【单元测试篇】11.2 与三角形有关的角同步练习
- 格式:pdf
- 大小:232.49 KB
- 文档页数:5
11.2与三角形有关的角练习题姓名:_______________班级:_______________考号:______________一、选择题1、在中,,则的度数为(???)A.?????B.??????C.??????D.2、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=(??)A.70°?????B.80°??????C.90°?????D.100°3、如图8,AB=BC=CD,且∠A=15°,则∠ECD=(????)A.30°??????B.45°??????C.60°???????D.75°4、如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于(??)A.50°??????B.40°??????C.25°????D.20°第4题第5题5、如图,△ABC中,,点D、E分别在AB、AC上,则的大小为(????)??A、??????B、??????C、?????D、第6题第7题第9题6、如图,已知,∠1=130o,∠2=30o,则∠C=??????.7、如下图所示,已知:∠AEC的度数为110°,则∠A+∠B+∠C+∠D的度数为(??)A.110°?????B.130°?????C.220°???D.180°8、已知等腰三角形的一个角为75°,则其顶角为(?)A.30°???B.75°???C.105°????D.30°或75°9、如图,已知,若,,则C等于(???)A.20°????B.35°??????C.45°????D.55°10、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()第10题第11题第12题11、如图,已知△ABC的两条高BE、CF相交于点O,,则的度数为(??)A.95o???B.130o??????C.140o???D.150o12、如图,已知与相交于点,,如果,,则的大小为(???)A.??????B.?????C.???????D.13、如图,在△ABC中,∠C=90o,∠B=40o,AD是角平分线,则∠ADC等于A.25o?????B.50o???????C.65o??????D.70o第13题第14题14、如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.?20°????B.40°??????C.30°????D.25°15、如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(????)A.45°?????B.54°?????C.40°?????D.50°第15题第16题第18题16、如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA 的度数为(?????).?A.50°??B.60°??C.70°??D.80°17、适合条件的三角形ABC是(????)A.锐角三角形??B.直角三角形C.钝角三角形?D.等边三角形???????????18、如图1,若∠1=110°,∠2=135°,则∠3等于A.55°????B.65°????C.75°????D.85°19、如图,在△AB C中,∠A=60°,∠ABC=50°,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是(?)①∠ACB=70°;??????②∠BFC=115°;③∠BDF=130°;?④∠CFE=40°;A.①②?????B.③④?????C.①③????D.①②③第19题第20题20、如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠DBE=∠DCE.其中正确结论的个数为( )A.0??????B.1??????C.2??????D.3二、填空题21、如图,∠l=20°,∠2=25°,∠A=35°,则∠BDC=???????????.第21题第22题第23题22、如下图,?∠A=27°,?∠CBE=96°,?∠C=30°,?则∠ADE的度数是________度.?23、如图,∠1,∠2,∠3的大小关系是??????.24、如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC= _________ .第24题第25题第26题25、如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=50°,则∠ACD的度数为.26、如图,已知△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=42°,∠C=70°,则∠DAE=????°.27、△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC是??????三角形.28、如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=????????度。
人教新版八年级上学期《11.2 与三角形有关的角》同步练习卷一.选择题(共4小题)1.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定2.若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100°D.125°4.直角三角形中两锐角平分线所交成的角的度数是()A.45°B.135°C.45°或135°D.都不对二.填空题(共6小题)5.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)6.如图,∠1=.7.如图,AD是△ABC的∠A的平分线,若∠B=40°,∠C=60°,则∠ADB=.8.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.9.如图,在△ABC中,∠BAC=80°,∠B=40°,AD是△ABC的角平分线,则∠ADB=°.10.如图,∠1=100°,∠2=145°,则∠3=°.三.解答题(共9小题)11.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.12.在△ABC中,∠A=(∠B+∠C)、∠B﹣∠C=20°,求∠A、∠B、∠C的度数.13.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.14.在△ABC中,∠A:∠ABC:∠ACB=3:4:5,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.15.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.16.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.17.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.18.在Rt△ABC中,∠C=90°,∠B=2∠A,求∠B,∠A的度数.19.如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.人教新版八年级上学期《11.2 与三角形有关的角》同步练习卷参考答案与试题解析一.选择题(共4小题)1.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定【分析】先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.【解答】解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.故选:C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.2.若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状.【解答】解:依题意,设三角形的三个内角分别为:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,x=13.85°.7x=97°∴这个三角形是钝角三角形.故选:C.【点评】此题主要考查学生对三角形内角和定理及三角形形状的判断的综合运用.3.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100°D.125°【分析】根据三角形内角和定理计算.