图形的平移与旋转测试B卷
- 格式:doc
- 大小:2.19 MB
- 文档页数:3
图形的平移与旋转1.△ABC各极点的坐标别离为A(-3,5)、B(-4,3)、C(-1,1),将△ABC先向上平移3个单位长度,再向右平移4个单位长度,取得△DEF。
(1)别离写出点D、E、F的坐标;(2)若是将△DEF看成是由△ABC通过一次平移取得的,计算出平移距离。
2.如下图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离是多少?3.通过平移把点A(1,3)移到点B(3,0),按一样的平移方式把点(2,3)移到点P,那么点P的坐标是多少?4.五边形ABCDE的极点坐标别离为A(0,6)、B(-3,-3)、C(0,-3)、D(2,0)、E(3,3),将五边形ABCDE通过一次平移后取得五边形FGHIJ,其中极点A的对应点是F(-3,10)。
(1)写出其他对应点的坐标;(2)请指出这一平移的平移距离。
5.如下图,两个边长为a的正方形,让一个正方形的极点在另一个正方形的中a2,现把其中一个正方形固定不动,另一个正心上,现在重叠部份的面积为14方形绕中心旋转,那么在旋转进程中,两个正方形重叠部份的面积是不是发生转变?什么缘故?6.如下图,设D是△ABC中BC边的中点,P是AB边上一点,Q是AC边上一点,且PD⊥DQ,试说明:BP+CQ>PQ7.如下图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后取得△ACE,那么线段DE的长度是多少?8.如下图,将周长是8的△ABC沿BC方向平移1个单位长度取得△DEF,那么四边形ABFD的周长是多少?9.如下图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标别离为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积是多少?10.如下图,将等边△ABC沿BC方向平移取得△A1B1C1,假设BC=3,S△PB1C=√3,那的长度是多少?么BB1。
第3章图形的平移与旋转B卷考试时间:90分钟;总分:120分一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共30分)1.以原点为中心,将点P(3,4)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形中,既是轴对称图形又是中心对称图形的是(). A.B.C.D.3.下列雪花的图案中,包含了轴对称、旋转两种变换的有( )A.1个B.2个C.3个D.4个4.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x, y-2) B.(-x, y+2) C.(-x+2, -y) D.(-x+2, y+2)4题图5题图6题图5.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(1,﹣2)6.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°7.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B 之间的距离为()A.12 B.6 C.D.7题图8题图8.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)9.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形得到△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)9题图 10题图10.如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D 的坐标为( )A .(10,3)B .(3,10)-C .(10,3)-)D .(3,10)-二、填空题(将正确答案填在题中横线上,每题3分,共24分)11.在平面直角坐标系中,将点A (3,2)沿y 轴向下平移4个单位长度,可以得到对应点A ′的坐标是 . 12.平面直角坐标系中,点(2020, -2021)关于原点O 对称的点的坐标是_____. 13.如图,O 是正六边形ABCDEF 的中心,图形中可由△OBC 绕点O 逆时针旋转120°得到的三角形是________.13题图 14题图14.菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标为_____.15.如图,将△ABC 绕点B 顺时针旋转得到△A'BC',使点A'落在AC 上,已15题图16题图16.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.∠=︒,17.如图,直线a与直线b交于点A,与直线c交于点B,1120∠=︒,240若使直线b与直线c平行,则可将直线b绕点A逆时针旋转________°17题图18题图18.如图,点A在∠MON的平分线上,AB⊥OM于点B.将△OAB沿射线ON 的方向平移到点B的对应点B′落在射线OA上.若OA=5,AB=3,则△OAB 平移的距离为.三、解答题(本题共有8小题,共66分)19.(本题8分)如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1).如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A′、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B′、C′的坐标.(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.19题图20.(本题8分)在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(0,0),B(3,3),C(4,1).(1)画出△ABC及△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)分别写出B1和C1的坐标.20题图21.(本题8分)如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠F AC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;21题图22.(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格格点上.(1)△ABC向下平移5个单位长度后的△A1B1C1,请直接写出点1B的坐标.(2)作出△ABC关于y轴对称的△A2B2C2并请直接写出点2B的坐标.22题图23.(本题8分)如图,△ABC的顶点均在正方形的格点上.(1)画出△ABC关于直线l的对称图形△A1B1C1;(2)画出△ABC向左平移4个单位,再向下平移5个单位后得到的△A2B2C2;(3)画出将△ABC绕点A逆时针旋转90°后得到的△A3B3C3.23题图24.(本题8分)如图,由4个全等的正方形组成L形图案,请按下列要求画图:(1)在图①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图②中添加1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图③中改变1个正方形的位置,从而得到一个新图形,使它既成中心对称图形,又成轴对称图形.25.(本题8分)把我们常用的一副三角尺按照如图方式摆放:(1)如图1,两个三角尺的直角边OA、OD摆放在同一直线上,①易知AB//CD,理由是____________________________;(2)如图2,如果把图1所示的△OAB以O为中心顺时针旋转得到∠OA'B',当∠AOA'为多少度时,OB'平分∠COD;(3)如图3,两个三角尺的直角边OA、OD摆放在同一直线上,另一条直角边OB、OC也在同一条直线上,如果把△OAB以O为中心顺时针旋转一周,当旋转多少度时,两条斜边AB∥CD,请直接写出答案26.(本题10分)两块等腰直角三角形纸片AOB和COD按图①所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O 逆时针旋转α(0°<α<90°)角度,如图②所示.(1)在图②中,求证:AC=BD,且AC⊥BD;(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.第3章图形的平移与旋转B卷参考答案1.B. 解析:如图,点P(3,4)按逆时针方向旋转90°,得到的点Q所在的象限为第二象限,故选B.2.D. 解析:A是轴对称图形,不是中心对称图形,故错误;B既不是轴对称图形,不是中心对称图形,故错误;C不是轴对称图形,是中心对称图形,故错误;D既是轴对称图形,又是中心对称图形,故正确;故选D.3.C.