析:奇函数的定义是f(-x) = -f(x),对于选项A、B、D,均不满足奇函数的定义,只有选项C满足。
3. 已知等差数列{an}的前n项和为Sn,若a1 + a3 = 10,a1 + a5 = 20,则数列{an}的公差d是()A. 2B. 3C. 4D. 5答案:B解析:由等差数列的性质知,a1 + a3 = 2a2,a1 + a5 = 2a3,代入已知条件得2a2 = 10,2a3 = 20,解得a2 = 5,a3 = 10,所以公差d = a3 - a2 = 10 - 5 = 5。
4. 若向量a = (1,2),向量b = (2,-1),则向量a·b的值为()A. 3B. 4C. 5D. 6答案:A解析:向量a·b = 1×2 + 2×(-1) = 2 - 2 = 0。
5. 若复数z = a + bi(a,b∈R),则|z| = 2,|z-1| = √5,则复数z的取值范围是()A. a∈[-1,1],b∈[-√3,√3]B. a∈[-√5,√5],b∈[-2,2]C. a∈[-2,2],b∈[-√5,√5]D. a∈[-√3,√3],b∈[-1,1]答案:C解析:由|z| = 2,得a^2 + b^2 = 4;由|z-1| = √5,得(a-1)^2 + b^2 = 5。
高考理科数学考试真题(新课标卷Ⅰ卷)参考答案1.【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4.【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈,∴输出s 属于[-3,4],故选A .6.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R -2,则222(2)4R R =-+,解得R =5,∴球的体积为3453π⨯=500π33cm ,故选A.7.【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积 为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9.【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10.【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ②①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 11.【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,202x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩, 由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A,B,当a =1时,易证ln(1)x x+<对0x >恒成立,故a =1不适合,排除C ,故选D.12.【解析】解法一 ∵()1112n n n n b c b c ++-=--,∴()11112n n n b c b c -⎛⎫-=-- ⎪⎝⎭.当n →+∞时,有0n n b c -→,即n n b c →.又∵()()1111122n n n n n n n b c b c a b c a +++=++=++ ∴()11111222n n n n b c a b c a +++-=+-∵1112b c a +=,∴12n n b c a +=于是在n n n A B C ∆中,边长为定值,另两边的,n n n n A C A B 的长度只和12n n b c a +=为定值,把,n n B C 看作椭圆的两个焦点,n A 在椭圆上,当n n b c →时,点n A 趋近短轴的端点,设n n B C 上的高为n h ,则n h 不断变大,∴112n n n n n S B C h a h ==逐渐变大.选B .解法二 设1113,4,5c a b ===,则16S =;又112922b ac +==,214a a ==, 112722c a b +==,∴2S 3154c =,324a a ==,3174b =,∴3S =;∴123S S S <<,可知选B13.【解析】b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2.14.【解析】当n =1时,1a =1S =12133a +,解得1a =1, 当n ≥2时,n a =1n n S S --=2133n a +-(12133n a -+)=12233n n a a --,即n a =12n a --,∴{n a }是首项为1,公比为-2的等比数列,∴n a =1(2)n --.15.【解析】∵()f x =sin 2cos x x -5(cos )55x x -令cos ϕsin ϕ=,则()f x cos sin cos )x x ϕϕ+)x ϕ+, 当x ϕ+=2,2k k z ππ+∈,即x =2,2k k z ππϕ+-∈时,()f x 取最大值,此时θ=2,2k k z ππϕ+-∈,∴cos θ=cos(2)2k ππϕ+-=sin ϕ=5-. 16.【解析】由()f x 图像关于直线x =-2对称,则0=(1)(3)f f -=-=22[1(3)][(3)3]a b ----+,0=(1)(5)f f =-=22[1(5)][(5)5]a b ----+,解得a =8,b =15, ∴()f x =22(1)(815)x x x -++,∴()f x '=222(815)(1)(28)x x x x x -+++-+=324(672)x x x -++-=4(2)(22x x x -++++当x ∈(-∞,2-∪(-2, 2-时,()f x '>0,当x ∈(2--2)∪(2-∞)时,()f x '<0,∴()f x 在(-∞,2-2-2)单调递减,在(-2,2-+单调递增,在(2-++∞)单调递减,故当x =2-x =2-时取极大值,(2f -=(2f -+=16.17.【解析】(Ⅰ)由已知得,∠PBC=o60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA =o 11323cos3042+-⨯⨯=74,∴PA=72; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,o o3sin sin150sin(30)αα=-,化简得,3cos 4sin αα=, ∴tan α=3,∴tan PBA ∠=3.18.【解析】(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E ,∵AB =1AA ,1BAA ∠=060,∴1BAA ∆是正三角形, ∴1A E ⊥AB , ∵CA =CB , ∴CE ⊥AB , ∵1CE A E ⋂=E ,∴AB ⊥面1CEA , ∴AB ⊥1A C ; ……6分 (Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA , ∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A (1,0,0),1A (0,3,0),C (0,0,3),B (-1,0,0),则BC =(1,0,3),1BB =1AA =(-1,0,3),1AC =(0,-3,3), ……9分 设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩n n ,即3030x z x y ⎧+=⎪⎨+=⎪⎩,可取n =(3,1,-1), ∴1cos ,AC n =11|AC AC •n |n ||10, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为10. ……12分19.【解析】解法一 设第一次取出的4件产品中恰有3件优质品为事件1A 。