【解答】解:设∠C=x°,则∠B=x°+25°.根据三角形的内角和定理得x+x+25=180﹣55,x=50.则x+25=75.故选:B.【点评】能够用一个未知数表示其中的未知角,然后根据三角形的内角和定理列方程求解.4.直角三角形中两锐角平分线所交成的角的度数是()A.45°B.135°C.45°或135°D.都不对【分析】利用三角形的内角和定理以及角平分线的定义计算.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:C.【点评】①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.二.填空题(共6小题)5.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.6.如图,∠1=140°.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.【解答】解:由三角形的外角的性质可知,∠1=60°+80°=140°,故答案为:140°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7.如图,AD是△ABC的∠A的平分线,若∠B=40°,∠C=60°,则∠ADB=100°.【分析】根据三角形内角和定理求出∠BAC,根据角平分线定义请求出∠BAD,根据三角形内角和定理求出即可.【解答】解:∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=80°,∵AD是△ABC的∠A的平分线,∴∠BAD=∠CAB=40°,∴∠ADB=180°﹣∠B﹣∠BAD=100°.故答案为:100°.【点评】本题考查了三角形内角和定理的应用,能正确利用三角形内角和定理求出∠BAC的度数是解此题的关键.8.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74度.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.9.如图,在△ABC中,∠BAC=80°,∠B=40°,AD是△ABC的角平分线,则∠ADB= 100°.【分析】根据三角形内角和定理可求得∠C的度数,根据角平分线的定义可求得∠CAD的度数,再根据三角形外角的性质即可求解.【解答】解:∵在△ABC中,∠BAC=80°,∠B=40°,AD是△ABC的角平分线,∴∠C=60°,∠CAD=40°,∴∠ADB=∠CAD+∠C=100°,故答案为:100.【点评】此题主要考查三角形内角和定理及三角形的外角的性质的综合运用.10.如图,∠1=100°,∠2=145°,则∠3=65°.【分析】根据三角形的外角的性质和邻补角的性质列出算式,求出∠3的度数.【解答】解:由题意得,∠2=∠3+(180°﹣∠1),又∠1=100°,∠2=145°,∴∠3=65°,故答案为:65°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三.解答题(共9小题)11.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.【分析】求出∠C=∠D,根据平行线的判定得出AC∥DF,根据平行线的性质得出∠A=∠DBO,∠F=∠DBO,即可得出答案.【解答】证明:∵∠AOC=∠DOB,∠C=∠COA,∠D=∠BOD,∴∠C=∠D,∴AC∥DF,∴∠A=∠DBO,∵EF∥AB,∴∠F=∠DBO,∴∠A=∠F.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.12.在△ABC中,∠A=(∠B+∠C)、∠B﹣∠C=20°,求∠A、∠B、∠C的度数.【分析】利用三角形内角和定理列出式子∠A+∠B+∠C=180°,再利用等量代换,求出一个角,其他迎刃而解.【解答】解:∵∠A=(∠B+∠C)、∠B﹣∠C=20°∴∠B=∠C+20°,∠A=2∠C+20°∵∠A+∠B+∠C=180°即:2∠C+20°+∠C+20°+∠C=180°∴∠C=35°∴∠A=2×35°+20°=90°,∠B=35°+20°=55°.答:∠A、∠B、∠C的度数分别为90°、55°、35°.【点评】考查了三角形内角和定理,本题利用三角形内角和定理和方程的思想来解决,要细心计算.13.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.14.在△ABC中,∠A:∠ABC:∠ACB=3:4:5,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.【分析】先设∠A=3x,∠ABC=4x,∠ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∠A,∠ABC,∠ACB,在△ABD中,利用三角形内角和定理,可求∠ABD,再利用三角形外角性质,可求出∠BHC.【解答】解:∵在△ABC中,∠A:∠ABC:∠ACB=3:4:5,故设∠A=3x,∠ABC=4x,∠ACB=5x.∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴3x+4x+5x=180°,解得x=15°,∴∠A=3x=45°.∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∴在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°.【点评】本题利用了三角形内角和定理、三角形外角的性质.三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.15.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.【分析】本题考查的是平行线的性质以及三角形内角和定理.【解答】解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.【点评】此类题解答的关键是求出∠CAE+∠ACE的度数,再求解即可.16.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.【分析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.【解答】解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.【点评】本题考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.17.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.【分析】根据三角形的内角和定理求出∠C,再根据直角三角形两锐角互余求出∠DAC,然后根据角平分线的定义求出∠DAE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠BAC=80°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°,∵AD⊥BC,∴∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠AEC=∠DAE+∠ADE=25°+90°=115°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的角平分线和高线的定义,准确识图是解题的关键.18.在Rt△ABC中,∠C=90°,∠B=2∠A,求∠B,∠A的度数.【分析】设∠A为x,根据直角三角形的两个锐角互余列出方程,解方程即可.【解答】解:设∠A为x,则∠B为2x,由题意得,x+2x=90°,解得,x=30°,则2x=60°,∴∠B=60°,∠A=30°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.19.如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC 的度数,AE是角平分线,有∠EAC=∠BAC,故∠DAE=∠EAC﹣∠DAC.【解答】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.【点评】本题主要考查了三角形内角和定理、角的平分线的性质、直角三角形的性质,比较综合,难度适中.。