解析:前三个图形均经过轴对称、旋转变换,第四个图形只经过旋转变换,故选3个,C.4.B. 解析:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.5.D. 解析:根据题意得B′(1,2),则B′(1,2)关于x轴对称的点的坐标是(1,-2),故选D.6.B. 解析:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选B.7.D. 解析:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.8.C. 解析:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以点B的对应点B'的坐标为(0+1,),即(1,),故选:C.9.A. 解析:如图所示:顶点A 2的坐标是(4,-3).故选A .10.D. 解析:(3,4)A -,(3,4)B ,336AB ∴=+=,∵四边形ABCD 为正方形,∴AD =AB =6,∴D(-3,10),∵2022=4×505+2,∴每4次一个循环,第2022次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°, ∴点D 的坐标为(3, -10).故选D .11.(3,﹣2) . 解析:由平移规律可知:A′的横坐标为3;纵坐标为2﹣4=﹣2;∴A′的坐标为(3,﹣2).故答案为:(3,﹣2).12.(-2020, 2021) . 解析:点(2020, -2021)关于原点O 对称的点的坐标是:(-2020, 2021).故答案是:(-2020, 2021) .13.△ODE . 解析:由正六边形的性质易得∠BOD =∠COE =120°,根据旋转的性质,可得△OBC 绕点O 逆时针旋转120°得到的三角形是△ODE ,故答案为:△ODE .14.(3,﹣1). 解析:因为OACB 是菱形,点C 的坐标是(6,0),所以对角线互相垂直平分,则点B 的横坐标为3, 因为点A 的纵坐标为1,所以点B 的纵坐标为-1,故点B (3,-1)15.70. 解析:∵AC //BC′,∠C =40°,∴∠CBC′=∠ABA′=40°,∵BA =BA′,∴∠A =∠AA′B =70°,故答案为:70.16.15°.解析:∵将△ABC 绕点A 逆时针旋转150°,得到△ADE ,∴∠BAD =150°,AD =AB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是顶角为150°的等腰三角形,∴∠B =∠BDA ,∴∠B =(180°﹣∠BAD )=15°,故答案为:15°.17.20. 解析:如图:∵1120∠=︒,∴318012060∠=︒-︒=︒∵240∠=︒,∴当3240∠=∠=︒时,直线b 与直线c 平行∴可将直线b 绕点A 逆时针旋转604020︒-︒=︒.故答案是:2018.4. 解析:∵AB ⊥OM ,∴∠OBA =90°,∴OB 2+AB 2=OA 2∵OA =5,AB =3,∴OB =4,∵平移,∴OO′∥BB′,∴∠BB′O =∠B′OO′,∵B′在∠MON 的平分线上,∴∠BOB′=∠B′OO′,∴∠BOB′ =∠BB′O ,∴BB′ =BO =4,故答案为:4.19.解:(1))根据题意可得:()'2,1A 、()'0,1B -、()'1,1C -;(2)如图所示,△A′B′C′即为所求,S △A′B′C′=12×1×2=1. 20.解:(1)如图所示,△ABC 和△AB 1C 1即为所求.(2)B 1(-3,3),C 1(-1,4).21. 解:(1)∵∠B =∠E ,AB =AE ,BC =EF ,∴△ABC ≌△AEF ,∴∠C =∠F ,∠BAC =∠EAF ,∴∠BAC ﹣∠P AF =∠EAF ﹣∠P AF ,∴∠BAE =∠CAF =25°;(2)通过观察可知△ABC 绕点A 顺时针旋转25°,可以得到△AEF ;(3)由(1)知∠C =∠F =57°,∠BAE =∠CAF =25°,∴∠AMB =∠C +∠CAF =57°+25°=82°.22.解:(1)由题意及图像可得A (-1,4), B (-1,1), C (-3,1),把△ABC 向下平移5个单位长度后的△A 1B 1C 1,如图所示:∴()11,4B --;(2)如图所示:∴()21,1B .23.解:(1)△A 1B 1C 1如图所示;(2)如图所示,222A B C △即为所求作的图形;(3)如图所示,33AB C 即为所求作的图形;24.解:(1)答案不唯一. 如图a,图b,图c所示.(2)如图d所示.(3)答案不唯一.如图e.图f所示.25.解:(1)①∵∠BAO=∠CDO=90°,∴∠BAO+∠CDO=180°,∴AB∥CD(同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;②∵∠AOB=45°,∠COD=60°,∴∠BOC=75°;(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠COB'=30°,∴∠COA'=∠A'OB'-∠COB'=15°,∴∠A'OB=∠COB-∠COA'=60°,∴∠AOA'=∠AOB+∠A'OB=105°;(3)当A'B'与OD相交于点E时,如图1,∵A'B'∥CD ,∴∠D=∠A'EO =60°,∵∠A'EO =∠B'+∠EOB',∴∠EOB'=60°-45°=15°,∴∠BOB'=∠COD +∠EOB'=105°;当A'B'与AO 相交于点F 时,如图2,∵A'B'∥CD ,∴∠D =∠A'FO =60°,∴∠A'OF =180°-∠A'FO -∠A'=180°-60°-45°=75°,∴旋转的角度=360°-75°=285°,综上所述:旋转的角度为105°或285°.26. (1)证明:如图,延长BD 交OA 于点G ,交AC 于点E . ∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .在△AOC 和△BOD 中,⎩⎨⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,∴△AOC ≌△BOD ,∴AC =BD ,∠CAO =∠DBO .又∵∠DBO +∠OGB =90°,∠OGB =∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(2)解:由(1)可知AC=BD,AC⊥BD.∵BD,CD在同一直线上,∴△ABC是直角三角形.由勾股定理得BC=AB2-AC2=252-72=24.∴CD=BC-BD=BC-AC=17.。
第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。
初中数学图形的平移,对称与旋转的经典测试题附答案一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.a a>,那么3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.13.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .5C .6D .26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==,AD DC25Q,2DE=∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC22'+22BC BD+.故选B.3419.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.。
