Metal–Ligand-Containing Polymers
- 格式:pdf
- 大小:721.93 KB
- 文档页数:10
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2019年第38卷增刊1收稿日期:2019–07–11;修改稿日期:2019–07–30。
基金项目:国家自然科学基金(21808142);上海应用技术大学中青年科技发展基金(ZQ2018-3)。
第一作者:于吉行(1995—),男,硕士,研究方向为工业催化。
E-mail :yuzihang168@ 。
通信作者:俞俊,副教授,硕士生导师,研究方向为工业催化。
E-mail :yujun@ 。
引用本文:于吉行, 俞俊, 薛晓雅, 等. 金属有机骨架UiO-66在催化领域的应用[J]. 化工进展, 2019, 38(s1): 144–151.Citation: YU Jihang, YU Jun, XUE Xiaoya, et al. Applications in the field of catalysis of metal organic framework UiO-66[J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 144–151. ·144·化 工 进展DOI :10.16085/j.issn.1000–6613.2019–1106金属有机骨架UiO-66在催化领域的应用于吉行,俞俊,薛晓雅,韩颖,毛海舫,毛东森(上海应用技术大学化学与环境工程学院,上海 201418)摘要:金属有机骨架(MOFs )经过二十多年的快速发展,已经合成了成千上万种,然而MOFs 材料普遍具有较低的稳定性,在一定程度上限制了MOFs 的发展。
UiO-66的合成是MOFs 材料稳定性的一个突破,其在催化领域的发展尤为迅速。
本文首先介绍了理想及实际状态下UiO-66的结构特征,并说明了配体缺失导致的节点空位处的元素组成。
然后综述了利用UiO-66特殊的结构特征或将其功能化用于催化反应的研究,包括节点空位、功能化节点空位、负载金属纳米颗粒、功能化配体等。
三联吡啶的合成及其金属配合物研究进展1 前言配位化学早期是在无机化学基础上发展起来的一门边沿学科,如今,配位化学在有机化学与无机化学的交叉领域受到化学家门广泛的关注。
有机-金属配合物在气体分离、选择性催化、药物运输和生物成像等方面都有潜在的应用前景,因此日益成为化学研究的热点领域[1-4]。
多联吡啶金属配合物在现代配位化学中占据着不可或缺的位置,常见的多联吡啶配体包括2,2'-二联吡啶(bpy)和2,2':6',2''-三联吡啶(tpy)(Fig. 1),Hosseini就把bpy 称为“最广泛应用的配体”[5],与其类似的具有三配位点的tpy的合成及其金属配合物的研究同样是化学家们研究的热点[6-8]。
Fig 1.三联吡啶的三个吡啶环形成一个大的共轭体系,具有很强的σ给电子能力,配合物中存在金属到配体的d一π*反馈成键作用,因而能与大多数金属离子均形成稳定结构的配合物。
然而,三联吡啶金属络合物的特殊的氧化还原和光物理性质受其取代基电子效应的影响。
因此,通过引入不同的取代基,三联吡啶金属络合物可用于荧光发光装置以及光电开关等光化学领域[9-10]。
在临床医学和生物化学领域中,不管是有色金属的测定还是作为DNA的螯合试剂,三联吡啶衍生物都具有非常广泛的应用前景[11-12]。
2 三联吡啶的合成研究进展正因为三联吡啶在许多领域都具有潜在的应用价值,所以对其合成方法的研究十分重要。
三联吡啶的合成由来已久,早在1932年,Morgan就首次用吡啶在FeCl3存在下反应合成分离出了三联吡啶,并发现了三联吡啶与Fe(Ⅱ)的配合物[13]。
目前,合成三联吡啶的方法主要有成环法和交叉偶联法两种。
2.1 成环法成环法中最常用的反应是Kröhnke缩合反应(Scheme 1)[14],首先2-乙酰基吡啶溴化得到化合物2,2与吡啶反应生成吡啶溴盐3,3与α,β-不饱和酮4进行Michael加成反应得到二酮5,在醋酸铵存在下进而关环得到三联吡啶。
南京航空航天大学硕士学位论文摘要金属-有机配位聚合物是由金属中心离子与有机配体自组装而形成的。
金属-有机配位聚合物新颖的多样结构导致其许多特殊的性能。
由于含硫芳基多齿配体本身结构的多样性,在与金属离子配位时,可以组装出结构新颖和功能独特的配合物。
它们表现出不同寻常的光、电、磁等性质,在非线性光学,磁性和催化材料等方面具有潜在的应用前景。
本课题为含硫金属-有机配位聚合物的合成和性能表征。
文中对到目前为止的金属-有机配位聚合物的研究成果进行了系统的总结。
本论文分别以对苯二胺和对苯二酚为有机小分子,与二硫化碳在碱性条件下反应,在反复实验的基础上,找到了合适的反应条件,冷凝回流合成出了以硫为配位原子的有机配体。
用均相法和溶剂热合成法,将生成的配体与过渡金属在含有表面活性剂的条件下混合发生配位反应,制备了相应的含硫过渡金属配位聚合物,考察各反应因素对配位聚合物形貌的影响。
最后,通过FTIR,EDS,SEM,TEM,紫外-可见等分析手段对配体和配合物进行表征,发现所合成的镉(Ⅱ)配位聚合物具有半导体的性质。
关键词:金属-有机配位聚合物,溶剂热合成,二硫化碳,配体,表征iABSTRACTMetal-organic coordination polymers are a type of self-assembly formed by organic ligands and metal ions. Diversified structures of the coordination polymers result in unusual properties of the novel materials. Duo to the structure multiformity of multidentate organic ligand with the sulfur and aryl, they can assemble out complexes of novel structures and unique fuctions if coordinated with metal ions. They have shown distinctive optical, electrical, and magnetic properties, thus they have a potential applied prospect in nonlinear optics, magnetic and catalytic materials.The subject is to synthesize and analyze the property of sulfur metal-organic coordination polymers. In this dissertation, we do the summary of the development and achievements of metal-organic coordination polymers. In this paper, we use p-phenylenediamine or p-dihydroxybenzene as small organic molecules to react with carbon bisulfide in alkaline condition. We find out the appropriate reaction condition on the basis of repeated experiments, and synthesize organic ligand with the sulfur as coordination atom in the condition of refluxing. Then we use the acquired ligands to react with transition metal ions under surfactant by solvothermal and homogeneous techniques and get the corresponding transition metal complexes with the sulfur atom. We have explored the influences of all kinds of synthesis factors for their morphologies. Finally, through analytical methods such as FTIR, EDS, SEM, TEM, UV-vis, we characterize the ligands and complexes, and suggest that the Cd(Ⅱ) complex is a semi-conductor.Keywords: metal-organic coordination polymers, solvothermal synthesis, carbon bisulfide, ligand, characterizeii图表清单图清单图1.1 金属-有机配位聚合物的金属中心 (5)图1.2 组装金属-有机配位聚合物使用的多齿配体 (6)图3.1 配体合成实验装置图 (19)图4.1 实验Pt-02-04配体L的红外谱图 (34)图4.2 实验Pt′-03-04配体L′的红外谱图 (35)图4.3 实验Pt-02-04配体L的能谱分析图 (35)图4.4 实验Pt′-03-04配体L′的能谱分析图 (36)图4.5 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 5%) (37)图4.6 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 2%) (38)图4.7 特殊形貌的Ni(Ⅱ)配位聚合物的SEM图 (39)图4.8 特殊形貌的Co(Ⅱ)配位聚合物的SEM图 (40)图4.9 特殊形貌的Cd(Ⅱ)配位聚合物的SEM图 (40)图4.10 特殊形貌的Cu(Ⅰ)配位聚合物的SEM图 (41)图 4.11 不同温度下所得Cd(Ⅱ)配位聚合物的SEM图 (a)120℃ (b) 150℃ (43)图 4.12不同降温速率下所得Cu(Ⅰ)配位聚合物的SEM图 (a)5℃/h (b)2℃/h (44)图4.13 添加不同的表面活性剂所得产物的SEM图 (45)图4.14添加不同量的表面活性剂所得产物的SEM图 (46)图4.15 Cd(Ⅱ)配位聚合物液态紫外可见图 (47)图4.16 Cd(Ⅱ)配位聚合物的能谱分析图 (48)Ⅱ配位聚合物(A)固态紫外-可见图;(B)吸收系数与光子能图4.17 Cd()量的关系图 (49)表清单表1.1 几个对应金属-有机配位聚合物的基本概念 (4)vi南京航空航天大学硕士学位论文表3.1 实验所用药品 (17)表3.2 合成配体主要药品物性 (18)表3.3 仪器及设备 (19)表3.4 以对苯二胺为有机小分子R合成配体 (20)表3.5 以对苯二酚为有机小分子R′合成配体 (21)表3.6 均相法合成配位聚合物的实验结果 (23)表3.7 溶剂热合成配位聚合物的实验结果 (24)vii承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
第49卷第10期 辽 宁化工 Vol .49, No .102020 年 10 月________________________________Liaoning Chemical Industry _____________________________October , 2020二芳醚的合成反应研究概述毕康(温州大学.浙江温州325035 >摘 要:作为普遍的结构,二芳基醚部分存在于多种生物活性天然产物、重要的药物化合物和聚合物中。
二芳基醚在我们的日常生活和实验中都是非常常见的一种化学物质。
它不仅仅可以在农业上 可以作为杀虫剂,而且在日常实验中,它也可以当作配体,给我们的实验带来便捷二芳基醚由于其 在农药研究方面的广泛应用,人们一直在开发其合成的新方法。
之前就有许多相关的方法制备二芳基 醚,包括有过渡金属参与的反应和无过渡金属参与的反应。
目前,人们一直致力于探索更多的方法来获得二芳基醚。
因此,化学家们在开发一条新颖、 关键词:二芳基醚;农药研究;高效 中图分类号:Ty 〇31.2文献标识码:A作为普遍的结构,二芳基醚部分存在于多种生 物法性天然产物,重要的药物化合物和聚合物 中lu 。
其中最明显的例子是万古霉素|21,仅当患者被 革兰氏阳性细菌感染后,在用其他抗生素治疗失败 后才使用。
制备二芳基醚的传统方法是通过Ullmann 型C 一0偶联方法。
但是,该方法通常具有一些缺点,例如化学计量的铜试剂和所需的高温(通常高于 210 T ) t 31。
为了克服这些问题,提出了许多过渡金属催化 的C 一0键偶联反应体系。
主要进展在于铜和钯的 应用。
在不同的配体和金属盐的帮助下,使得其能 够在温和条件下获得的二芳基醚。
然而,对于钯而 言,其缺点例如对产品的污染,高成本,毒性,对 湿气敏感的性质以及结构复杂的难以购买的膦配体 严重限制了其在工业和大规模生产中的应用。
141此 外,回收昂贵的催化剂仍然是一个问题。
共价修饰与配位组装的协同策略1.共价修饰和配位组装是化学反应中常见的两种策略。
Covalent modification and coordination assembly are two common strategies in chemical reactions.2.这两种策略可以相互协同作用,以实现更复杂的化学结构。
These two strategies can work together to achieve more complex chemical structures.3.共价修饰可以增加有机小分子的功能性。
Covalent modification can increase the functionality of organic small molecules.4.配位组装为合成金属有机框架提供了一种有效的策略。
Coordination assembly provides an effective strategy for the synthesis of metal-organic frameworks.5.在有机合成中,共价修饰可以引入新的官能团。
In organic synthesis, covalent modification can introduce new functional groups.6.配位组装可以通过金属离子的配位构建起大块的结构。
Coordination assembly can build large structures through the coordination of metal ions.7.这两种策略的协同作用可以为材料科学和药物设计提供新的思路。