八年级上册第十一章《11.1与三角形有关的角》同步测试题一、选择题(每小题只有一个正确答案)1.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间.下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知AB//CD,∠EAB=80∘,∠ECD=110∘,则∠E的度数是()A.30∘B.40∘C.60∘D.70∘2.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠∠=90∘,∠∠=90∘,∠∠=45∘,∠∠=30∘,则∠1+∠2等于( )A.150∘B.180∘C.210∘D.270∘3.如图,直线∠//∠.若∠1=70∘,∠2=25∘,则∠∠等于() A.30∘B.35∘C.45∘D.55∘4.如图,∠ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠∠AEF,得∠DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°5.如图,∠ACD是∠ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40° B.45° C.50° D.55°6.如图,AB∠CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°7.如图所示,已知∠ABC为直角三角形,∠B=90°,若按图中虚线剪去∠B,则∠1+∠2等于( )第1页/共16页A.90°B.135°C.270°D.315°8.如图,∠ABC是直角三角形,CD∠AB,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个9.若∠ABC的三个内角的比为2:5:3,则∠ABC的形状是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形10.如图,图中有四条互相不平行的直线∠1、∠2、∠3、∠4所截出的七个角,关于这七个角的度数关系,下列选项正确的是( ) A.∠2=∠4+∠5 B.∠3=∠1+∠6 C.∠1+∠4+∠7=180° D.∠5=∠1+∠4二、填空题11.在△∠∠中,∠∠=90∘,∠∠比∠∠大20∘.则∠∠=______.12.如图所示,∠∠+∠∠+∠∠+∠∠+∠∠+∠∠=_________.13.在Rt∠ABC中,∠ACB=90°,∠A与∠B的内角平分线交于点F,则∠AFB的度数是_____.14.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列______.15.三角形中一个内角∠是另一个内角∠的两倍时,我们称此三角形为“特征三角形”,其中∠称为“特征角”,如果一个“特征三角形”的“特征角”为110∘,那么这个“特征三角形”的最小内角的度数为______.三、解答题16.如图,BD是∠∠∠∠的平分线,∠∠//∠∠,交AB于点E,∠∠= 45∘,∠∠∠=60∘.求△∠∠∠各内角的度数.17.如图,AB∠CD,点O是直线AB上一点,OC平分∠AOF.(1)求证:∠DCO=∠COF;(2)若∠DCO=40°,求∠EDF的度数.18.如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A =60°,求∠BOC的度数;(2)若∠A =100°, 则∠BOC的度数是多少?(3)若∠A =120°, 则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.第3页/共16页参考答案1.A【解析】【分析】直接利用平行线的性质得出∠EFC=∠EAB=80∘,进而利用三角形的外角得出答案.【详解】如图所示:延长DC交AE于点F,∵AB//CD,∠EAB=80∘,∠ECD=110∘,∴∠EFC=∠EAB=80∘,∴∠E=110∘−80∘=30∘.故选:A.【点睛】本题考查了平行线的性质、三角形外角的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.2.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,第1页/共16页∵∠DOA=∠COP,∠EPB=∠CPO,∠∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180∘−∠C=30∘+90∘+180∘−90∘=210∘,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.3.C【解析】【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠∠的度数.【详解】解:如图,∵直线∠//∠,∴∠1=∠3,∵∠1=70∘,∴∠3=70∘,∵∠3=∠2+∠∠,∠2=25∘,∴∠∠=45∘,故选:C.【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠3的度数,此题难度不大.4.C【解析】【分析】先根据三角形内角和定理求出∠AEF+∠AFE的度数,再由图形翻折变换的性质得出∠AEF=∠DEF,∠AFE=∠DFE,进而可得出结论.【详解】∠∠AEF中,∠A=60°,∠∠AEF+∠AFE=180°-60°=120°,∠∠DEF由∠AEF翻折而成,∠∠AEF=∠DEF,∠AFE=∠DFE,∠∠1+∠2=360°-2(∠AEF+∠AFE)=360°-2×120°=120°.故选C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.5.C【解析】【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.第3页/共16页【详解】∠∠A=60°,∠B=40°,∠∠ACD=∠A+∠B=100°,∠CE平分∠ACD,∠ACD=50°,∠∠ECD=12故选C.【点睛】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键.6.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∠AB∠CD,∠1=45°,∠∠4=∠1=45°,∠∠3=80°,∠∠2=∠3-∠4=80°-45°=35°,故选:B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.7.C【解析】【分析】如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【详解】如图,∠∠ABC为直角三角形,∠B=90°,∠∠BNM+∠BMN=90°,∠∠1=90°+∠BNM,∠2=90°+∠BMN,∠∠1+∠2=270°.故选:C.【点睛】本题主要考查三角形的外角性质、三角形内角和定理,关键在于得出∠1=90°+∠BNM,∠2=90°+∠BMN.8.B【解析】分析: 根据互余的两个角的和等于90°写出与∠A的和等于90°的角即可.详解: ∠CD是Rt∠ABC斜边上的高,∠∠A+∠B=90°,∠A+∠ACD=90°,∠与∠A互余的角有∠B和∠ACD共2个.故选B.点睛:本题考查了余角的定义及数形结合的数学思想,熟练掌握互余的两个角的和等于90°是解答本题的关键.9.C【解析】分析;根据三角形三个内角和定理求出最大的内角的度数,再逐一判断即可第5页/共16页详解:∠∠ABC的三个内角的比为2:5:3,∠∠ABC的最大的内角×180°=90°,∠∠ABC为直角三角形,故选C.的度数为:52+5+3点睛:本题考查了三角形的内角和定理的应用,解题的关键是根据三角形内角和求出最大的内角.10.D【解析】分析:根据“三角形内角和定理、三角形外角的性质和对顶角的性质”进行分析判断即可.详解:A选项中,因为∠2=∠4+∠6,而∠6=∠5不一定成立,所以A中结论不一定成立;B选项中,∠∠3=∠8+∠9,∠1=∠8,∠∠3=∠1+∠9,∠∠6=∠9不一定成立,∠B中结论不一定成立;C选项中,∠∠8+∠4+∠6=180°,∠1=∠8,∠∠1+∠4+∠6=180°,∠∠6=∠7不一定成立,∠C中结论不一定成立;D选项中,∠∠5=∠4+∠8,∠8=∠1,∠∠5=∠4+∠1,∠D中结论成立.点睛:熟悉:“三角形内角和为180°,三角形的一个外角等于与它不相邻的两个内角的和及对顶角相等”是解答本题的关键.11.35°【解析】【分析】根据直角三角形两锐角互余可得∠B+∠A=90∘,然后解方程组即可.【详解】解:∵∠C=90∘,∴∠B+∠A=90∘∠,∵∠A比∠B大20∘,∴∠A−∠B=20∘∠,∠−∠得,2∠B=70∘,∴∠B=35∘.故答案为:35∘.【点睛】本题考查了三角形的内角和,直角三角形两锐角互余的性质,熟记性质并列出关于∠A、∠B的两个方程是解题的关键.12.360°【解析】【分析】根据三角形外角的性质,可得∠1与∠∠、∠∠的关系,根据多边形的内角和公式,可得答案.