北八上第三章《图形的平移与旋转》水平测试(B )一、选择题(每题2分,共24分)1.将长度为5cm 的线段向上平移10cm 所得线段长度是( )A .10cmB .5cmC .0cmD .无法确定2.在以下现象:① 温度计中,液柱的上升或下降;② 打气筒打气时,活塞的运动;③ 钟摆的摆动;④ 传送带上,瓶装饮料的移动.其中属于平移的是( )A .① ②B .①③C .②③D .② ④3.如果同一平面的两个图形通过平移,不论其起始位置如何,总能完全重合,则这两个图形是( )A .两个点B .两个半径相等的圆C .两个点或两个半径相等的圆D .两个全等的多边形4.如图1所示的四个图形中,不能通过基本图形平移得到的是( )5.将如图2的图形按顺时针方向旋转90°后得到如图3所示的图形是( )6.如图4所示的图形中,是由(1)仅通过平移得到的是( )7.如图5可以看作正△OAB 绕点O 通过( )旋转所得到的A .3次B .4次C .5次D .6次8.如图6,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A ′是对称点B .BO =B ′OC .AB △A ′B ′D .△ACB =△C ′A ′B ′9,如图7,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A .30°B .60°C .90°D .120°A B C D 图1 A B C D 图3 图2 图5 图6 O C B A C ′ A ′ B ′ 图8A E D C FB 图7 (1) A BCD 图410.将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转的度是( )A .顺时针方向50°B .逆时针方向50°C .顺时针方向190°D .逆时针方向190°11.时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是( )A .此时分针指向的数字为3B .此时分针指向的数字为6C .此时分针指向的数字为4D .分针转动3,但时针却未改变12.如图8,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连结EF ,若△BEC =60°,则△EFD 的度数为( )A .10°B .15°C .20°D .25°二、填空题(每题2分,共24分)13.在平面内,将一个图形沿某个方向移动一定的距离的图形运动叫做 . 14.平移不改变图形的、 和 ,只改变图形的 .15.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印 (填能或不能)通过平移与右手手印完全重合.16.正方形被其对角线分得的四个全等的等腰直角三角形, (填能或不能)通过平移完全重合在一起.17.图形的平移、旋转、轴对称中,其相同的性质是_________.18.△ABC 平移到△A ′B ′C ′,那么S △ABC ___S △A ′B ′C ′.19.如图9,若线段AB 是由线段CD 平移面得到的,则线段AB 与CD 的关系是___且___.20.如图10所示,图形①经过______变化成图形②,图形②经过_____变化成图形③.21.甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.22.边长为4cm 的正方形ABCD 绕它的顶点A 旋转180°,顶点B 所经过的路线长为______cm .23.9点30分,时钟的时针和分针的夹角是______.24.如果图形b 可看作是图形a 经过平移得到的,也可看作是图形a 经过旋转得到的,试写出一个适合题意的图形a 为_______(用图或用文字叙述均可).三、解答题(共52分)25.用平移的知识分析如图11所示的两个图案的形成过程.① ② 图11B ACD 图9① ② ③ 图10 图1226.怎样对矩形进行分割和平移,使它成为菱形,请试一试.27.如图12是日本“三菱”汽车的标志,它可以看作是由什么“基本图案”通过怎样旋转得到的?每次旋转了多少度?28.我们知道,对一个图形进行平移,可按不同方向、移不同距离.现有一个边长为a的正方形,怎样平移,连续4次后可得正方形个数能超过15个?请画出草图,并说明平移的方向和距离.29.如图13,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A 和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长,就是A、B的距离,为什么?线段DE可以看作哪条线段平移或旋转得到.30.画线段AB,在线段AB外取一点O,作出线段AB绕点O旋转180°后所得的线段A′B′.请指出AB和A′B′的关系,并说明你的理由.31.请你以“植树造林”为题,以等腰三角形为“基本图形”利用平移设计一组有意义的图案,完成后与同学进行交流.32.由一个半圆(包含半圆所对的直径)和一个长方形组成一个“蘑菇”图形,将此图形作为“基本图形”经过两次平移后得到一组图案.这样的图案是否可作为公园中“凉亭”的标志呢?请你设计一下这个标志.33.欣赏如图14的图案,并用两种方法分析图案的形成过程.34.如图15,已知Rt △ABC 中,∠C =90°,BC =4,AC =4,现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置.(1)若平移距离为3,求△ABC 与△A ′B ′C ′的重叠部分的面积;(2)若平移距离为x (0≤x ≤4),求△ABC 与△△A ′B ′C ′的重叠部分的面积y ,并写出y 与x 的关系式.35.如图16,△ABC 的∠BAC =120°,AB =AC ,∠DAE =60°,把△AEC 绕着点A 旋转到△ABM 的位置.(1)图中有哪些等角?有哪些等线段?(2)图中有哪些全等三角形?试说明理由.图15 C B图13 D E A 图16 图14参考答案:一、1.B;2.D;3.C;4.D;5.C;6.C;7.D;8.D;9.C;10.A;11.C;12.B.二、13.平移;14.形状、大小、定向、位置;15.不能;16.不能;17.图形的形状、大小不变,只改变图形的位置;18.等于;19.平行、相等;20.平移、旋转;21.右、2;22.4π;23.105°;24.略,答案不唯一,符合题意即可.三、25.①顶部由左侧画着对角线的矩形连续两次向右平移得到;底部由左侧矩形连续多次向右平移而来,②可以有多种理解,如先由正六边形剪下其六分之一并平移到相对位置,得基本图形;再由其连续向左平移成一行,最后由这行图形向下平移,直至得到整个图案;26.如图所示:27.可以看作是由一个菱形通过两次旋转得到的,每次旋转角度分别是120°、240°.28.如图,沿对角线方向,每次平移距离为对角线长的;29.△ABC≌△DCE,AB=DE,线段DE可看作AB绕点O旋转180°得到;30.AB∥A′B′,且AB=A′B′,△AOB≌△A′OB′;31.略;32.略;33.方法一:图案可以看作由四个完全相同的图形组成.将其中的一个图形绕中心连续旋转3次,每次旋转角度分别为90°、180°、270°,就可以得到这个图案.方法二:图案可以看作由两个完全相同的图形组成,将其中的一个图形绕中心旋转180°,就可以得到这个图案.34.(1)由题意CC′=3,BB′=3,所以BC′=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为12×1×1=12,(2)y=12(4-AD=∠MBD=60°,∠AEC=∠AMB,∠BAC=∠MAE,∠ADM=∠ADE,∠AMD=∠AED;AE=AM,EC=BM,DM=DE,(2)△AEC≌△AMB,△ADE≌△ADM.由AC=AB,AE=AM,EC=MB得△AEC≌△AMB,由AE=AM,∠DAE=∠DAM=60°,AD=AD得△ADE≌△ADM.。
第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。
三年级上册数学单元测试-6.平移、旋转和对称轴一、单选题1.左图是经过()得到的。
A. 平移B. 旋转C. 既平移又旋转2.下图展开后的图形是()A. B. C.3.如图中可以通过平移图A得到的图形有( )个A. 2B. 3C. 44.下面的图形沿着一条直线折叠后不能完全重合的是( )。
A. B. C.5.左图是图形经过( )得到的。
A. 平移B. 旋转C. 既平移又旋转D. 无法确定6.长方形ABCD,如图,经过平移后,点A平移了4厘米,点B平移了()厘米.A. 4B. 6C. 8D. 147.将一张正方形的纸连续对折两次(有不同的折法),并在折后的纸中央打一个圆孔,再将纸展开,得到下面不同的图形。
请为下面的折法选择展开后的图形:展开后是()。
A. B. C. D.二、判断题8.旋转改变了图形的大小和形状。
9.一棵小树被扶种好,这棵小树一定绕树脚逆时针方向旋转了90度。
10.将等边三角形绕着中心点旋转120°后,不能与原来的图形重合。
11.火箭升空,是旋转现象。
12.公共汽车出站是平移现象,开冰箱门是旋转现象。
三、填空题13.电风扇扇叶的运动是________现象;拉抽屉现象是________现象.(填“旋转”或者“平移”)14.如图,指针从A开始,顺时针旋转了90°到________点,逆时针旋转了90°到________点;要从A旋转到C,可以按________时针方向旋转________°,也可以按________时针方向旋转________°。
15.汽车沿着直线行驶时,车轮做________运动,车身做________运动.16.电梯的升降属于________现象,汽车行驶时的车轮转动属于________现象.17.平移和旋转都是物体的运动方式,如________、________是平移现象,________、________是旋转现象。