年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己地姓名、准考证号填写在本试题相应地位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共12小题。
每小题5分,共60分。
在每个小题给出地四个选项中,只有一项是符合题目要求地一项。
1、已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A、A∩B=∅B、A∪B=RC、B⊆AD、A⊆B 【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题.【解析】A=(-∞,0)∪(2,+∞),∴A∪B=R,故选B.2、若复数z满足 (3-4i)z=|4+3i |,则z地虚部为( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数地 概念、运算及复数模地 计算,是容易题.【解析】由题知z =|43|34i i+-=3455i +,故z 地 虚部为45,故选D.3、为了解某地区地 中小学生视力情况,拟从该地区地 中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生地 视力情况有较大差异,而男女生视力情况差异不大,在下面地 抽样方法中,最合理地 抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样 D 、系统抽样【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生地 视力情况有较大差异,故最合理地 抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b -=(0,0a b >>)地 ,则C 地 渐近线方程为A.14y x =± B .13y x =± C .12y x =± D .y x =± 【命题意图】本题主要考查双曲线地 几何性质,是简单题.【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 地 渐近线方程为12y x =±,故选C . 5、运行如下程序框图,如果输入地 [1,3]t ∈-,则输出s 属于A.[-3,4] B .[-5,2] C .[-4,3] D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈,∴输出s 属于[-3,4],故选A . 6、如图,有一个水平放置地 透明无盖地 正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器地 厚度,则球地 体积为 ( ) A 、500π3cm 3 B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球地 截面圆性质、球地 体积公式,是容易题.【解析】设球地 半径为R ,则由题知球被正方体上面截得圆地 半径为4,球心到截面圆地 距离为R-2,则222(2)4RR =-+,解得R=5,∴球地 体积为3453π⨯=500π33cm ,故选A.7、设等差数列{a n }地 前n 项和为S n ,1m S -=-2,mS =0,1m S +=3,则m = ( )A 、3B 、4C 、5D 、6 【命题意图】本题主要考查等差数列地 前n 项和公式及通项公式,考查方程思想,是容易题. 【解析】有题意知mS =1()2mm a a +=0,∴1a =-ma =-(mS -1m S -)=-2,1m a +=1m S +-mS =3,∴公差d=1m a +-ma =1,∴3=1m a +=-2m +,∴m=5,故选C.8、某几何体地 三视图如图所示,则该几何体地 体积为A.168π+ B .88π+C.1616π+ D .816π+【命题意图】本题主要考查简单组合体地 三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到地 半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式地 二项式系数地 最大值为a ,21()m x y ++展开式地 二项式系数地 最大值为b,若13a =7b ,则m = ( ) A 、5 B 、6 C 、7 D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题.【解析】由题知a =2mmC ,b =121m m C ++,∴132m mC =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)地 右焦点为F (3,0),过点F 地 直线交椭圆于A 、B 两点。
普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3CD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; 4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6. B. 由()()()()212121,1,y x x y x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像.9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b+1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+≤11.C .由题意知三棱锥1A ABC-为正四面体,设棱长为a ,则1AB ,棱柱的高13AO a===(即点1B到底面ABC的距离),故1AB与底面ABC所成角的正弦值为113AOAB=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133OA AA AB AC=--,11AB AB AA=+2111126,,33OA AB a OA AB⋅===则1AB与底面ABC 所成角的正弦值为111123OA ABAO AB⋅=.12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53AC=,582321,21,3328ca c ea=+====.16.答案:16.设2AB=,作CO ABDE⊥面,OH AB⊥,则CH AB⊥,CHO∠为二面角C AB D--cos1CH OH CH CHO==⋅∠=,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH==11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM ANEM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,)222222M N ---,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===, 故EM AN ,所成角的余弦值16AN EM AN EM⋅=. 17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.23AC CD CG AD ==,DG =EG==CE =222cos 2CG GE CE CGE CG GE +-∠==,πarccos 10CGE ⎛⎫∴∠=- ⎪ ⎪⎝⎭,即二面角CAD E --的大小πarccos 10⎛⎫- ⎪ ⎪⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x 在3a ⎛---∞⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,⎫+∞⎪⎪⎝⎭递增(2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b -+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =u u u r u u u r,则||QF =A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