第7页/共16页【详解】如图延长∠∠交∠∠于∠点,由三角形的外角等于与它不相邻的两个内角的和,得∠1=∠∠+∠∠,∠2=∠1+∠∠,由等量代换,得∠2=∠∠+∠∠+∠∠,∠∠+∠∠+∠∠+∠∠+∠∠+∠∠=∠∠+∠∠+∠2+∠∠=(4−2)×180°=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.13.135°【解析】【分析】根据题意画出图形,再根据三角形的内角和和角平分线的定义即可求解.【详解】如图,∠在Rt∠ABC中,∠ACB=90°,∠A与∠B的内角平分线交于点F∠∠CAB+∠CBA=90°×90°=45°∠∠FAB+∠FBA=12∠∠AFB=190°-45°=135°.故答案为:135°.【点睛】此题主要考查了三角形的内角和定理和角平分线的定义,根据角平分(∠CAB+∠CBA)=45°是解题关键.线性质得出1214.∠2>∠1>∠A【解析】【分析】根据三角形的外角的性质判断即可.【详解】根据三角形的外角的性质得,∠2>∠1,∠1>∠A∠∠2>∠1>∠A,故答案为:∠2>∠1>∠A.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.15.15∘【解析】【分析】根据“特征角”的定义,求出另一个角,再根据三角形内角和求出第三个角.第9页/共16页根据“特征三角形”的特征,另一个角是:110〬÷2=55〬,第三个角是:180〬-55〬-110〬=15〬.所以,最小的角是15〬.故答案为:15〬【点睛】本题考核知识点:三角形内角和. 解题关键点:理解特征角的定义. 16.15∘,15∘,150∘【解析】【分析】利用三角形的外角性质,先求∠∠∠∠,再根据角平分线的定义,可得∠∠∠∠=∠∠∠∠,运用平行线的性质得∠∠∠∠的度数,根据三角形内角和定理可求∠∠∠的度数.【详解】解:∵∠∠//∠∠,∴∠∠∠=∠∠∠∠,∵∠∠是∠∠∠∠的平分线,∴∠∠∠∠=∠∠∠∠,∴∠∠∠∠=∠∠∠∠,∵∠∠∠∠=∠∠+∠∠∠∠,∴∠∠∠∠=15∘,∴∠∠∠∠=∠∠∠∠=15∘,∴∠∠∠∠=180∘−2∠∠∠∠=150∘本题综合考查了平行线的性质及三角形内角与外角的关系,三角形内角和定理.17.(1)证明见解析;(2)∠EDF=100°.【解析】【分析】(1)根据平行线的性质和角平分线的定义进行分析证明即可;(2)由(1)可得∠COF=∠DCO=40°,结合三角形内角和定理可得∠CDO=100°,再由对顶角相等即可得到∠EDF=∠CDO=100°.【详解】(1)∠AB∠CD,∠∠DCO=∠COA,∠OC平分∠AOF,∠∠DCO=∠COA,∠∠DCO=∠COF;(2)∠∠DCO=40°,∠DCO=∠COF,∠∠COF=∠DCO=40°,∠在∠CDO中,∠CDO=100°,∠∠EDF=∠CDO=100°.【点睛】熟悉“平行线的性质、角平分线的定义和三角形内角和为180°”是解答本题的关键.第11页/共16页18.(1)∠BOC =120°;(2)∠BOC =140°;(3)∠BOC=150°;(4)∠BOC=90°+12∠A 【解析】【分析】(1)根据BO 、CO 分别平分∠ABC 和∠ACB 可得: ∠CBO+∠BCO 的值,再根据三角形内角和得出∠BOC;(2)、(3)同理(1)可求得;(4)根据(1)-(3)规律可得.【详解】(1)∠BO 、CO 分别平分∠ABC 和∠ACB .∠A =600∠∠CBO+∠BCO = 12(1800−∠A )= 12(1800−600)=600 ∠∠BOC =1800−(∠CBO+∠BCO )=1800−600=1200(2)同理,若∠A =1000, 则∠BOC =1800− 12(1800−∠A )=900+12∠A =1400 (3)同理,若∠A =1200, 则∠BOC =1800− 12(1800−∠A )=900+12∠A =1500 (4)由(1)、(2)、(3),发现:∠BOC =1800− 12(1800−∠A )=900+12∠A 【点睛】考查了三角形内角和定理.第一,第二问是解决第三问发现规律的基础,因而总结前两问中的基本解题思路是解题的关键.。
八年级数学上册11-2《与三角形有关的角》基础同步练习题(含答案)1、在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是().A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形2、若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是().A. 锐角三角形B. 钝角三角形C. 直角三角形D. 任意三角形3、在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是().A. 75°B. 65°C. 55°D. 45°4、△ABC中,∠A=35°,∠B=2∠A,则∠C的度数是().A. 55°B. 60°C. 70°D. 75°5、△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠A=().A. 30°B. 40°C. 50°D. 60°6、在下列条件中,①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=2∠B=3∠C,∠C中,能确定△ABC是直角三角形的条件有().④∠A=∠B=12A. 1个C. 3个D. 4个7、如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.8、如图,在△ABC中,高AD,BE交于点O.若∠C=75°,则∠AOE=度.9、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是().A. 15°B. 25°D. 10°10、如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于().A. 110°B. 115°C. 120°D. 130°11、如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是().A. 2∠DAE=∠B−∠CB. 2∠DAE=∠B+∠CC. ∠DAE=∠B−∠CD. 3∠DAE=∠B+∠C12、已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.13、若直角三角形的一个锐角为50°,则另一个锐角的度数是°.14、若三角形三个内角度数比为2:3:5,则这个三角形一定是().A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定15、在Rt△ABC中,∠C=90°,∠A−∠B=70°,则∠A的度数为().A. 80°B. 70°C. 60°D. 50°16、下列条件中,不能确定△ABC是直角三角形的是().A. ∠A−∠B=90°∠AB. ∠B=∠C=12C. ∠A=90°−∠BD. ∠A+∠B=∠C17、如果将一副三角板按如图方式叠放,那么∠1=°.18、如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD=°.19、如图△ABC中,∠1=∠2,∠ABC=70°,则∠BDC的度数是().A. 110°B. 115°C. 120°D. 130°20、如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为().A. 65°B. 70°C. 75°D. 85°21、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是().A. 30°B. 40°C. 50°D. 60°22、如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC于点E.若∠A= 54°,∠B=48°,则∠CDE的大小为().A. 44°B. 40°C. 39°D. 38°23、如图,∠A+∠B+∠C+∠D+∠E=度.24、如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.1 、【答案】 D;【解析】∵∠A=20°,∠B=60°,∴∠C=180°−∠A−∠B=180°−20°−60°=100°,∴△ABC是钝角三角形,故选D.2 、【答案】 C;【解析】∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180,∴x=30,∴∠C=90°,∠A=30°,∠B=60°,即△ABC是直角三角形.3 、【答案】 C;【解析】90°−35°=55°.