一、选择题1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列图形中,既是中心对称又是轴对称图形的是( )A .B .C .D .3.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾4.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.下列四种多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的个数为( )A .1B .2C .3D .47.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个8.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 9.下列标志中是中心对称图形的是( )A .B .C .D . 10.如图所示图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.已知点P(-3,2)关于原点的对称点是_______.14.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值为______. 15.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.16.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,将周长为8个单位的三角形ABC 沿BC 方向平移2个单位得到三角形DEF ,则四边形ABFD 的周长为_______个单位.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.23.如图,已知等边三角形,ABC O 为ABC ∆内一点,连接,,OA OB OC ,将 BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若5OA =,6OB =,OC =,求 OCM ∠的度数.24.综合与探究:如图,在ABC ,AB AC =,CAB α∠=,(1)操作与证明:如图①,点D 为边BC 上一动点.连接AD ,将线段AD 绕点A 逆时针旋转角度α至AE 的位置,连接DE ,CE .求证:BD CE =;(2)探究与发现:如图②,当90α=︒时,点D 变为BC 延长线上一动点,连接AD ,将线段AD 绕点A 按照逆时针旋转角度α至AE 位置,连接DE ,CE .可以发现:线段BD 和CE 的数量关系是______;(3)判断与思考:判断(2)中的线段BD 和CE 的位置关系,并说明理由.25.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .26.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形.D、是轴对称图形,也是中心对称图形;故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,3.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度270°,作出点P的对应点P′,可得所求点的坐标.【详解】解:设P(x,y)在第一象限,作PA⊥x轴于点A.作P'B⊥x轴于点B.∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】①正三角形是轴对称图形不是中心对称图形;②正方形即是轴对称图形又是中心对称图形;③正五边形是轴对称图形不是中心对称图形;④正六边形即是轴对称图形又是中心对称图形,故选:B.【点睛】本题考查了中心对称图形和轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.7.B解析:B【分析】根据中心对称图形的概念求解.【详解】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.A解析:A【分析】根据中心对称图形与轴对称图形的概念判断即可.【详解】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC的度数是解题的关键.二、填空题13.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.14.5【分析】根据关于原点对称的点的横坐标互为相反数纵坐标互为相反数可得答案【详解】解:∵点P(m-15)与点Q(32-n)关于原点对称∴m-1=-32-n=-5解得:m=-2n=7则m+n=-2+7=解析:5【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故答案为:5.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.15.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.16.30【分析】根据旋转性质及直角三角形两锐角互余可得△E′CB是等边三角形从而得出∠ACE′的度数再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE´=解析:30【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有30°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.17.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.12【分析】根据平移前后图形的大小不发生改变可知AC=DF题意中平移的距离为2个单位长度即AD=CF=2由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解【详解】∵采用平解析:12【分析】根据平移前后图形的大小不发生改变,可知AC=DF,题意中平移的距离为2个单位长度即AD=CF=2,由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解.【详解】∵采用平移得到的△DEF,∴AC=DF∵平移距离为2个单位长度∴AD=CF=2∵△ABC周长为8个单位长度∴AB+BC+AC=AB+BC+DF=8∴四边形ABFD的周长为AB+BF+FD+AD=(AB+BC+DF)+AD+CF=8+2+2=12.故答案为:12.【点睛】考查平移的性质以及平移的距离的知识点,学生掌握平移不变性是解题的关键,并准确表示出平移的距离才可解出题目.20.-1【分析】由A(32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A(32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,(3,2).【分析】(1)利用关于原点对称的点的坐标特征写出A '、B '、C '点的坐标,然后描点即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A ''、B ''、C '',根据图象可得点B ''的坐标.【详解】解:(1)如图,A B C '''为所作;(2)如图,A B C ''''''△为所作,点B ''的坐标为(3,2).故答案为(3,2).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(1)作图见解析,(2)52【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '.【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC =+=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=.【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理. 23.(1)见解析;(2)90°【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证BCM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC 是直角三角形,进而可求出 OCM ∠的度数.【详解】解:(1) 依题意补全图形、如图所示:(2)如图示,连接OMABC ∆为等边三角形、60ABC ︒∴∠=BAO ∆旋转得到BCM ∆,5OA 6OB =, 5MC OA ,6MBOB , 60OBM ABC ︒∠=∠= OBM ∴∆为等边三角形、 6OM OB在OMC ∆中,1OC =,5MC = 6OM =222156 222OC MC OM ∴==90OCM ︒∴∠=,【点睛】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,灵活运用所学知识解决问题是解题的关键.24.(1)见解析;(2)BD CE =;(3)BD CE ⊥,理由见解析【分析】(1)由旋转的性质得AD AE =,DAE CAB ∠=∠,从而证明BAD CAE ≌,即可得到结论;(2)同第(1)小题的方法,证明BAD CAE ≌,即可得到结论;(3)先证明BAD CAE ≌,从而得45B ACE ∠=∠=︒,进而即可得到结论.