The synergistic effect of these two strategies canprovide new ideas for materials science and drug design.8.共价修饰和配位组装之间的相互作用可以产生复杂的化学平衡。
分析测试经验介绍 (328 ~ 333)电感耦合等离子体质谱法测定镁合金中的痕量元素黄丹宇(上海材料研究所有限公司,上海 200437)摘要:采用操作简单的基体匹配法和内标法校正基体,建立了一套完整的电感耦合等离子体质谱(ICP-MS )法检测镁合金中的铜、钴、银、铅、锑、铍、铬、铟、钇、镉、锰、钛、钽、镧、铈15种痕量元素. 检出限、加标回收、精密度的相关试验表明,各元素的检出限范围为0.003 9~1.6 µg/L ,加标回收率为95.1%~109.2%,精密度为0.2%~2.3%. 方法简单、快速、高效,可满足市场上对镁合金中痕量元素的检测需求.关键词:镁合金;电感耦合等离子体质谱法;基体匹配;内标法;痕量元素中图分类号:O657. 63 文献标志码:B 文章编号:1006-3757(2023)03-0328-06DOI :10.16495/j.1006-3757.2023.03.013Determination of Trace Elements in Magnesium Alloys by InductivelyCoupled Plasma Mass SpectrometryHUANG Danyu(Shanghai Material Research Institute Co. Ltd., Shanghai 200437, China )Abstract :A complete set of inductively coupled plasma mass spectrometry (ICP-MS) was established to determined 15trace elements including copper, cobalt, silver, lead, antimony, beryllium, chromium, indium, yttrium, cadmium,manganese, titanium, tantalum, lanthanum and cerium in magnesium alloys by simple matrix matching method and internal standard method. The test results showed that the detection limits of each element were in the range of 0.003 9~1.6 µg/L. The recoveries were 95.1%~109.2%. The precision was 0.2%~2.3%. The method is simple, fast and efficient,and can meet the market demand for the detection of trace elements in magnesium alloys.Key words :magnesium alloy ;ICP-MS ;matrix matching ;internal standard method ;trace elements金属镁是目前应用中质量最轻的结构材料之一,密度仅为1.738 g/cm 3,只有铝密度的2/3[1]. 高纯金属镁及其合金是半导体、电子工业、航空、运输、军事、生物医学等领域的重要材料,也是除氧剂、脱硫剂和还原剂[2]的重要组成部分,其纯度直接影响其材料的耐腐蚀性、抗氧化性等. 同时高纯金属镁也是镁标准储备溶液的原材料,其纯度直接影响镁标准溶液的定值和使用[3]. 其中铜、钴、铟、铅、锑、银等杂质元素的存在会直接影响材料的耐腐蚀性、抗氧化性、强度等各项性能[4-9]. 作为21世纪的绿色工程材料,镁在高新技术领域(如半导体、电子工业、航空等)有着举足轻重的地位,而材料的纯度将直接决定这些行业发展高度的上限[10]. 但囿于金属镁制备工艺的局限性,金属镁中常会存在一定量的杂质残留. 因此对于镁合金而言,探寻一种简单、快捷、高效的杂质含量检测方法具有重要的现实意义.目前已报道的检测金属镁中杂质元素的方法有原子吸收光谱法、电感耦合等离子体发射光谱法(ICP-AES )、电感耦合等离子体质谱法(ICP-MS )、辉光放电质谱法等. 2005年,施立新[11]报道了原子吸收光谱法测定镁及镁合金中的铁和铜,原子吸收光谱法操作复杂、检测时间长,无法满足多种元素收稿日期:2023−06−26; 修订日期:2023−08−25.作者简介:黄丹宇(1993−),女,硕士研究生,中级工程师,研究方向为材料化学,Email :.第 29 卷第 3 期分析测试技术与仪器Volume 29 Number 32023年9月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Sep. 2023同时检测. 2007年,张华等[12]报道了ICP-MS测定镁合金中的多种元素,但其能检测的元素种类少,无法满足市场需求. 2012年,聂西度等[13]报道了ICP-AES测定金属镁中的杂质元素,ICP-AES虽能进行多种元素的同时测定,但其检出限较高,无法满足高新技术领域的材料要求. 2018年,刘元元等[14]报道了辉光放电质谱法测定高纯镁中的12种杂质元素,但该方法成本高昂. 2023年,张喜林等[15]报道了一种ICP-AES测定可溶性镁合金中高含量镍元素含量的分析方法.ICP-MS具有检出限低、线性动态范围宽、选择性好、灵敏度高、进样量小、分析时间短等优点,满足极低浓度元素同时测定的要求[16-17],被广泛应用于地质科学、材料科学、食品安全、冶金工业、电子工业、环境分析等领域[18-19]. 本文建立了一套完整的ICP-MS测定镁合金中铜(Cu)、钴(Co)、银(Ag)、铅(Pb)、锑(Sb)、铍(Be)、铬(Cr)、铟(In)、钇(Y)、镉(Cd)、锰(Mn)、钛(Ti)、钽(Ta)、镧(La)、铈(Ce)15种元素的分析方法,满足目前市场的需求,该方法利用基体匹配法和内标法消除基体的干扰,优化了仪器参数和工作条件,并证实试验结果的精密度和准确性符合预期.1 试验部分1.1 仪器与试剂NexION 2000G型电感耦合等离子质谱仪(PerkinElmer,美国);Master-S超纯水机(HHitech ,和泰);ME104E 电子天平(Mettler toledo,瑞士).试验所用硝酸均为超高纯试剂(傲班,微量元素<10 µg/L);超纯水电阻率均大于18.2 MΩ/cm;Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta、La、Ce、Rh标准储备液(国家有色金属及电子材料分析测试中心):1 000 mg/L;所用试样为金属镁锭(陕西省泰达煤化有限公司);高纯镁(北京中金研新材料有限公司).1.2 溶液的配制100 mg/L Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta、La、Ce标准储备液的配制:移取5 mL 1 000 mg/L Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta、La、Ce标准储备液加入1 mL超纯硝酸,用超纯水定容至50 mL容量瓶.10 mg/L Cu、Co、Ag、Pb、Sb、Cd、Be、Cr、In、Y、Mn、Ti、Ta标准储备液的配制:移取5 mL 100 mg/L Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta标准储备液,加入1 mL超纯硝酸,用超纯水定容至50 mL容量瓶.1 mg/L La、Ce标准储备液的配制:移取5 mL 10 mg/L La、Ce标准储备液,加入1 mL超纯硝酸,用超纯水定容至50 mL容量瓶.15 µg/L铑(Rh)内标溶液的配制:移取1.5 mL 1 000 mg/L Rh标准储备液,加入1 mL超纯硝酸,用超纯水定容至100 mL容量瓶.1.3 仪器工作条件在进行试验分析之前,需对ICP-MS进行调谐,调谐的数据如表1所列.表 1 调谐指标Table 1 Tuning indicators调谐指标质量浓度/(µg/L)记数范围RSD/(%, n=6) 9Be 1.00>2 000<3.024Mg 1.00>15 000<3.0115In 1.00>40 000<3.0238U 1.00>30 000<3.0Bkgd 220 1.00≤1<3.0156CeO/140Ce 1.00≤0.035<3.070Ce++/140Ce 1.00≤0.04<3.0对于所测基体的不同,对ICP-MS的仪器参数进行优化,优化所得结果如下:脉冲检测器电压−2 200 V;模拟检测器电压1 300 V;等离子射频功率1.0 kW;冷却气流量18 L/min;重复次数2次;扫描方式为单点跳峰;碰撞气(氦气)流量5.0 mL/min;扫描读取次数20次;辅助器流量1.2 L/min;雾化器流量1.5 L/min.1.4 试验方法1.4.1 试样前处理称取0.1 g试样于50 mL聚四氟乙烯烧杯中,加入2 mL超高纯硝酸加热溶解,然后置于100 mL 容量瓶定容,此为待测溶液.1.4.2 建立工作曲线称取6份0.1 g高纯镁(99.999 9%),分别加入与待测试样等量的超高纯硝酸溶解,使用移液枪和移液管分别依次移取0、50、100、200、500、5 000 µL第 3 期黄丹宇:电感耦合等离子体质谱法测定镁合金中的痕量元素32910 mg/L的Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta标准储备液于100 mL容量瓶定容,所得Cu、Co、Ag、Pb、Sb、Be、Cr、In、Y、Cd、Mn、Ti、Ta工作曲线的质量浓度分别为0、5、10、20、50、100 µg/L. 另外,分别依次移取La、Ce标准储备液0、10、100、500、1 000、3 000 µL 1 mg/L于100 mL容量瓶定容,所得La、Ce的工作曲线的质量浓度分别为0、0.1、1.0、5.0、10.0、30.0 µg/L.2 结果与讨论2.1 基体效应在ICP-MS对镁合金中痕量元素测试的过程中,基体对待测元素的信号有着不同程度的增强或抑制作用,影响待测元素的测定结果[20]. 由于镁合金中的主要元素为Mg,难以消除或减弱,在测试过程中会对待测离子流造成一系列物理干扰,从而影响测试信号的稳定性. 因此,本试验采用基体匹配法和内标法同时校正基体的干扰.基体匹配法:在99.999 9%的高纯镁的基础上建立校准曲线,进行测试. 内标法:选择15 µg/L Rh作为内标液参与校准.2.2 质谱干扰和同位素选择ICP-MS在标准模式(STD)下的测试除了存在物理干扰以外,还存在质谱干扰,本试验中待测元素的干扰分析如表2所列. 常见的质谱干扰主要有多原子离子干扰和同量异位素干扰. 多原子离子干扰是由与目标同位素原子质量数相同的多原子离子带来的,主要是一些氧化物、氢化物、氩化物、氮化物等. 测试过程中虽然仪器的数学校正能在一定程度上消除干扰,但对测试结果还是有影响[21]. 因此本试验采用的检测模式为动能歧视模式(KED),利用氦气作为碰撞气,与离子束中多原子离子进行碰撞以消除多原子离子的干扰. 同量异位素干扰主要有质荷比相等的不同元素的干扰以及双电荷干扰.本试验中存在的同量异位素干扰是双电荷干扰,这部分的干扰可以通过调谐减少.同位素的选择一般是选用天然同位素丰度值较高的元素,避免选择与基体形成氧化物、氩化物、氮化物的多原子离子的质谱干扰的元素,对于其中天然同位素丰度值相近的元素(如Ag、Cd、Cu),可以参考试验过程中标准曲线的线性系数、检出限、精密度、加标回收率的数值,选择最优的同位素. 最终选择的同位素如下:Cu 63,Co 59,Ag 107,Pb 208,Sb 121,Be 9,Cr 52,In 113,Y 89,Cd 114,Mn 55,Ti 47,Ta 181,La 139,Ce 140. 其中Pb采用208+206+207方程校正.2.3 标准曲线和检出限标准曲线的绘制:以各元素的浓度作横坐标,峰强度作纵坐标. 方法检出限:样品的空白值连续测量11次,测量值的3倍标准偏差对应待测元素浓度. 本试验中各元素的标准曲线线性系数、线性回归方程、检出限及线性范围的数值如表3所列.由表3可知,检测的镁合金中15种元素的线性关系均良好,检出限较低,检出限范围在0.003 9~1.6 µg/L之间.2.4 加标回收本试验分别对样品进行了加标回收试验,其加标质量浓度分别为4.0、20.0及80.0 µg/L,其中由表 2 待测元素干扰分析Table 2 Interference analysis of elements to be tested元素潜在干扰元素潜在干扰Cu 65PO2, SO2, TiO, Ba2+Cd 113Sn, MoOCu 63TiO, PO2Cd 114Sn, MoOCo 59CaO Cr 52ClO, HClO, SO, ArOIn 115Sn, MoO Cr 53ArC, ArNIn 113Cd, MoO Mn 55ArC, HSO, ClO, HClOAg 107ZrO, YO Ti 46ArN, HClO, ClOAg 109ZrO Ti 47Ca, NO2, CO2, SiO, Zr4+Cd 110Pd, MoO, ZrO Ti 48NO2, SiO, CCl, PO, Zr4+Cd 112Sn, MoO, ZrO Ta 181Ca, SO, ArC, NO2, CCl, PO, Zr4+, DyO, HoO 330分析测试技术与仪器第 29 卷于La 和Ce 两种元素检测强度较高,校准曲线选择的质量浓度分别为0、1、5、10、30 µg/L ,故加标量分别为1.0、5.0、30.0 µg/L ,所得的回收率数值如表4、5所列. 由表4、5可见,镁合金中15种元素的加标回收率的数值均在95.1%~109.2%范围内,满足试验要求.2.5 精密度试验对同一试样在不同时间段测量8次,并计算8次平行结果的相对标准偏差(RSD ),所得结果数值即为精密度的数值,如表6所列.由表6可知,精密度数值均在0.2%~2.3%之间,表明该方法精密度较好.2.6 不同方法比对为进一步确保试验结果的准确性以及严谨性,本文对比了不同方法之间的试验数值. 对比结果如表7所列.