13.8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案)14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+u u u r u u u r u u u r ,则AB u u u r 与AC u u ur 的夹角为 .16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(,)的产品件数,利用(i )的结果,求EX .附:150≈. 若Z ~2(,)N μδ,则()P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=.19. (本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.21. (本小题满分12分)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.请考生从第(22)、(23)、(24)三题中任选一题作答。
注意:只能做所选定的题目。
如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。
22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE .(Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为 参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24. (本小题满分10分)选修4—5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.理科数学试题答案一、1-5A DBAD 6-10BDBCC 11-12CC 二、(13)-20 (14)A (15)90° (16)3 三、(17)解:(I )由题设,11211, 1.n n n n n n a a S a a S λλ++++=-=- 两式相减得 121().n n n a a a a λ+++-=由于10n a +≠,所以 2.n n a a λ+-=————————————————————————6分 (II )由题设,11a =,1211a a S λ=-,可得2 1.a λ=- 由(I )知,3 1.a λ=+ 令2132a a a =+,解得 4.λ= 故24n n a a +-=,由此可得{}21n a -是首项为1,公差为4的等差数列,2143n a n -=-;{}2n a 是首项为3,公差为4的等差数列,241n a n =-.所以21n a n =-,12n n a a --=.因此存在4λ=,使得数列{}n a 为等差数列.——————————————————————12分 (18)解:(I )抽取产品的质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.33x =⨯+⨯+⨯+⨯2100.242200.082300.02+⨯+⨯+⨯=200 2222(30)0.02(20)0.09(10)0.22s =-⨯+-⨯+-⨯22200.33100.24200.08300.02150.+⨯+⨯+⨯+⨯= ————————————————————6分 (II )(i )由(I )知,~(200,150)Z N ,从而(187.8212.2=(20012.220012.2)0.6826.P Z P Z <<-<<+=)—————————————9分(ii )由(i )知,一件产品的质量指标值位于区间(,)的概率为 6,依题意知X-B(100, 6),所以1000.682668.26.EX =⨯=——————————————12分 (19)解:(I )连接1BC ,交1B C O 于点,连接AO ,因为侧面11BB C C 为菱形,所以1111,B C BC O B C BC ⊥且为及的中点.又111,..AB B C B C ABO AO ABO B C AO ⊥⊥⊂⊥所以平面由于平面,故 又11,=.B O CO AC AB =故(II )因为11,.AC AB O B C AO CO ⊥=且为的中点,所以又因为1,,,,,AB BC BOA BOC OA OB OA OB OB =∆≅∆⊥所以故从而两两相互垂直,以.O OB x OB O xyz =为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系因为1160,.CBB CBB AB BC ∠=︒∆=所以为等边三角形又,则111111(00(100),(0,(0,),(1,0,(1,3333A B B C AB A B AB B C BC =-==-==--u u u r u u u u r u u u r u u u u r u u u r ,,11111(,,)=00,0,0.3n x y z AA B y z n AB n A B x z n =⎧⋅=⎪⎨⎨⋅=⎪⎪⎩-=⎪⎩=u u u r u u u ur 设是平面的法向量,则,即所以可取11111110,0,(1,m A B m A B C m B C m ⎧⋅=⎪⎨⋅=⎪⎩=u u u u ru u u u r设是平面的法向量,则同理可取 则1111cos ,.71.7n m n m n m A A B C ⋅==--所以二面角的余弦值为————————————————————12分(20)解:222222(c,0)a=2, b 1.1.4F c c c a c a x E y ==-=+=(I )设,由条件知,又所以故的方程为 ——————————5分 112222:=2,(,),(,).214x y kx P x y Q x y x y kx y ιι⊥-=-+=(II )当轴时不合题意,故设将代入得22(14)16120.k x kx +-+=221,2123=16(43)0,4k k x PQ x O PQ d OPQ ∆->>==-==∆当即时,从而又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅= ——————————————————————————9分224443,0,.44474,20.7722OPQ t k t t S t t tt t k t OPQ y x y x ι∆-=>==+++≥==±∆>∆=-=--设则因为当且仅当,即时等号成立,且满足所以,当的面积最大时,的方程为或—————————12分(21)解:112()'()1.(1)2,'(1).a 1, 2.x x x x a b b f x f x ae nx e e e x x xf f e b ==∞=+-+====(I )函数的定义域为(0,+),由题意可得故————————5分 122()1,()11.()1,'()1.x x x f x e n e f x x nx xe x e g x x nx g x nx =-=+>>-==(II )由(I )知从而等价于设函数则11(0,)'()0;(,)'()0.x g x x g x e e∈<∈+∞>所以当时,当时,11(),()11.g x g x e ee e+∞∞故在(0,)单调递减,在()单调递增,从而在(0,)的最小值为g()=-—8分2(),'()(1).(0,1)'()0;(1,)'()0.()1()(0,)(1).0()(),() 1.x x h x xe h x e x ex h x x h x h x h x h ex g x h x f x --=-=-∈>∈+∞<∞∞=->>>设函数则所以当时当时,故在(0,1)单调递增,在(1,+)单调递减,从而在的最大值为综上,当时,即———12分(22)解:(I )由题设知,,,=A B C D D CBE CBE E D E ∠∠∠∠∠=∠四点共圆,所以,由已知得=,故。