【详解】(1)证明:由旋转可知,AD AE =,DAE CAB α∠=∠=∴CAB CAD DAE CAD ∠-∠=∠-∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =(2)由旋转可知,AD AE =,DAE CAB α∠=∠=,∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =,故答案是:BD CE =;(3)BD CE ⊥理由如下:∵90CAB α∠==︒,AB AC =.∴45B ACB ∠=∠=︒由旋转,可得AD AE =,90DAE CAB ∠=∠=︒∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴45B ACE ∠=∠=︒∴90BCE ACB ACE ∠=∠+∠=︒∴BD CE ⊥【点睛】本题主要考查全等三角形的判定和性质,等腰三角形的性质,掌握SAS 证明三角形全等,是解题的关键.25.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.26.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC的面积;(2)依据旋转的性质,找出A、B、C的对应点A2、B2、C2,然后用线段顺次连接即可得到△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2.【详解】解:(1)△ABC的面积是2×4-12×2×2-12×4×1-12×1×2=3,故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
北师大版八年级数学下册第三章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是()A B C D2.观察下列四个图形,中心对称图形是()A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是()A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的()A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是()A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为()A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有()A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b的值为( )A .-2B .1C .32D .2 第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为 .第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是 .13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′ .14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为 .15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号: .第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是 cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为.三、解答题(共66分)19.(6分)将已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a=-1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位长度,再向上平移1个单位长度后得到点N,当点N 在第三象限时,求a的取值范围.23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a-b)与点Q(2a-9,2b-9)也是通过上述变换得到的对应点,求a,b的值.24.(12分)(鼓楼区期末)如图,在Rt△ABC中,∠C=90°,∠CAB=35°,BC=7.线段AD由线段AC绕点A按逆时针方向旋转125°得到,△EFG由△ABC沿CB 方向平移得到,且直线EF过点 D.(1)求∠DAE的大小;(2)求DE的长.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是(C)A B C D2.观察下列四个图形,中心对称图形是(C)A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是(C)A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的(D)A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是(D)A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形(C)A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点 D.如果∠D=40°,则∠BAC的度数为(B)A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为(C)A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有 (B )A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b 的值为 (D ) A .-2 B .1 C .32D .2第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为B 1C 1.第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是(-2,1).13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′(2,0).14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为72度. 15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号:②③.第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是16cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是2 2 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为30°或90°或150°.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案 C C C D D C B C B D二、填空题(每小题3分,共24分)得分:________11.__B1C1__ 12.__(-2,1)__13.__(2,0)__ 14.__72度__15.__②③__ 16.__16__17.__2 2 __ 18.__30°或90°或150°__三、解答题(共66分)19.(6分)已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.解:(1)点A1和点B为对应点,∴对称中心为A1B的中点,∴对称中心的坐标为(0,2.5).(2)在△ABC中,AB=2,C到AB的距离为 3 .即点C到y轴的距离为 3 ,∴点C的坐标为(- 3 ,3),点C1的坐标为( 3 ,2).22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a =-1时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,当点N 在第三象限时,求a 的取值范围.解:(1)当a =-1时,点M 的坐标为(-1,2), 所以M 在第二象限,所以应填“二”.(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,点M 的坐标为(a ,-2a),所以N 点的坐标为 (a -2,-2a +1). 因为N 点在第三象限,所以⎩⎪⎨⎪⎧a -2<0,-2a +1<0,解得12<a<2,所以a 的取值范围为12 <a<2.23.(10分)如图,三角形DEF 是三角形ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a +3b ,4a -b)与点Q(2a -9,2b -9)也是通过上述变换得到的对应点,求a ,b 的值.