由表7可得,不同方法之间的试验数据是平行表 3 线性回归方程、相关系数、检出限和线性范围Table 3 Linear regression equations, correlation coefficients, detection limits and linear ranges元素线性回归方程相关系数检出限/(µg/L )线性范围/(µg/L )Cu y =8.46×10−5x +0.017 10.999 80.140.5~100Co y =3.51×10−4x +0.023 30.999 90.52 2.0~100Ag y =1.93×10−2x −0.077 10.999 90.0580.5~100Pb y =2.28×10−2x −1.699 40.999 80.70 2.0~100Sb y =4.89×10−4x +0.016 30.999 80.42 2.0~100Be y =5.63×10−5x +0.007 50.999 80.003 90.1~100Cr y =1.96×10−5x +0.007 70.999 90.81 3.0~100In y =1.09×10−5x +0.001 60.999 90.0890.5~100Y y =2.27×10−5x +0.014 30.999 90.160.5~100Cd y =7.96×10−5x +0.017 30.999 90.0110.1~100Mn y =2.67×10−5x +0.013 10.999 80.97 3.0~100Ti y =4.91×10−5x +0.003 80.999 8 1.6 5.0~100Ta y =6.00×10−3x +0.155 90.999 80.56 2.0~100La y =5.07×10−4x +0.100 50.999 90.006 30.1~30Cey =4.99×10−4x +0.095 10.999 90.008 90.1~30表 4 回收试验结果Table 4 Results of recovery元素测定质量浓度/(µg/L )回收率/%4.0 µg/L 20.0 µg/L 80.0 µg/L Cu Co Ag Pb Sb Be Cr In Y Cd Mn Ti Ta11.35.716.04.211.922.87.310.69.89.82.830.44.9103.698.096.099.3100.4101.5105.799.4101.295.1101.998.0100.3101.3105.098.5102.7103.6105.1106.397.399.499.4109.2105.8103.3101.6108.999.5103.0104.2101.6103.195.198.295.6106.1109.0103.0表 5 镧和铈元素回收试验结果Table 5 Results of recovery for lanthanum and ceriumelements元素测定质量浓度/(µg/L )回收率/%1.0 µg/L 5.0 µg/L 30.0 µg/L La 0.698.1100.095.5Ce0.9101.0101.698.6第 3 期黄丹宇:电感耦合等离子体质谱法测定镁合金中的痕量元素331的,因此所建立的ICP-MS测定镁合金中痕量元素的方法是可行的.3 结论本文同时采用内标法和基体匹配法校正基体,建立了一套完整的电感耦合等离子体质谱法(ICP-MS)测定镁合金中痕量元素的检测方法. 对该方法的精密度、加标回收率、检出限进行考察,测得各元素的精密度为0.2%~2.3%,加标回收率为95.1%~ 109.2%,检出限范围为0.003 9~1.6 µg/L. 并通过不同方法的对比,验证试验结果的准确性. 结果表明,该方法简单、快速、高效,同时具有检出限低、精密度好、准确性高的优点,可为相关检测行业检测镁合金中痕量元素提高参考,满足目前市场需求.参考文献:余琨, 黎文献, 王日初, 等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报,2003,13(2):277-288. [YU Kun, LI Wenxian, WANG Richu, et al. Re-search, development and application of wrought mag-nesium alloys[J]. The Chinese Journal of NonferrousMetals,2003,13 (2):277-288.][ 1 ]朱仁. 无机化学[M]. 北京: 高等教育出版社, 2006:348-358.[ 2 ]刘元元. 高纯镁和高纯钼的质谱纯度分析及其结果不确定度评定[D].北京:钢铁研究总院, 2018.[LIU Yuanyuan. Mass spectrometry purity analysis ofhigh purity magnesium and high purity molybdenumand its uncertainty evaluation[D]. Beijing: CentralIron and Steel Research Institute, 2018.][ 3 ]鲍同尧. 合金元素对镁合金腐蚀行为的影响[D].太原: 太原理工大学, 2021. [BAO Tongyao. Effectof alloying elements on corrosion behavior of mag-nesium alloys[D]. Taiyuan: Taiyuan University ofTechnology, 2021.][ 4 ]王勇平, 何耀华, 朱兆金, 等. Mg-Nd-Zn-Zr镁合金体外降解行为及生物相容性[J]. 科学通报,2012,57(32):3109-3116.[ 5 ]Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosionand biocompatibility of binary magnesium alloys[J].Biomaterials,2009,30 (4):484-498.[ 6 ]王勇平, 蒋垚, 毛琳, 等. 可降解金属Mg-Nd-Zn-Zr镁合金的降解行为[J]. 中国组织工程研究,2013,17(47):8189-8195. [WANG Yongping, JIANG Yao,MAO Lin, et al. In vitro and in vivo degradation of Mg-Nd-Zn-Zr alloy[J]. Chinese Journal of Tissue Engin-eering Research,2013,17 (47):8189-8195.][ 7 ]Mendis C L, Oh-ishi K, Hono K. Enhanced agehardening in a Mg-2.4 at% Zn alloy by trace additionsof Ag and Ca[J]. Scripta Materialia,2007,57 (6):485-488.[ 8 ]高家诚, 乔丽英. 镁基可降解硬组织生物材料的研[ 9 ]表 6 精密度测试结果(n=8)Table 6 Results of precision (n = 8)元素测定质量浓度/(µg/L)RSD/%Cu11.3 1.5Co 5.7 2.2Ag16.00.2Pb 4.2 1.1Sb11.9 1.8Be22.8 1.6Cr7.3 1.8In10.6 1.8Y9.8 1.2Cd9.80.9Mn 2.8 1.8Ti30.4 2.3Ta 4.9 1.0La0.6 1.4Ce0.9 1.9表 7 不同方法结果的比较Table 7 Comparison of results of different methods/(mg/g)元素ICP-MS ICP-AESCu 1.1 1.1Co0.60.6Ag 1.6 1.5Pb0.4<1.0Sb 1.20.9Be 2.3 2.0Cr0.70.9In 1.1–Y 1.0–Cd 1.0 1.1Mn0.3<1.0Ti 3.0 2.7Ta0.5–La0.06<1.0Ce0.09<1.0332分析测试技术与仪器第 29 卷究进展[J]. 功能材料,2008,39(5):705-708. [GAOJiacheng, QIAO Liying. Magnesium-based degradablehard tissue biomaterials[J]. Journal of Functional Ma-terials,2008,39 (5):705-708.]候正全, 蒋斌, 王煜烨, 等. 镁合金新材料及制备加工新技术发展与应用[J]. 上海航天(中英文),2021(3):119-133. [HOU Zhengquan, JIANG Bin, WANGYuye, et al. Development and application of new mag-nesium alloy materials and their new preparation andprocessing technologies[J]. Aerospace Shanghai(Chinese & English),2021 (3):119-133.][ 10 ]施立新. 原子吸收光谱法测定镁及镁合金中铜和铁含量[C]//全国轻合金加工学术交流会, 2005: 409-413.[ 11 ]张华, 王英锋, 施燕支, 等. 电感耦合等离子体质谱法测定镁合金中的多种元素[J]. 分析试验室,2007,26(6):47-50. [ZHANG Hua, WANG Yingfeng, SHIYanzhi, et al. Determination of multi-elements in mag-nesium alloys by inductively coupled plasma massspectrometry[J]. Chinese Journal of Analysis Laborat-ory,2007,26 (6):47-50.][ 12 ]聂西度, 谢华林. 电感耦合等离子体原子发射光谱法测定金属镁中杂质元素[J]. 冶金分析,2012,32(7):79-82. [NIE Xidu, XIE Hualin. Determinationof the impurity elements in magnesium by inductivelycoupled plasma atomic emission spectrometry[J]. Me-tallurgical Analysis,2012,32 (7):79-82.][ 13 ]刘元元, 胡净宇. 辉光放电质谱法测定棒状高纯镁中12种杂质元素[J]. 冶金分析,2018,38(4):16-21.[LIU Yuanyuan, HU Jingyu. Determination of twelveimpurities in rodlike high-purity magnesium by glowdischarge mass spectrometry[J]. Metallurgical Ana-lysis,2018,38 (4):16-21.][ 14 ]张喜林, 钱亚锋, 孙志阳, 等. 电感耦合等离子体发射光谱法测定可溶性镁合金中高含量镍[J]. 化学分析计量,2023,32(7):17-20. [ZHANG Xilin, QIANYafeng, SUN Zhiyang, et al. Determination of highcontent nickel in soluble magnesium alloys by induct-ively coupled plasma atomic emissionspectrometry[J]. Chemical Analysis and Meterage,2023,32 (7):17-20.][ 15 ]黄丹宇, 刘巍, 陶美娟, 等. 微波消解-电感耦合等离[ 16 ]子体质谱法测定铬铁合金中的10种痕量元素[J].分析仪器,2021(2):23-27. [HUANG Danyu, LIUWei, TAO Meijuan, et al. Determination of 10 traceelements in ferrochrome by ICP-MS with microwavedigestion[J]. Analytical Instrumentation,2021 (2):23-27.]黄丹宇, 陶美娟, 郅惠博. 电感耦合等离子体质谱法测定高纯铬中13种痕量元素[J]. 理化检验-化学分册,2021,57(8):759-763. [HUANG Danyu, TAOMeijuan, ZHI Huibo. Determination of 13 trace ele-ments in high-purity chromium by ICP-MS[J]. Phys-ical Testing and Chemical Analysis (Part B (ChemicalAnalysis),2021,57 (8):759-763.][ 17 ]冯先进, 屈太原. 电感耦合等离子体质谱法(ICP-MS)最新应用进展[J]. 中国无机分析化学,2011,1(1):46-52. [FENG Xianjin, QU Taiyuan. The latestapplication progress of inductively coupled plasmamass spectrometry[J]. Chinese Journal of InorganicAnalytical Chemistry,2011,1 (1):46-52.][ 18 ]刘巍, 吕婷, 陶美娟. 微波消解-电感耦合等离子体质谱法测定石墨烯粉末材料中19种痕量元素[J]. 理化检验-化学分册,2019,55(11):1318-1322. [LIUWei, LV Ting, TAO Meijuan. ICP-MS determinationof 19 trace elements in graphene powder materialswith microwave digestion[J]. Physical Testing andChemical Analysis (Part B:Chemical Analysis),2019,55 (11):1318-1322.][ 19 ]陈忠颖, 刘巍, 郭颖. 电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J]. 理化检验-化学分册,2017,53(12):1416-1418. [CHEN Zhong-ying, LIU Wei, GUO Ying. Matrix effect in the ICP-MS determination of 21 elements in high purityiron[J]. Physical Testing and Chemical Analysis (PartB:Chemical Analysis),2017,53 (12):1416-1418.][ 20 ]詹胜群, 段勤勤, 黄缘, 等. ISO标准中基体效应对微波消解-ICP-MS测定奶粉中多元素的影响[J]. 中国食品添加剂,2022,33(9):217-225. [ZHANShengqun, DUAN Qinqin, HUANG Yuan, et al. Theinfluence of matrix effect on the determination of multi-elements in milk powder by microwave digestion-ICP-MS using ISO standard method[J]. China Food Addit-ives,2022,33 (9):217-225.][ 21 ]第 3 期黄丹宇:电感耦合等离子体质谱法测定镁合金中的痕量元素333。