故选C.4 、【答案】 D;【解析】∵∠A=35°,∠B=2∠A=70°,∴∠C=180°−∠A−∠B=75°,故选D.5 、【答案】 C;【解析】∠B=∠A+10°,∠C=∠B+10°,得∠C=∠B+10°=∠A+20°,内角和定理,得∠A+∠B+∠C=180°,即∠A+(∠A+10°)+(∠A+20°)=180°,化简得:3∠A+30°=180°,解得∠A=50°.6 、【答案】 C;【解析】①∵∠A+∠B=∠C,∠A+∠B+∠C=180∘,∴2∠C=180∘,∴∠C=90∘,∴△ABC为直角三角形.②∵∠A:∠B:∠C=1:2:3,∴设∠A=α,∠B=2α,∠C=3α.∵∠A+∠B+∠C=180∘,∴α+2α+3α=180∘,∴α=30∘,∴∠C=90∘,∴△ABC为直角三角形.③∵∠A=2∠B=3∠C,∴设∠A=6x,则∠B=3x,∠C=2x,∵∠A+∠B+∠C=180∘,∴6x+3x+2x=180∘,∴x=180∘11,∴∠A=1080∘11,∠B=540∘11,∠C=360∘11.∴△ABC不为直角三角形.④∵∠A=∠B=12∠C,∴设∠A=∠B=y,∠C=2y.∵∠A+∠B+∠C=180∘,∴y+y+2y=180∘,∴y=45∘,∴∠C=90∘,∴△ABC为直角三角形.综上①②④可判定△ABC为直角三角形,故选C.7 、【答案】证明见解析.;【解析】在Rt △ABC中,∠ACB=90°,∴∠B+∠A=90°,又∵∠ACD=∠B,∴∠ACD+∠A=90°,∴∠ADC=90°,∴CD⊥AB.8 、【答案】75;【解析】∵AD,BE为高,∴∠ADC=AEO=90°,在Rt△ACD中,∠CAD=180°−90°−∠C=15°,在Rt△AOE中,∠AOE=180°−∠AEO−∠CAD=180°−90°−15°=75°.9 、【答案】 A;【解析】∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=90°+30°=120°,∠B=∠BAC=45°,在△BFD中,∠BFD=180°−∠B−∠BDF=180°−45°−120°=15°,故答案选A.10 、【答案】 B;【解析】∵∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12×130°=65°.∴∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°.故选B.11 、【答案】 A;【解析】∵∠BAC=180∘−∠B−∠C,AD是∠BAC的平分线,∴∠CAD=12∠BAC=12(180∘−∠B−∠C).∵AE是高,∴∠CAE=90∘−∠C,∴∠DAE=∠CAE−∠CAD=(90∘−∠C)−12(180∘−∠B−∠C)=12(∠B−∠C),即2∠DAE=∠B−∠C.故选A.12 、【答案】∠C=40°,∠DAE=25°.;【解析】∵∠BAC=80°、∠B=60°,∴∠C=180°−∠BAC−∠B=180°−80°−60°=40°,∵AD⊥BC于D,∴∠DAC=50°,∵AE平分∠DAC,∠DAC=25°.∴∠DAE=1213 、【答案】 40;【解析】∵一个锐角为50°,∴另一个锐角的度数=90°−50°=40°.14 、【答案】 B;【解析】设三个内角度数一份为k°,则三个内角的度数分别为2k°、3k°、5k°,则2k°+3k°+5k°=180°,解得k°=18°,∴2k°=36°,3k°=54°,5k°=90°,∴这个三角形是直角三角形.15 、【答案】 A;【解析】∵∠C=90°,∴∠A+∠B=90°,又∠A−∠B=70°,(90°+70°)=80°.∴∠A=1216 、【答案】 A;【解析】 A选项 : ∠A−∠B=90°,∠A=90°+∠B,故∠A为钝角,△ABC不是直角三角形,A选项符合题意.故A正确;∠A,∠A+∠B+∠C=180°,B选项 : ∠B=∠C=12∴∠B=∠C=45°,∠A=90°.故△ABC为直角三角形,B选项不符合题意.故B错误;C选项 : ∠A=90°−∠B,∠A+∠B+∠C=180°,∴∠C=90°.故△ABC为直角三角形,C选项不符合题意.故C错误;D选项 : ∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°.故△ABC为直角三角形,D选项不符合题意.故D错误.17 、【答案】105;【解析】∠1=45°+60°=105°.18 、【答案】20;【解析】∵∠B=30°,∠C=70°,∴∠BAC=180°−30°−70°=80°,∵AE平分∠BAC,∴∠BAE=40°,∴∠AED=70°,∵AD⊥BC,∴∠ADE=90°,∴∠EAD=20°.19 、【答案】 A;【解析】∵∠ABC=70°,∴∠DBC=∠ABC−∠1,∵∠1=∠2,∴∠BDC=180°−∠DBC−∠2=180°−(70°−∠1)−∠2=110°.故选A.20 、【答案】 B;【解析】∵DE⊥AB,∠A=35°,∴∠AEF=90°,∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选B.21 、【答案】 C;【解析】方法一 : 如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB//CD,∴∠2=∠BEF=50°,故选:C.方法二 : 由题得∠2=∠3,且∠3=∠1+30°,又∵∠1=20°,∴∠2=50°.22 、【答案】 C;【解析】∵∠A=54°,∠B=48°,∴∠ACB=180°−54°−48°=78°,∵CD平分∠ACB交AB于点D,×78°=39°,∴∠DCB=12∵DE//BC,∴∠CDE=∠DCB=39°.23 、【答案】180;【解析】连接BD,由“8”字模型可知,∠A+∠E=∠EDB+∠ABD,∵∠C+∠CDE+∠CBA+∠EDB+∠ABD=180°,∴∠A+∠ABC+∠C+∠CDE+∠E=180°.故答案为:180.24 、【答案】65°;【解析】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°−∠3−∠4=65°.故答案为∶65°.。
初中数学试卷第11章——11.1《与三角形 有关的角》同步练习及(含答案)一、选择题1.一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形.A .锐角B .钝角C .直角D .等腰2.三角形的三个内角( )A .至少有两个锐角B .至少有一个直角C .至多有两个钝角D .至少有一个钝角3.一个三角形的一个内角等于另外两个内角的和,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .何类三角形不能确定4.一个三角形的两个内角之和小于第三个内角,那么该三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能5.一个三角形的三个内角的度数比是1:2:1,这个三角形是( ).A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A .90°B .100°C .130°D .180°7.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A=50°,则∠D=( )A .15°B .20°C .25°D .30°8.如图,直线l1∥l2,∠1=40°,∠2=65°,则∠3=( )A .65°B .70°C .75°D .85°二、填空题9.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=128°,∠C=36°,则∠DAE 的度数是_______(第6题) (第7题) (第8题) (第9题)10.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为_______11.(2008•沈阳)已知△ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为________度.12.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A'重合,若∠A=70°,则∠1+∠2=____________.13.一个角是80°的等腰三角形的另两个角为____________.14.如图,已知,AB ∥CD ,直线EF 分别交AB ,CD 于E 、F ,点G 在直线EF 上,GH ⊥AB ,若∠EGH=32°,则∠DFE 的度数为____________.15.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=________.16.