解:(1)点A 的坐标为(2,3),点D 的坐标为(-2,-3),点B 的坐标为(1,2),点E 的坐标为(-1,-2),点C 的坐标为(3,1),点F 的坐标为(-3,-1),对应点的横、纵坐标分别互为相反数.(2)由(1),得⎩⎪⎨⎪⎧a +3b +2a -9=0,4a -b +2b -9=0, 解得⎩⎪⎨⎪⎧a =2,b =1,答:a 的值为2,b 的值为1.24.(12分)(鼓楼区期末)如图,在Rt △ABC 中,∠C =90°,∠CAB =35°,BC =7.线段AD 由线段AC 绕点A 按逆时针方向旋转125°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点 D. (1)求∠DAE 的大小; (2)求DE 的长.解:(1)∵△EFG 是 由△ABC 沿CB 方向 平移得到,∴AE∥CF,∴∠EAC+∠C=180°.∵∠C=90°,∴∠EAC=90°.又线段AD是由线段AC绕点A按逆时针方向旋转125°得到,即∠DAC=125°,∴∠DAE=35°.(2)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,EF∥AB,∴∠AED=∠F=∠ABC.又∵∠DAE=∠BAC=35°,AD=AC,∴△ADE≌△ACB(AAS),∴DE=BC=7.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴CO=CD,∠OCD=60°,∴△COD 是等边三角形.(2)解:当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°, ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 则△AOD 是直角三角形.(3)解:①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α, ∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO) =180°-(190°-α+α-60°) =50°,∴α-60°=50°, ∴α=110°;③要使OD =AD.需∠OAD =∠AOD.∵∠AOD =360°-110°-60°-α=190°-α, ∠OAD =180°-(α-60°)2 =120°-α2,∴190°-α=120°-α2 ,解得α=140°.综上所述,当α的度数为125°,110°或140°时, △AOD 是等腰三角形.。
鲁教五四新版八年级数学上册《第4章图形的平移和旋转》2019年单元测试卷一.[复习前测]1.下列图形中是中心对称图形的是( )A.B.C.D.2.已知如图所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )A.B.C.D.3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )A.B.C.D.4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B.①④C.②③D.②④5.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )A. B. C. D.6.如图,△ABC经过怎样的平移得到△DEF( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位7.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是( )A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB8.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.9.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A 落在F处,折痕为MN,则线段CN的长是( )A.2 B.3 C.4 D.510.下列图形中是轴对称图形的是( )A.B.C.D.11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A.正三角形 B.正方形C.正五边形 D.正六边形12.下列图形中,既是轴对称图形又是中心对称图形的是( )A.菱形 B.梯形 C.正三角形 D.正五边形13.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )A.①⑤B.②④C.③⑤D.②⑤14.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )A.六边形B.八边形C.十二边形 D.十六边形15.下列图形中,既是轴对称图形,又是中心对称的是( )A.B.C.D.16.如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( )A.60°B.67.5° C.72°D.75°17.下列图案中是轴对称图形的是( )A.2008年北京B.2004年雅典C.1988年汉城D.1980年莫斯科18.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.①②B.①③C.②③D.①②③19.如图是用纸折叠成的生活图案,其中不是轴对称图形的是( )A.信封 B.飞机 C.裤子 D.衬衣20.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为__________.21.如图图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个22.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移23.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A.B.C.D.二、解答题(共3小题,满分0分)24.如图,镜子中号码的实际号码是__________.25.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是__________.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.鲁教五四新版八年级数学上册《第4章图形的平移和旋转》2019年单元测试卷一.[复习前测]1.下列图形中是中心对称图形的是( )A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义进行解答,找到图形的对称中心.【解答】解:A、不是中心对称图形,故本选项错误,B、为轴对称图形,而不是中心对称图形,故本选项错误,C、为轴对称图形,而不是中心对称图形,故本选项错误,D、为中心对称图形,故本选项正确.故选D.【点评】本题主要考查对中心对称图形的定义的掌握,解题的关键是看那个图形能够找到对称中心,是否符合中心对称图形的定义.2.已知如图所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的性质和扑克的花色特点解答.【解答】解:B、C、D中,红桃5,黑桃5,和梅花5,旋转180°后,新图形中间的桃心将有变化,故B、C、D错误;只有A没有变化,说明旋转的是方块5.故选:A.【点评】本题考查中心对称图形的定义.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念和各图的特点求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.满足条件的是①③,故选A.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故错误;B、不是中心对称图形.故错误;C、是中心对称图形.故正确;D、不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.如图,△ABC经过怎样的平移得到△DEF( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位【考点】平移的性质.【专题】压轴题.【分析】根据平移的性质可知,图中DE与AB是对应线段,DE是AB向右平移4个单位,再向上平移2个单位得到的.【解答】解:由题意可知把△ABC向右平移4个单位,再向上平移2个单位得到△DEF.故选C.【点评】本题主要考查了平移的性质,观察图象,分析对应线段作答.7.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是( )A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB【考点】梯形.【专题】压轴题.【分析】利用已知条件,对四个选逐个验证,即可得到答案.