多羧酸类配体(tp,btec,H2IDA,debp)构筑的配位聚合物的设计、合成、结构及性质摘要配位聚合物由于结构上的多样性以及在吸附、催化、磁性等新材料领域潜在的应用价值,近年来这一领域的研究成为集基础研究和应用研究于一体的前沿课题。
按照晶体工程的原理,通过选择特定几何构型的中心金属离子和特殊的有机配体可以在一定程度上实现晶态材料的的定向设计和合成,其中,具有螺旋结构的的材料的设计与和合成是目前研究的挑战与热点。
螺旋结构在自然界普遍存在,但是在合成材料中还是比较少见的。
最近,通过配体和金属离子的自组装设计合成具有螺旋结构的的配位聚合物已经取得了很多进展,但是大多数还都是使用含有磷酸,亚磷酸以及氧化物的无机螺旋结构。
本研究采用溶液法、水热法以二元或多元羧酸(对苯二甲酸,均苯四酸,亚氨基二乙酸,4,4’一二羧酸一2,2'-联吡啶,3,3’.二羧酸.2,2’.联吡啶等)为主要的桥联配体与过渡金属Zn2+,cd2+,Cu2+,主族金属Pb2+及稀土金属离子构筑多种配位聚合物,并对它们的晶体结构和性质进行了表征。
本文共分为五部分。
首先概述了配位聚合物的基本概念、研究进展、羧酸类配体构筑的配位聚合物总览以及常用合成方法。
以剐性芳香族多羧酸化合物对苯二甲酸,均苯四酸为配体与具有d10结构的过渡金属在不同条件下形成不同的配合物,并研究了它们的荧光性质,提出许多d旧电子组态的金属,如zrl2+,Cd2+,Cu+,Ar等与对苯二甲酸构成的配位聚合物都表现出明显的荧光性质。
以均苯四酸为桥联配体与Cd”形成三维配位聚合物,该聚合物中有直径为9.3×4.7A的孔道,水分子填充在孔道之中,同时该化合物也有好的荧光性质。
氨基酸类配体是被广泛研究使用的配体,此类配体具有较多的配位点,因其在生物等领域的应用而备受重视。
以柔性的二羧酸一亚氨基二乙酸为配体,邻菲罗啉为第二配体与cu2*形成独立的配合物分子,并且从实验和理论上对该化合物的光谱进行了研究。
金属-有机框架化合物简介金属-有机框架化合物(Metal-Organic Frameworks,MOFs)通常是指以有机配体为连接体(linkers)和以金属离子或簇为节点(nodes),通过配位键组装形成的具有周期性结构的配位化合物。
由于MOFs材料在荧光、催化、气体吸附与分离、质子导体、药物运输等方面具有潜在的应用价值,近十几年来,发展非常迅速,大量结构新颖的MOFs被不断的设计合成出来。
随着现代配位化学和晶体工程的发展,MOFs之间的键合作用已经不再仅局限于配位键作用,还囊括了其他作用力,比如:氢键作用,范德华力,芳香环之间的π-π作用等。
这些丰富的作用力使得MOFs结构和功能更加多元化、复杂化。
近几年来,计算机技术和仿真技术被应用到MOFs的研究中,在它们的帮助下,越来越多的新型MOFs材料不断的被合成出来。
与传统的多孔材料相比,MOFs材料的优势在于结构和功能的可设计性和调控性。
在理想情况下,通过合理设计配体和选择金属离子构筑的次级构建单元(SBUs),就可以合成目标结构和功能的MOFs。
虽然,目前每年有很多结构新颖性能特别的MOFs被合成报道,然而,在很多情况下,看似合理的设计,却很难实现。
这与MOFs的自主装过程有关。
在MOFs的合成过程中,除了配体和金属离子的影响外,还有其他的影响因素,比如:反应温度、溶剂、pH值、压力、配体和金属盐的比例与浓度等,每一个反应条件的改变,都有可能影响MOFs 的自主装过程,从而影响MOFs的结构,进而可能影响MOFs的性能。
总之,在通常情况下,根据金属离子构筑的SBUs和有机配体的几何构型可以预测MOFs最终的框架结构。
例如:平面方格结构可以通过4-连接平面构型SBU和直线型2-连接配体形成,如:MOF-118;类金刚石结构则可以通过四面体构型的4-连接SBU和直线型2-连接配体形成;立方结构框架则可以通过6-连接的SBU和直线型2-连接配体形成,如:MOF-5;T d八面体结构可以通过3-连接配体和轮桨状的4-连接SBU构筑,如:HKUST-1 (Figure1.1)。
国家资助企业提供(企业博士后)•来自重大科研项目经费(项目博士后)•学位情况学位获得年月攻读学位单位学位论文题目导师学士1990.6 阜阳师范学院电极过程动力学基础研究×××教授硕士1993.6 武汉大学马来氰基二硫纶混合配体过渡金属配合物的合成、表征和光谱性质研究×××教授博士2001.9 南京大学基于二茂铁基元的超分子自组装研究+++教授,×××教授主要研究工作经历起止年月单位研究工作职务1986.9-1990.7 阜阳师范学院电极过程动力学基础研究本科生1990.9-1993.7 武汉大学马来氰基二硫纶混合配体过渡金属配合物的合成、表征和光谱性质研究硕士生1993.7-1998.9 北京联合大学化学工程学院不饱和聚脂涂料的研究讲师1998.9-2001.9 南京大学基于二茂铁基元的超分子自组装研究博士生2001.12-2002.11 德国法兰可福歌德大学有机/无机给体与受体的电荷转移复合物分子基磁体的研究访问学者2002.12-2003.12 英国诺丁汉大学多卤素骨架配位聚合物和电荷转移盐的自组装研究博士后主要研究成果:已发表在国内外核心学术刊物上的论文题目、全部作者署名顺序、发表时间、刊登论文的刊物名称以及被SCI、EI、ISR、SSCI收录、引用的情况;获得专利的名称、内容和号码;有何发明创造、技术革新、工艺设计和过程等。
请务必具体说明以上成果的科学价值、应用前景、经济效益、社会效益以及本人在这些成果中的主要贡献及所获得奖励的名称、等级和获奖人员的排名顺序。
1. Fang, C. J.; Duan, C. Y.; He, C.; Meng Q. J. A double-helix generated from a ferrocenyl-thiosemicarbazato metallo-synthon and its novel hydrogen-bonding cavities, Chem. Commun., 2000, 1187-1188. SCI收录,引用次数:14。
厦门大学硕士学位论文配体取代基、金属离子和溶剂对配位聚合物结构的影响姓名:周东生申请学位级别:硕士专业:无机化学指导教师:杨士烑20090701 厦门大学理学硕上学位论文摘要本文采用锌、锰、铜、钻、镍离子和芳香羧酸配体在水热、溶剂热等合成条件下,合成了18个配位聚合物,对其晶体结构和相关性质进行了分析测试,并根据反应条件与合成产物之间的关系,讨论了配体取代基、金属离子及溶剂对配位聚合物组装规律的影响。
本论文内容包括以下六个方面:1.以zn2+为中心离子,在吡啶参与下,通过改变间苯二甲酸的5位取代基在水热条件下合成得到三个不同的配位聚合物。
结果表明,当羧酸苯环上的5位取代基从一H、一0H到一纪,.卜Bu,产物中锌离子的配位数逐渐减小,产物维数逐渐降低,配体非配位基团位阻增大导致了金属配位数和产物维数的不同。
2.以Cu2+为中心离子,通过改变间苯二甲酸的5位取代基在溶剂热条件下合成得到四个不同的配位聚合物。
结果表明,当羧酸苯环上的5位取代基从一OH、一H、一N02到一招力.Bu,反应产物结构分别从球状结构到2D平面结构,取代基亲水性减小、位阻增大引起了次级结构单元与配体在空间排列上不同,导致聚合物结构的不同。
3.采用5-叔丁基间苯二甲酸(H2tbip)和4,4‟.联吡啶(4,4‟-bpy)为配体,改变金属离子在水热反应条件下进行自组装、合成了两个不同的配位聚合物。
结果表明,Mn2+采取六配位方式,而zn2+采取四配位和六配位两种方式,反应产物结构分别为1D链和2D平面结构。
金属离子不同、金属离子半径不同,导致了配位数目不同,获得不同结构的配位聚合物。
4.采用4,4‟.联苯二甲酸为配体,通过改变金属离子在溶剂热反应条件下进行自组装,合成得到两个不同的配位聚合物。
由于Mn2+与C02+金属离子半径不同、配位数目不同,分别得到了3D网络结构与2D平面结构。
5.以2.硝基对苯二甲酸和钴离子在不同溶剂(DMSO、H20/DMA、H20)中合成了三个不同的配位聚合物。
Metal–Ligand-Containing Polymers:Terpyridine as the Supramolecular UnitRaja Shunmugam,Gregory J.Gabriel,Khaled A.Aamer,Gregory N.Tew*IntroductionMany interactions are used to self-assemble molecules intosupramolecular materials including hydrogen and metalbonds,p –p and donor–acceptor associations,electrostatics,hydrophilic-hydrophobic,and van der Waals forces.[1]Incontrast to the field of supramolecular chemistry,the use ofpolymeric macromolecules as basic elements in supramo-lecular materials has not received as much attention.[2]However,supramolecular design allows more than just thebuilding of complex architectures,it enables the simulta-neous integration of increased functionality into thematerial.[1]When appropriately designed,a supramolecu-lar architecture will direct the organization of constituentmolecules and express their functionality in the finalmaterial.Such materials are referred to as supramolecularmaterials since the supramolecular interaction is critical totheir overall architecture,order,properties,and function.[3]In fact,when a macromolecule plays a critical role in theoverall assembly process this may be called supramolecularpolymer science,which is clearly different from conven-tional supramolecular chemistry,since the constituents are macromolecules as opposed to small molecules.Many natural materials have unique and complex architectures that directly control their properties.Gaining a better understanding of the fundamental principles govern this assembly and their properties is one of the goals of supramolecular science.[4]Moreover,supramolecular design allows an increased level of complexity and this is sure to generate new materials with tailored properties,which will be required over the next several decades as advance devices demand multifunctionality.[2]Eventually,the essential features of many biological systems will be successfully mimicked by materials created through supramolecular design principles.In fact,the properties of these supramolecular systems will likely outperform natural systems because they are not limited to the building blocks of life but to the toolbox of organic and materials synthesis.As shown in Figure 1,several different archi-tectures have been studied including the traditional diblock copolymer,but with one block containing a metal–ligand on every mononer (see Figure 1C),being one of the newest additions to the toolbox.Although these approaches to new materials hold great promise;in many cases research progress is hindered because simple fundamental knowledge regarding the binding interactions remains unknown.Since terpyridine (terpy)is perhaps the most ubiquitous metal ligand usedin Feature ArticleR.Shunmugam,G.J.Gabriel,K.A.Aamer,G.N.TewDepartment of Polymer Science and Engineering,University ofMassachusetts,Amherst,120Governors Drive,Amherst,Massachusetts 01003,USAE-mail:tew@New and interesting properties can be obtained from macromolecular architectures functio-nalized with supramolecular moieties,particularly metal–ligand complexes.Self-assembly,based