如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°,(1)当∠A=________时,△AOP 为直角三角形;(2)当∠A 满足________时,△AOP 为钝角三角形.17.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D=________度.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.三、解答题19.小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.已知:如图,△ABC 中,∠A 、∠B 、∠C 是它的三个内角,那么这三个内角的和等于多少?为什么?解:∠A+∠B+∠C=180°理由:作∠ACD=∠A ,并延长BC 到E∠1=∠A (已作)∴AB ∥CD (_________________________)∴∠B=_____(_________________________) 而∠ACB+∠1+∠2=180°∴∠ACB+_____+_____=180°(等量代换)20.如图,已知△ABC 的AC 边的延长线AD ∥EF ,若∠A=60°,∠B=43°,试用(第15题)(第16题) (第17题) 第19题推理的格式求出∠E 的大小.21.如图1,在△ABC 中,OB 、OC 是∠ABC 、∠ACB 的角平分线; (1)填写下面的表格.∠A 的度数50° 60° 70° ∠BOC 的度数(2)试猜想∠A 与∠BOC 之间存在一个怎样的数量关系,并证明你的猜想;(3)如图2,△ABC的高BE 、CD 交于O 点,试说明图中∠A 与∠BOD 的关系.22.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F .(1)求证:CF ∥AB .(2)求∠DFC 的度数.第20题 第21题第22题23.(1).解方程:3x+1=7;(2).如图,在△ABC 中,∠B=35°,∠C=65°,求∠A 的度数.第11章——11.1《与三角形 有关的角》同步练习及(含答案)一、选择题1.B2.A3.A4.C5.D6.B7.C8.C AC二、填空题9. 10° 10. 70° 11.120 12.140° 13.80°,20°或50°,50°. 14.58° 15.60° 16.60°或90°;小于60°和大于90° 17.36 18.30°三、解答题19.内错角相等,两直线平行;∠2;两直线平行,同位角相等;∠B ;∠A .20.解:∵∠A=60°,∠B=43°,∴∠BCD=∠A+∠B=60°+43°=103°,∵AD ∥EF ,∴∠E=∠BCD=103°21..解:(1)()()().21902190180180=BOC ∠∴,2190180212121212190000000A A OCB OBC A A OCB ABC OCB ABC ACB OCB ABC OBC ACB ∠+∠∠+∠∠-=∠-∠+∠∠+∠∠∠∠∠∴∠∠∆+=∠)=--(=-==,=,=的角平分线;ABC、是ABC中,OB、OC在理由:ABOC(2)猜想:o (3)证明:∵△ABC 的高BE 、CD 交于O 点,∴∠BDC=∠BEA=90°,∴∠ABE+∠BOD=90°,∠ABE+∠A=90°,∴∠A=∠BOD .∠A 的度数 50° 60° 70° ∠BOC 的度数 115° 120° 125° 第23题22.(1)证明:∵CF平分∠DCE,1∠DCE,∴∠1=∠2=2∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°-30°-45°=105°.5.解:(1)移项得,3x=7-1,系数化为1得,x=2;(2)根据三角形的内角和定理,∠A=180°-∠B-∠C=180-35°-65°=80°.。
11.2 与三角形有关的角同步练习一.选择题1.已知∠A、∠B、∠C是△ABC的三个内角,下列条件不能确定△ABC是直角三角形的是()A.∠A=40°,∠B=50°B.∠A=90°C.∠A+∠B=∠C D.∠A+∠B=2∠C2.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形3.如图,在△ABC中,∠A=50°,则∠1+∠2的度数是()A.180°B.230°C.280°D.无法确定4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°,则∠BAC的度数是()A.89°B.79°C.69°D.90°5.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A.35°B.70°C.85°D.95°6.如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°7.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC 的度数为()A.120°B.125°C.130°D.135°二.填空题9.在△ABC中,∠A=35°,∠B=45°,则∠C为.10.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是°.11.如图,AD平分∠BAC,其中∠B=35°,∠ADC=82°,则∠C=度.12.如图,AD平分∠EAC,∠B=70°,∠C=60°,求∠CAD=.13.一副三角板如图摆放,其中一块三角板的直角边EF落在另一块三角板的斜边AC上,边BC与DF交于点O,则∠BOD的度数是.14.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.三.解答题15.如图,在△ABC中,∠B=80°,∠C=30°,AD⊥BC于点D,AE平分∠BAC,求∠EAD的度数.16.如图,F A⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.17.已知:如图,在△ABC中,∠ACB=90°,CE⊥AB,F为边BC上一点,连接AF交CE于点G,∠CGF=∠CFG.求证:AF平分∠BAC.18.互动学生课堂上,某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC,点D是三角形ABC内一点,连接BD,CD,试探究∠BDC与∠A、∠1、∠2之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵∠BDC+∠DBC+∠BCD=180°,()∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1++∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣﹣∠BCD,∴∠BDC=∠A+∠1+∠2.()(2)请你按照小丽的思路完成探究过程.19.(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是;(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是.20.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案一.选择题1.解:选项A:∵∠A=40°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=90°.∴△ABC是直角三角形.选项B:∵∠A=90°,∴△ABC是直角三角形.选项C:∵∠A+B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°.∴∠C=90°.∴△ABC是直角三角形.选项D:∵∠A+∠B=2∠C,∠A+∠B+∠C=180°,∴3∠C=180°.∴∠C=60°.∴∠A+∠B=120°.∴无法确定△ABC是直角三角形.故选:D.2.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x,3x,5x,∴2x+3x+5x=180°,解得x=18°,∴5x=5×18°=90°.∴此三角形是直角三角形.故选:C.3.解:∵∠1=∠A+∠ACB,∠2=∠A+∠ABC,∴∠1+∠2=∠A+∠ACB+∠A+∠ABC=(∠A+∠ACB+∠ABC)+∠A.又∵∠A+∠ABC+∠ACB=180°,∠A=50°,∴∠1+∠2=180°+50°=230°.故选:B.4.解:∵∠B=44°,∠C=57°,∴∠BAC=180°﹣∠B﹣∠C=79°.故选:B.5.解:∵在△ABC中,∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°.∵AD平分∠BAC,∴∠BAD=∠BAC=35°.