【解答】解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.【点评】要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.8.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A 落在F处,折痕为MN,则线段CN的长是( )A.2 B.3 C.4 D.5【考点】翻折变换(折叠问题).【专题】压轴题;数形结合.【分析】根据△CEN是直角三角形利用勾股定理求解即可.【解答】解:由折叠可得DN=EN,设CN=x,则EN=8﹣x,∵CN2+CE2=EN2,∴x2+42=(8﹣x)2,解得x=3.故选B.【点评】考查折叠问题;找到相应的直角三角形利用勾股定理求解是解决本题的关键.10.下列图形中是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A.正三角形 B.正方形C.正五边形 D.正六边形【考点】剪纸问题.【专题】操作型.【分析】先求出∠O=60°,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解.【解答】解:∵平角∠AOB三等分,∴∠O=60°,∵90°﹣60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形,再沿另一折痕展开得到有一个角是30°的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形.故选:A.【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.12.下列图形中,既是轴对称图形又是中心对称图形的是( )A.菱形 B.梯形 C.正三角形 D.正五边形【考点】轴对称图形;中心对称图形.【分析】关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【解答】解:A是轴对称图形,也是中心对称图形,符合题意;B、C、D都是轴对称图形,不是中心对称图形,不符合题意.故选A.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图形重合.13.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )A.①⑤B.②④C.③⑤D.②⑤【考点】认识平面图形.【分析】根据分割与组合的原理对图形进行分析即解.【解答】解:分析原图可得:原图由②⑤两种图案组成.故选:D.【点评】此题考查了平面图形的分割与组成,主要培养学生的观察能力和空间想象能力.14.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )A.六边形B.八边形C.十二边形 D.十六边形【考点】剪纸问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【解答】解:此题需动手操作,可以通过折叠再减去4个重合,得出是八边形.故选:B.【点评】本题主要考查了与剪纸相关的知识;动手操作的能力是近几年常考的内容,要掌握熟练.15.下列图形中,既是轴对称图形,又是中心对称的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.16.如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( )A.60°B.67.5° C.72°D.75°【考点】翻折变换(折叠问题);三角形内角和定理;三角形的外角性质.【专题】压轴题;操作型.【分析】折叠是一种对称变换,它属于轴对称,根据轴对称的性质,可利用角度的关系求解.【解答】解:第一次折叠后,∠EAD=45°,∠AEC=135°;第二次折叠后,∠AEF=67.5°,∠FAE=45°;故由三角形内角和定理知,∠AFE=67.5度.故选B.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.17.下列图案中是轴对称图形的是( )A.2008年北京B.2004年雅典C.1988年汉城D.1980年莫斯科【考点】轴对称图形.【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.结合定义可得答案.【解答】解:结合定义可得,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.故选D.【点评】本题涉及轴对称图形的相关知识,难度一般.18.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.①②B.①③C.②③D.①②③【考点】中心对称图形;轴对称图形;生活中的旋转现象.【分析】依据轴对称图形与中心对称的概念即可解答.【解答】解:②不是中心对称图形,是旋转对称图形;④是轴对称图形;既是轴对称图形,又是中心对称图形的只有①③.故选:B.【点评】对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.19.如图是用纸折叠成的生活图案,其中不是轴对称图形的是( )A.信封 B.飞机 C.裤子 D.衬衣【考点】轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,即可判断出.【解答】解:∵A,信封:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;B:飞机:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;C.裤子:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了轴对称图形的定义,根据定义得出图形形状是解决问题的关键.20.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.21.如图图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个、第三个图形既是轴对称图形又是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.22.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移【考点】生活中的旋转现象.【分析】根据对称和旋转定义来判断.【解答】解:根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.【点评】考查学生对对称和旋转的理解能力.要理解:“对镜贴花黄”是指人和镜像的对称关系;“坐地日行八万里”是指人绕地心旋转.23.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A.B.C.D.【考点】剪纸问题;等腰直角三角形.【专题】压轴题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【解答】解:拿一张纸具体剪一剪,结果为A.故选A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象,哪一个平面展开图对面图案都相同.二、解答题(共3小题,满分0分)24.如图,镜子中号码的实际号码是3265.【考点】镜面对称.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.25.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是矩形、圆.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)结合直角坐标系可直接写出A、B两点的坐标.(2)找到A、B、C三点关于y轴的对称点,然后顺次连接可得出△A1B1C1;(3)旋转180°也即是中心对称,找到A、B、C三点关于C的中心对称点,顺次连接即可.【解答】解:(1)A(﹣1,2)B(﹣3,1);(2)画图答案如图所示:(3)画图答案如图所示:【点评】此题考查了旋转作图及中心对称的知识,解答本题的关键是根据旋转的三要素,中心对称的性质,得到各点的对应点,难度一般.。
图
1 E F
C ′
《平移与旋转》测试(B )
一、选择题(每小题3分,共30分)
1.如图1,将△ABC 绕着点C 按顺时针方向旋转
|A 点落在
A |位置,若AC ⊥A |
B |,则∠BA
C 的度数是(
)
A .50°
B .60°
C .70°
D .80
°
2
.如图2,面积为12cm
2
的△
ABC
沿BC BC 长的两倍,则图中的四边形ACED 的面积为( )
A .24cm 2
B .36cm 2
C .48cm 2
D .无法确定
3.下列各组中的两个图形,其中一个不能由另一个通过平移或旋转直接得到,而需要旋转后平移(或平移后旋转)才能得到的是( )
A .