on the selective control of noncovalent interactions,guides the creation of hierarchically ordered materials providing access to novel structures and new properties.This field has expanded significantly in the last two decades,and one of the most ubiquitous functionalities is terpyridine.Despite its wide-spread use,much basic knowl-edge regarding the binding of terpyridine with metal ionsremains unknown.Here,the binding constants of PEG-sub-stituted terpyridine in relation to other literature reports arestudied and a few examples of supramolecular materials fromour laboratory aresummarized.these systems (see Figure 2),the binding constants of a PEG-40-substituted terpy in DMSO and water solutions werestudied.These results are discussed in detail and inprospective with the relevant literature.This shouldprovide a framework for future fundamental studies intothe often-used terpyridine-based systems.Results and DiscussionTerpyridine-Metal Binding ConstantsDespite intense interest in terpy-based metal complexesover the years,limited data are available on the binding constants in various solvents.Although upon initial inspection the landscape looks relatively straightforward,the problem is quite complex due to the influences ofcounterions,solvents,reaction conditions,and kinetic concerns.It is well known that terpy can bind a wide rangeof metal ions in the periodic table including the transitionmetal series,lanthanides,and actinides.[5]The transitionmetals that are more commonly studied include Mn(II),Fe(II),Co(II),Ni(II),Cu(II),Zn(II),Ru(II),Rh(III),Pd(II),Cd(II),Os(II),Ir(III),and Pt(II).The complexation reaction betweenterpy and different metal ions can be represented by anequilibrium reaction shown in Figure 3.[6–8]Ideally,formation of the bis-complex [M(terpy)2]n þoccurs in two steps,reaction of the metal ion with terpyto form the monocomplex [M(terpy)]n þfollowed byreaction with a second free terpy to form the bis-complex.The extent of these reactions is determined by the stabilityconstants K 1and K 2.Although there are not many studies inthe literature specifically conducted to measure K 1and K 2for a wide range of metal ions and terpy,some values are collected in Table 1.[9]This is one example of the difficultiesresearchers face;all of these binding constants are in waterwhile most of the self-assembly studies are conducted inorganic solvents.In addition,this simplified schemeindicates that it is relatively easy to form the monocomplex,[M(terpy)]n þ;however,it is often observed that the biscomplex is formed preferentially,as discussed below.Metal–Ligand-Containing Polymers:Terpyridine as...Figure 1.Schematic representation of different linear polymer architectures containing metal–ligand complexes at specific locations.(a)Homopolymer with metal–ligand on every mono-mer;(b)Random copolymer;(c)Diblock copolymer,and(d)Diblock copolymer,in which the metal–ligand block is a random copolymer of metal–ligand and nonmetal-ligand con-tainingmonomers.Gregory N.Tew received a B.Sc.in Chemistry from North Carolina State University in 1995and performed undergraduate research with Prof.D.A.Shultz.In 2000,he earned his Ph.D.from the University of Illinois-Urbana under Samuel Stupp after which he joined the Faculty at the Polymer Science and Engineering Depart-ment at the University of Massachusetts,Amherst.Before starting there,he spent oneyear in William DeGrado’s laboratory at theUniversity of Pennsylvania Medical School.Cur-rent research interests include bioinspired andbiomimetic macromolecules,supramolecularpolymer science,molecular self organization,andmaterials for regenerative medicine.Thiswork has lead to Young Investigator awards from the National Science Foundation (CAREER),the Office of Naval Research,the Army Research Office,3M,and DuPont.The Army award was selected for the Presidential Early Career Award for Scientists and Engineers in 2002and has funded the work from his laboratory related tometal–ligandpolymers.Raja Shunmugam received his bachelor degree in 1994,master degree in 1996from V.O.C.Col-lege,Manonmaniam Sundaranar University.He received his Ph.D.from the Indian Institute of Technology Madras under Professor R.Dhamod-haran.He then joined Professor Gregory N Tew’s laboratory as a post doctoral research associate in 2003.In his graduation research,he mostlystudied polymer modification chemistry,while his post doctoral research has focused more on the synthesis of novel polymers and materials chemistry.His research interest centers on an interdisciplinary approach using chemistry to study new materials and biologicalproblems.Figure plexation scheme between the metal ion and terpyto form the monoterpy and bisterpy complexes.M n þ¼metal ion,K 1,K 2,and b are the thermodynamic equilibrium stability con-stants for [M(terpy)]n þand [M(terpy)2]n þcomplexes.Since it isnot always possible to determine K 1and K 2independently,brepresents the total reaction (b ¼K 1K 2).More recently,Wu ¨rthner reported lower limit stabilityconstants for the reaction between terpy and five metal ions[four of them identical to Hogg and Wilkins,[10]M ¼Fe(II),Co(II),Ni(II),and Cu(II)]using a combination of UV–Vis,NMR,and isothermal titration calorimetry (ITC)in acet-onitrile (see Table 2).[6]In their detailed studies,they examined the forward (metal ions into terpy)and reverse titration (terpy into metal ions)allowing more insight into R.Shunmugam,G.J.Gabriel,K.A.Aamer,G.N.TewFigure 2.Various chemical structures containing terpyridine,or close derivatives.the thermodynamic landscape.They examined only the perchlorate salts in acetonitrile so that their different methods could be compared internally.As a result of their studies,lower-limit values for K1,K2,and b were reported and are collected in ing NMR,which was able to distinguish the mono-and biscomplexes of Zn(II),they showed that at metal ion/terpy ratios of1:2,1:1,and2:1 there was100,60,and25%bis complex,respectively.These studies raise the issue of kinetics,or complex lifetimes,which adds yet another layer of complexity to the landscape.In work using terpy to sense metal ions in minute quantities,the discovery of a unique color change in the presence of Hg(II)prompted Tew and co-workers to investigate the binding constant for this metal ion along with Co(II)and Cu(II).[11]Using the water-soluble molecule shown in Figure4,ITC experiments were performed in the forward direction and the determined log K s were measured to be6,7,and8,for Hg(II),Co(II),and Cu(II) respectively.The ability to reversibly form the mono Cu(II) complex was also observed in Tew and co-workers’ITC experiments.