∵在△ABD中,∠BDA=180°﹣∠B﹣∠BAD.∴∠BDA=180°﹣60°﹣35°=85°故选:C.6.解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.7.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.8.解:在△BEC中,∵∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ABC、∠ACB的三等分线交于点E、D,∴∠DBC=∠EBC,∠DCB=∠ECB,∴∠DBC+∠DCB=×90°=45°,∴∠BDC=180°﹣(∠DBC+∠DCB)=135°,故选:D.二.填空题9.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣45°=100°.故答案为:100°.10.解:∵∠ACB=90°,∠A=48°,∴∠CBD=∠ACB+∠A=90°+48°=138°,故答案为138.11.解:∵∠ADC是△ABD的一个外角,∴∠BAD=∠ADC﹣∠B=82°﹣35°=47°,∵AD平分∠BAC,∴∠BAC=2∠BAD=94°,∴∠C=180°﹣∠B﹣∠BAC=51°,故答案为:51.12.解:∵∠EAC=∠B+∠C,∠B=70°,∠C=60°,∴∠EAC=70°+60°=130°,∵AD是∠EAC的平分线,∴∠CAD=∠EAC=65°,故答案是:65°.13.解:△COF中,∵∠CFO=45°,∠FCO=30°,∴∠COF=180°﹣∠CFO﹣∠FCO=180°﹣45°﹣30°=105°,∵∠COF=∠BOD,∴∠BOD=105°,故答案为:105°.14.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.三.解答题15.解:∵∠B+∠BAC+∠C=180°,∠B=80°,∠C=30°,∴∠BAC=180°﹣30°﹣80°=70°;∵AD⊥BC,∴∠ADC=90°,∵∠DAC=180°﹣∠ADC﹣∠C,∠C=30°,∴∠DAC=180°﹣90°﹣30°=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC,∴∠BAE=∠CAE=35°,∵∠EAD=∠DAC﹣∠EAC,∴∠EAD=25°.16.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.17.解:∵∠ACB=90°,∠CAF+∠ACB+∠CFG=180°,∴∠CAF+∠CFG=90°,∵CE⊥AB,∴∠AEC=90°,∵∠AEC+∠AGE+∠F AE=180°,∴∠AGE+∠F AE=90°,∵∠AGE=∠CGF=∠CFG,∴∠CAF=∠F AE,∴AF平分∠BAC.18.解:(1)∵∠BDC+∠DBC+∠BCD=180°,(三角形内角和定理)∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1+∠2+∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣∠DBC﹣∠BCD,∴∠BDC=∠A+∠1+∠2 (等量代换),故答案为:三角形内角和定理;∠2;∠DBC;等量代换;(2)如图,延长BD交AC于E,由三角形的外角性质可知,∠BEC=∠A+∠1,∠BDC=∠BEC+∠2,∴∠BDC=∠A+∠1+∠2.19.解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D).故答案为:∠P=180°﹣(∠B+∠D).20.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。
11.2 与三角形有关的角 同步练习一一.填空题1. 在∆ABC 中,⑴ 若∠A =50°,∠B =70°,则∠C =⑵ 若∠A =30°,∠B :∠C =3:2 ,则∠B =⑶ 若∠A =∠B =∠C ,则∠C =⑷ 若∠A =80°,∠B =∠C ,则∠C =⑸ 若∠A =80°,∠B –∠C =40°,则∠C = ,∠B =⑹ 若∠A +∠B =100°,∠C =2∠A ,,则∠A = ∠B =2. 在∆ABC 中,若∠A =∠B +∠C ,则这个三角形是 三角形.3. 在∆ABC 中,∠A +∠B =2 ∠C ,∠A –∠B =30°,则∠A = ,∠C = .4. 直角三角形中,两个锐角之差为20°,则这两个锐角度数分别为 .5. 如图,在∆ABC 中,∠ACB =90°,CD 是AB 上的高,则与∠A 相等的角是 , 与∠B 相等的角是 .二.选择题1.三角形中最大的内角不能小于( )A. 30°B.45°C.60°D.90°2.适合条件∠A =∠B =21∠C 的∆ABC 是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定3.如图:∠A =25°∠B =60°∠BEF =65°则∠D 等于( ) A. 30° B.35° C.40° D.45°三.解答题1.已知三角形的一个角是第二个角的1.5倍,第三个角比这两个角的和大30°,求这三个角的度数。
2.如图:AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE的度数.3.如图:在∆ABC中,BO,CO平分∠ABC和∠ACB,若∠A=50°,求∠BOC的度数.参考答案一.1.(1)60º(2)90º(3)60º(4)50º(5)30 º,70º(6)40º,60º2.直角三角形 3. 75º,60º 4. 55º,35º 5. ∠DCB,∠ACD二.1.C2.B3.A三.1.30º,45º,105º 2. 15º 3. 115º。
11.2 与三角形有关的角一.选择题1.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°2.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB的度数为()A.100°B.110°C.120°D.130°3.如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°4.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°5.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在边AC上点E 处,若∠A=25°,则∠ADE的大小为()A.40°B.50°C.65°D.75°6.如图,在△ABC中,点D在AB边上,点E在AC边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75°B.50°C.35°D.30°7.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°8.下列图形中,能确定∠1>∠2的是()A.B.C.D.9.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°10.一张△ABC纸片,点M、N分别是AB、AC上的点,若沿直线MN折叠后,点A落在AC边的下面A′的位置,如图所示.则∠1,∠2,∠A之间的数量关系是()A.∠1=∠2+∠A B.∠1=2∠2+∠A C.∠1=∠2+2∠A D.∠1=2∠2+2∠A 二.填空题11.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD交于点D,若∠D=28°,则∠A=.12.如图,将∠ACB沿EF折叠,点C落在C'处.若∠BFE=65°.则∠BFC'的度数为.13.如果将一副三角板按如图方式叠放,那么∠1=.14.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=度.15.如图,∠ADC=117°,则∠A+∠B+∠C的度数为.三.解答题16.我们都知道“三角形的内角和等于180°”,如图1,教材中是用“延长BC,过点C作CE∥AB”的方法把∠A移到∠1的位置,把∠B移到∠2的位置,从而完成证明的,请你借助图2作辅助线的思路将下面证明“三角形的内角和等于180°”的过程补充完整.已知:△ABC.求证:∠BAC+∠B+∠C=180°.证明:如图2,过点A作直线DE∥BC.17.如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.(2)求∠C的度数.18.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠C=46°,∠DAE=10°,求∠B的度数.19.