B .
C .
D .
4.4根火柴棒形成如图3所示的象形“口”字,平移火柴棒后,原图形能变成的象形汉字是( )
A .
B .
C .
D .
5.将图4方格纸中的图形绕O 点顺时针旋转90°得到的图形是( )
A .
B .
C .
D .
6.如图5,将网格中的三条线段沿网格线平移后组成 一个首尾相接的三角形,至少需要移动( )
A.8格 B.9格 C.11格 D.12格
7.将一正方形纸片按图6中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )
A .
B .
C .
D .
8.下列图形绕某个点旋转180°后能与自身重合的有( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A .5个 B .2个 C .3个 D .4个
9.如图7,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连结EF ,若∠BEC=60°,则∠EFD 的度数为( )
A .10°
B .15°
C .20°
D .25°
10.如图8,在8×8方格纸上的两条对称轴EF O ,对△ABC 分别作下列变换:
①先以点A 为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;
②先以点O 为中心作中心对称图形,再以点A 的对应点为中心逆时针方向旋转90°; ③先以直线MN 为轴作轴对称图形,再向上平移4格,再以点A 的对应点为中心顺时针方向旋转90°. 其中,能将△ABC 变换成△PQR 的是( ) A .①② B .①③ C .②③ D .①②③
二、填空题(每小题3分,共30分) 11.如图9,△ABC 平移到△A |B |C |,则图中与线段
AA |平行且相等的线段有 条.
_F _E _D _B _A
图16
12.如图10,一串有趣的图案按一定规律排列,请仔细观察,按此规律画出的第10个
图案是;在前16个图案中有
个
.第2008
个图案是
.
13.如果图形b可以看作是图形a经过平移得到的,也可以看作是图形a经过旋转得到
的,试写出一个适合题意的图形a为(只需写出图形的名称即可).
14.图11是将一个边长为2个单位长度的正方形沿水平方向平移2个单位后得到的,
按此方法将一个正方形连续作4
15.如图12,在四边形ABCD AB、CD
分别平移到EF和EG的位置,则△EFG为三角形;若AD=2cm,BC=8cm,则
FG= .
16.如图13,小正六边形沿着大正六边形的边缘顺时针滚动,小正六边形的边长是大正
六边形边长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA绕点O顺时针转
过的角度为度.
A|,则旋转中心是.
18.请你仔细观察图15中等边三角形图形的变换规律,写出你发现关于等边三角形内
一点到三边距离的数学事实:.
19.如图16所示是一个小型的台球桌,四角分别有A、B、C、D四个球筐,桌面可以
分成12个正方形的小区域,如果将在P点位置的球,沿着PQ的方向击球Q,那么球Q最
后落在______ 筐.
20.如图17是一块长方形的场地,长AB=102m,宽AD=51m,从A、B两处入口的小
路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为.
三、解答题(本大题共60分)
21.(10分)如图18,有一条小船,
⑴若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;
⑵若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,但要求航程最短
....,
试在图中画出点P的位置.
22.(10分)如图19
⑴请你画出此图案绕点D顺时针方向旋转90°,180°,270°的图案,你会得到一个
美丽的图案,千万不要将阴影位置涂错;
⑵若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1、A2、A3,求四边
形AA1A2A3的面积;
⑶这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
23.(10分)把正方形ACDE 与Rt △ABC 按如图20-1所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt △ABC 绕直角顶点C 按顺时针方向旋转,使斜边AB 恰好经过正方形ACDE 的顶点D ,得△A |B |C ,如图20-2所示.
△ABC 旋转多少度才能得到△A |B |C ?请说明理由.
24.(10分)如图21,画出△ABC 绕点O 顺时针旋转90°后的△A |B |C |.
25.(10分)如图22,D 是正△ABC 内一点,将△BCD 绕点C 旋转得到△ACE ,试判断△CDE 的形状,并说明理由.
26.(10分)用格点连线将4×4的方格纸分割成形状相同、大小相等的四块.请你设计出几种不同的分割方案(至少4种).
_ B | _ ¡
_ C
_ A
_ E
_ B _ D _ C _ A。