[6,11]For comparison,log K was measured for Co(II)in neat water and did not change appreciably compared to the DMSO/water mixture,although changes were observed in the enthalpy and entropy values.This highlights one of the unique features of this terpy molecule, which is solubility in a host of different solvents and,as a result,may allow access to stability constants for identical systems as a function of solvent.One of the biggest concerns for accurately estimating stability constants by ITC with available equilibrium models is obtaining enough data points along the critical transition to allow good curvefitting.In some cases,there may not actually be any data points along the inflection point of the isotherm;however,as shown in Figure4,it is possible to obtain a reasonable number of data points along the transition.The curves shown in Figure4were successfullyfitted using several different parameters including a one-site(log K%7)or a two-site model (log K A%8,log K B%8).In addition,manually adding5% error to the measured heat values,systematically or randomly,did little to influence thefitted curve and therefore the obtained K.Not surprising,the largest changes in K(around1.5logs)were observed when the values near the inflection point were changed.These data manipulation experiments illustrate that small errors on the measured heats at each injection do not result in significantly different observed binding constants.Hence,real differ-ences in the binding behavior of terpy with metal ions should be observable using ITC.It is worth mentioning that the two-site model provides K values of very similar magnitude for Co(II),which presumably correspond to K1 and K2;however,we have chosen not to report them. Another concern for any method is the potential for competitive equilibrium events(for example,formation of the monocomplex),but with ITC these events would not be observed,unlike,for example,NMR or UV–vis.However, using rate constants from Hogg and Wilkins[10]and molar concentrations in the ITC experiments,the presence of Cobalt monocomplex at0.5metal/terpy is expected to be minimal.This agrees with Wu¨rthner’s NMR experiments on Zn(II)which showed very little monocomplex until after the 0.5metal ion/ligand ratio.The complicated role of counterions,solvent,and even molecular structure can be highlighted here by comparing several different observations from the literature.Wilkins studied complexes in water,while Wu¨rthner studied them in acetonitrile;within one log their values of K1for Co(II)Metal–Ligand-Containing Polymers:Terpyridine as...Table1.Thermodynamic stability constants determined for a series of M(terpy)2þ2complexes in water at258C.[9]logK1/MÀ1log b/MÀ2M2R! [M(terpy)]2R 2terpy R M2R! [M(terpy)]2RMn(II) 4.4–Fe(II)7.120.9Co(II)8.418.3Ni(II)10.721.8Zn(II) 6.0–Table2.Lower limits for the binding constants determined for a series of M(terpy)2(ClO4)2complexes in acetonitrile by ITC at25.3–25.58C.logK1/M–1logK2/M–1log b/M–2 M2R![M(terpy)]2R M(terpy)2R![M(terpy)2]2R2terpy R M2R![M(terpy)]2RFe(II)>8>8>16Co(II)>8>8>16Ni(II)>8>8>16Zn(II)>8>8>16Cu(II)>8%6>16and Fe(II)agree while Ni(II)is two logs higher and Zn(II)is two logs lower(Wu¨rthner reports lower limits so Ni(II) might have closer agreement).In identical experiments performed in the same laboratory,Wu¨rthner reported that zinc trifluoromethane sulfonate showed10%bis complex at an excess metal-ion ratio(two metal ions for every one terpy)compared to the perchlorate,which gave25%.Che and co-workers reported no reversibility with Zn(II)when using acetate or chloride counterions in DMSO,but reversible complexes with nitrate.[12]Their structure was a40oxo-alkyl substituted terpy compared to unsubstituted terpy used by Wu¨rthner.Similarly,Tew’s ethylene oxide substituted terpy,which rendered it water soluble,also has a40donating atom,which would be expected to influence the electron density of the ligating nitrogen,especially with regard to the back-donation of electron density from the metal ion.Schubert and co-workers reported ITC-obtained K values of108for40-chloro-terpyridine(again40-substituted) in MeOH with cobalt(II)acetate.[13]When metal ion is titrated into terpy solutions,the expected product is the bis-metal complex.According to the Equations shown in Figure3,this should yield b.However, the values of K from Schubert and Tew are on the order108, more similar to K1or K2.If the curves are extremely sharp,it could follow that K2¼K1¼K so that only one K is measured; on the other hand,if K1is rate-limiting it may be the observed K.Further,as mentioned above,the two-side model yields two K values on the order108so that the product would be on the order1016,similar to values reported for b.In any case,ITC provides insight into the thermodynamic landscape,which can be coupled with functionalized molecules to build a database of stability constants in various solvents.This will also allow the influence of solvent on enthalpy and entropy to be compared directly.These various solvents may also be use for kinetic studies which are of equal importance. Although the bis-complex[M(terpy)2]nþis thefinal form obtained in solution(usually),the dynamic nature of these complexes were investigated by Hogg and Wilkins for the reaction of various[M(terpy)2]nþcomplexes with excess terpy in water and by Wu¨rthner in acetonitrile.Hogg and Wilkins showed that[Fe(terpy)2]2þand[Ni(terpy)2]2þare kinetically stable with half-lives of t1/2¼8400and610min, respectively,while[Co(terpy)2]2þis much more reversible with t1/2¼60min.Wu¨rthner reported that Zn(II)perchlo-rate is reversible by NMR.Schubert found that Cu(II),Co(II), and Cd(II)complexes were also labile in viscometry experiments with terpy-substituted poly(ethyleneR.Shunmugam,G.J.Gabriel,K.A.Aamer,G.N.Tew Figure4.Chemical reaction showing the titration studied by ITC along with three different systems.(A)and(B)were performed in DMSO/ water mixtures while(C)was performed in neat water.All values are based on one-site model.oxide).[14]T he monocomplexes[M(terpy)Br2]of Fe(II), Fe(III),Co(II),and Ni(II)have been reported but since they are expected to disassemble in solvent certain caution should be appreciated.[15]In contrast,stable monoterpy complexes can routinely be made with Ru(III),Rh(III),Os(III),and Ir(III).[14,16–27]The[Ru(terpy)2þ2]complex is relatively easy to synthesize in either symmetric or asymmetric forms and its photophysical data are available in the literature making it one of the most popular choices.[Ir(terpy)2þ2]is not as easy to synthesize as its ruthenium counterpart but due to its desirable emission properties and the potential use in many applications[19–21,23,24,28–30]has received some attention in polymeric side chains.[31–33]Despite the limited binding constant data available for the environments in which supramolecular polymer chemistry studies have been conducted,a variety of interesting materials have been reported.The focus below shifts from fundamental binding constant studies to a discussion of synthetic methods used to generate macro-molecules inspired by Figure1and then a brief highlight of various materials generated from these novel macro-molecules.Macromolecular Chemical SynthesisIt appears that the initial reports on macromolecules containing metal complexes,or at least terpy,can be traced back over more than20years ago with the initial reports by Potts and Usifer[34]and Hanabusa et al.,[27,28]in which they reported the conventional radical(co)polymerization of vinyl functionalized terpys.The initial polymers[34]had molecular weight distributions(MWD)of10to44 depending on the position of the vinyl bond.Copolymers with styrene had narrower MWDs but were still signifi-cantly broad;the reactivity ratios between styrene and40-viny1-2,20:60,200-terpyridinyl were determined to be0.47 and1.12,respectively.They reported mono terpy complexes with Co and Zn but the materials were significantly insoluble,hindering characterization.Hanabusa,on the other hand,radically copolymerized terpy based acrylate monomers with styrene and methyl methacrylate(see Figure1).The inherent viscosity of the copolymer solutions decreased with the complexation with Fe(II)suggesting polymer chain shrinkage.In recent years,Fraser and co-workers,[35–40]Schubert and co-workers,[8,41–51]Sleiman and co-workers,[52–54]Calzai and Tew[55],and Weck and co-workers,[56–60]among others have became interested in more precise polymer architectures by employing con-trolled polymerization techniques(see Figure4).Their focus has been on the noncovalent functionalization with metal complexes and hydrogen bonding to achieve multistep and orthogonal self-assembly.The majority of these approaches have polymerized metal complexes or grown polymers in the presence of metal complexes.Interestingly,the direct polymerization and/or charac-terization of polymers containing terpy proved to be extremely difficult.Not surprisingly,methods such as ATRP are incompatible with such a large quantity of terpy during the reaction and even when the polymer can be made,for example by RAFT,characterizing the polymer with SEC can be impossible,or at least cost prohibitive.In order to establish a broad synthetic platform that would allow the synthesis of various monomers and architectures containing terpy anywhere along the backbone,Tew and co-workers reported several different strategies including thefirst direct polymerization of block-random copolymers and two indirect,or post-polymerization,strategies.[61–64] Figure5outlines two indirect methods leading to well-characterized copolymers including block copolymers with dense metal–ligand functionality.One of the most attrac-tive aspects of these indirect methods is their versatility toward metal–ligands other than terpy.It appears that as long as an amine can be placed into the metal–ligand,or complex,these indirect methods can be employed.Self-Assembled MaterialsGelsSupramolecular organogels have recently evolved as fascinating smart materials due to their potential applica-tions as rheology modifiers,stimuli-responsive materials such as sensors and actuators and drug carriers.Despite this intense interest in gelators,it is rather surprising that organo-or hydrogels via metallophilic interactions are not very well explored in the literature even though metal coordination plays the major role in supramolecular chemistry.Chujo reported very early that bipyridyl-substituted poly(oxazo-line)s complexed with Co(III)formed reversible intermole-cular crosslinked networks that responded to both redox and thermal stimuli(see Figure2).The system formed thermally reversible crosslinked networks with Fe(II).Similarly,Tew et al.reported that the intrinsic viscosity of solutions containing terpy-functionalized polymers increased as Cu(II) was added to the solution.[64]Schubert and co-workers studied the impact of Fe(II)and Zn(II)on crosslinking and observed that Fe(II)increased the relative viscosity more than Zn(II)due to its higher binding constant.[35,65–68]Instead of using macromolecules to form crosslinked networks,Rowan and co-workres elegantly manipulated this concept by using transition metal ions and lanthanides to form linear chains and create cross-linked junction points from a a,v-assemblier based on bis(2,6-bis(10-methylben-zimidazolyl)-4-hydroxypyridine)functionalized with ethy-lene oxide(see Figure8).[69,70]Tew studied solutions containing higher concentrations of polymer,which led to crosslinked materials(see Figure5).Thisfigure shows that the blue solid is insoluble in any solvent,includingMetal–Ligand-Containing Polymers:Terpyridine as...R.Shunmugam,G.J.Gabriel,K.A.Aamer,G.N.TewFigure 6.Picture of a highly crosslinked gel produced by adding Cu(II)ions to a more concentrated polymer solution.The addition of DMF,a good solvent for the apo-and metal-containing polymer,swells but does not dissolve thesample.Figure 5.Schematic representation of two indirect methods that leads to well-characterized block-copolymers.DMF,which usually dissolves both the apo-polymer (no metal ion)and metal-complexed polymer.This insolubility suggests the precipitate is highly crosslinked by the metal–ligand complexes.Hierarchical Assembly Learning how to program self-assembly into functional materials with organization over many different length-scales remains a very important scientific challenge.One such example within block copolymers has been the discovery of ‘‘structure-within-structure’’morphologies (see Figure 7).On one hand,conventional AB diblock copolymers form highly organized microphase separated structures with the characteristic length scale providing the long spacing,which is usually within the 10–100-nm range.On the other hand,organization at a smaller length scale has been achieved using liquid-crystalline (LC)polymers,polyelectrolyte/surfactant complexes,or hydrogen bonded polymer/amphiphile complexes.These materials formorganized nanostructures with a typical length scale of2–6nm.One such example is schematically shown inFigure 6using polystyrene-block-poly(4-vinylpyridine),(PS-b-P4VP),hydrogen bonded to an amphiphile likenonadecylphenol.[71–76]Using these principles,lamellar-within-lamellar,lamellar-within-cylindrical,cylindrical-within-lamellar,spherical-within-lamellar,and lamellar-within-spherical morphologies have been reported.These materials,which take advantage of the pyridine ring in thepoly(vinyl pyridine)block,are not side-chain containingmetal–complexes polymers per say but do utilize supra-molecular interactions that generate a variety of ‘‘order-within-order’’morphologies.Recently,Aamer and Tew proposed that metal–complex containing homopolymers behaved as rigid-rod-like mole-cules due to the increase in persistence length generated by the metal complex.The observed rigidity was proposed to originate from the charged nature of the metal-complex resulting in a ‘‘polyelectrolyte-surfactant-like’’complex (see Figure 7).Control experiments supported the impor-tance of the C 16chain and the bisterpyRu(II)complex,which caused backbone stiffening.One of the key design criteria for this system was the ability to synthesis asymmetric metal complexes (Figure 8).Metal–Ligand-Containing Polymers:Terpyridine as...Figure 7.Schematic representation of lamellar withincylinders.Figure 8.(left)Chemical structure of PHBTA and poly(2-acrylamido-2-methyl-1-propanesulfonate cetyltrimethylammonium salt),PAMPS-CTMA.Each structure is composed from an acrylamide backbone with side-chains containing a charge unit and long hydrophobic alkyl group.(right)Schematic representation of the hexagonal phase adopted byPHBTA.Figure 9.(left)Oriented SAXS pattern leading to characterizationof the ‘‘cylinders in a sea of rods’’morphology.(right)Schematicillustration of the hierarchically ordered ‘‘cylinders in a sea of rods.’’This work was then extended to diblock copolymer architectures,in which one block contains a dense array of metal-complexes,while the other block was based on styrene.This novel architecture lead to hierarchical self-assembly of the p(S-b-HBTA)diblock into‘‘cylinders in a sea of rods’’morphology,which showed nanostructured order on two different length scales of5.7and38nm,as shown in Figure9.The outer shell C16chains of the homopolymer were crystalline in nature,which was retained even in the diblock and star copolymer architectures.This hierarchical ‘‘cylinders in a sea of rods’’morphology is a direct result of the molecular design.Such a structure requires two critical elements to be included in the block architecture.Here, microphase separation into PS and PHBTA domains that pack into hexagonal cylinders(38nm)and additionally the rodlike nature of the constituting elements within the PHBTA block(5.7nm)(Figure9).The ability to organize single molecules into aggregates that then assemble into larger structures is another example of hierarchical organization.The block copolymer shown in Figure10was found to assemble into objects ca. 50nm by light scattering upon the addition of RuCl3.When these objects were cast onto a low energy surface,like gold, they further assembled into circular structures which are always hollow in the middle with diameters of ca.250nm. The rich chemistry of the metal–ligand complex coupled to polymeric architectures will continue to generate interest-ing self-assembled materials(Figure10).ConclusionMetal-containing polymers remain an important compo-nent of modern supramolecular polymer chemistry.The general availability of metal containing polymers will be critical to exploiting their‘‘applications’’.Fortunately, significant synthetic progress in the area of metal-contain-ing polymers has established a robust platform for generating a great variety of materials.However,a greater understanding of the basic metal–ligand binding chemistry remains essential for the development of future materials. In this report,a detailed discussion of the dynamic binding landscape is provided.Hopefully this will stimulate other binding studies with appropriate ligands,metals,and environmental conditions.As interdisciplinary science continues to grow stronger,metal containing polymers are likely to see increased growth and attention from chemists,physicists,engineers,and biologists. Acknowledgements:We thank the ARO Young Investigator and PECASE programs for generous support of this work.G.N.T thanks the ONR Young Investigator,NSF-CAREER,3M Nontenured faculty grant,and Dupont Young Faculty Award programs for support.Received:December8,2009;Revised:February28,2010; DOI:10.1002/marc.200900869Keywords:amphiphile,ATRP,binding constant,polymer,supra-molecular,terpyridine[1]J.-M.Lehn,Supramolecular chemistry-Concepts and prospec-tives,VCH,Weinheim Germany1995.[2]O.Ikkala,G.ten Brinke,Science2002,295,2407.[3]S.I.Stupp,P.V.Braun,Science1997,277,1242.[4]G.M.Whitesides,B.Grzybowski,Science2002,295,2418.[5]E.C.Constable,Adv.Inorg.Chem.1986,30,69.[6]R.Dobrawa,P.Ballester, C.R.Saha-Moller, F.Wurthner,Metal-Containing and Metallosupramolecular Polymers and Materials,(Eds:U.S.Schubert,G.R.Newkome,I.Manners), ACS Symposium Series,Washington,D.C.2006,p.43. [7]B.G.G.Lohmeijer,U.S.Schubert,J.Polym.Sci.,Part A:Polym.Chem.2003,41,1413.[8]S.Schmatloch,A.M.Jvd.Berg,A.S.Alexeev,H.Hofmeier,U.S.Schubert,Macromolecules2003,36,9943.[9]A.E.Martell,R.M.Smith,Critical Stability Constants,PlenumPress,New York1974,p.253.[10]R.Hogg,R.G.Wilkins,mun.1962,341.[11]R.Shunmugam,G.J.Gabriel,C.E.Smith,K.A.Aamer,G.N.Tew,Chem.Eur.J.2008,14,3904.[12]S.C.Yu,C.C.Kwok,W.K.Chan,C.M.Che,Adv.Mater.2003,15,1643.[13]P.R.Andres,H.Hofmeier,U.S.Schubert,in Metal-Containingand Metallosupramolecular Polymers and Materials,(Eds: U.S.Schubert,G.R.Newkome,I.Manners),ACS Symposium Series,Washington,D.C2006,p.141.[14]C.Li,W.Fan,D.A.Straus,B.Lei,S.Asano,D.H.Zhang,J.Han,M.Meyyappan,C.W.Zhou,J.Am.Chem.Soc.2004,126,7750.[15]J.P.Collin,S.Guillerez,J.P.Sauvage,F.Barigelletti,L.Decola,L.Flamigni,V.Balzani,Inorg.Chem.1991,30,4230.[16]J.-P.Sauvage,J.-P.Collin,J.-C.Chambron,S.Guillerez,C.Coudret,V.Baltani,F.Barigelletti,L.D.Cola,L.Flamigni,Chem.Rev.1994,94,993.[17]F.Barigelletti,L.Flamigni,V.Balzani,J.P.Collin,J.P.Sauvage,A.Sour,E.C.Constable,A.Thompson,J.Chem.Soc.Chem.Commun.1993,942.R.Shunmugam,G.J.Gabriel,K.A.Aamer,G.N.Tew Figure10.Chemical structure of block copolymer and its self-assembly in the presence of RuCl3and its AFM image shows theformation of the aggregation upon metal chelation.。