已知(如图1)在△ABC中,∠B>∠C,AD平分∠BAC,点E在AD的延长线上,过点E作EF⊥BC于点F,设∠B=α,∠C=β.(1)当α=80°,β=30°时,求∠E的度数;(2)试问∠E与∠B,∠C之间存在着怎样的数量关系,试用α、β表示∠E,并说明理由;(3)若∠EFB与∠BAE平分线交于点P(如图2),当点E在AD延长线上运动时,∠P 是否发生变化,若不变,请用α、β表示∠P;若变化,请说明理由.20.如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.参考答案一.选择题1.C.2.B.3.B.4.A.5.A.6.C.7.D.8.C.9.B.10.C.二.填空题11.56°.12.50°13.105°.14.60°.15.117°.三.解答题16.证明:过点A作直线DE∥BC,∵DE∥BC,∴∠DAB=∠B,∠EAC=∠C,∵∠DAB+∠EAC+∠BAC=180°,∴∠B+∠C+∠BAC=180°,即三角形的内角的和等于180°.17.解:(1)∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,又∵∠ADC=80°,∠B=∠BAD,∴∠B=∠ADC=×80°=40°;(2)在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=70°.18.解:∵AD⊥BC,∴∠ADC=90°,∵∠C=46°∴∠CAD=44°,∵∠DAE=10°,∴∠CAE=34°,∵AE平分∠BAC,∴∠BAC=2∠EAC=68°,∴∠B=180°﹣68°﹣46°=66°.19.解:(1)∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵AD平分∠BAC,∴∠BAD=BAC=35°,∴∠EDF=∠ADB=180°﹣35°﹣80°=65°,∵EF⊥BC,∴∠EFD=90°,∴∠E=90°﹣65°=25°;(2)∵∠EDF=∠C+∠CAD,∠CAD=∠BAC=(180°﹣α﹣β),∴∠EDF=∠C+90°﹣α﹣β=90°﹣(α﹣β),∵∠EFD=90°,∴∠DEF=(α﹣β);(3)设AP与BC交于G,∵AD平分∠BAC,∴∠BAD=BAC=(180°﹣α﹣β),∵AP平分∠BAE,∴∠BAP=BAD=(180°﹣α﹣β),∴∠PGF=∠AGB=180°﹣∠B﹣∠BAP=180°﹣α﹣(180°﹣α﹣β)=135°﹣α+β,∵PF平分∠EFB,∴∠PFB=45°,∴∠P=180°﹣∠PFB﹣∠PGF=180°﹣45°﹣(135°﹣α+β)=α﹣β,故∠P不会发生变化.20.(1)解:∵∠C=40°,∠B=2∠C,∴∠B=80°,∴∠BAC=60°,∵AE平分∠BAC,∴∠EAC=30°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=50°,∴∠DAE=50°﹣30°=20°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.。
人教版数学八年级上册11.2与三角形有关的角同步训练一、单项选择题(下列选项中只有一个选项满足题意)1.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°2.在三角形中,最大的内角不小于( )A .30°B .45°C .60°D .90°3.ABC ∆的三条外角平分线相交构成一个111A B C ∆,则111A B C ∆( )A .一定是直角三角形B .一定是钝角三角形C .一定是锐角三角形D .不一定是锐角三角形4.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为( )A .85°B .75°C .60°D .45°5.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°6.如图,△ABC 中,∠C =80°,若沿图中虚线截去∠C ,则∠1+∠2=( )A .360°B .260°C .180°D .140°7.如图,下列说法中错误的是( )A .1∠不是三角形ABC 的外角B .12B ∠<∠+∠C .ACD ∠是三角形ABC 的外角D .ACD A B ∠>∠+∠8.如图,在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A ∠的度数是()A .45°B .50°C .55°D .80°9.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°10.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )A .3个B .4个C .5个D .6个11.如图,将ABC 沿MN 折叠,使//BC MN ,点A 的对应点为点'A ,若'32A ∠=︒,112B ∠=︒,则'A NC ∠的度数是( )A .114︒B .112︒C .110︒D .108︒12.如图所示,∠α的度数是( )A .10°B .20°C .30°D .40°二、填空题13.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.14.如图,一把直尺的边缘AB 经过一块三角板DCB 的直角顶点B ,交斜边CD 于点A ,直尺的边缘EF 分别交CD ,BD 于点E ,F ,若∠D =60°,∠ABC =20°,则∠1的度数为___.15.已知三角形三个内角度数之比为2:3:4,则与之对应的三个外角度数之比为_____________.16.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.三、解答题17.如图,AB ∥EF ,AD 平分∠BAC ,且∠C =45°,∠CDE =125°,求∠ADF 的度数.18.如图,在直角ABC △,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,AP 平分BAC ∠交BD 于点P .(1)APD ∠的度数为______.(2)若58BDC ∠=︒,求BAP ∠的度数.参考答案1.D2.C3.C4.B5.A6.B7.D8.B9.D10.A11.D12.A 13.32°14.50o15.7:6:516.3017.∠ADF=40°.18.(1)45°;(2)∠BAP=13°.。
人教版八年级数学上册《11.2与三角形有关的角》同步练习题-带答案一、单选题1.在△ABC 中,若一个内角等于另外两个角的差,则( )A .必有一个角等于30︒B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒2.在直角三角形中,一个锐角比另一个锐角的3倍少10︒,则两锐角的度数分别为( )A .20︒ 70︒B .25︒ 65︒C .30︒ 60︒D .35︒ 55︒3.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则△BDC 的度数为( )A .60°B .45°C .75°D .90°4.如图所示,直线a b ∥ 22B ︒∠= 50C ︒∠=则A ∠的度数为( )A .22︒B .28︒C .32︒D .38︒5.如图,△1=55°,△3=108°,则△2的度数为A .52°B .53°C .54°D .55°6.如图为商场某品牌椅子的侧面图110DEF ∠=︒,DE 与地面AB 平行45ABD ∠=︒,则ACB =∠( )A .70︒B .65︒C .60︒D .50︒7.如图,△1的度数为( )A .100°B .110°C .120°D .130°8.如图所示1∠、ACD ∠的度数分别为( )度A .80,35B .78,33C .80,48D .80,339.如图,在△ABC 中65B C ∠=∠=︒,将MNC 沿MN 折叠得MNC '△,若MC ′与ABC 的边平行,则C MN '∠的度数为( )A .57.5︒B .25︒C .57.5︒或25︒D .115︒或25︒10.如图,在△ABC 中90=BAC ∠︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法正确的个数是( )△ABE 的面积与BCE 的面积相等;△AFG AGF ∠∠=;△2FAG ACF ∠∠=;△HBC HCB ∠∠=A .4个B .3个C .2个D .1个二、填空题11.在∆ABC 中,∠A = 88︒,∠B - ∠C = 20︒,则∠C 的度数是 度.12.如图,直线a △b ,则△ACB =13.如图,AB △CD ,EP 平分△BEF ,FP 平分△DFE ,则△P = .14.如图,在△ABC 中60C ∠=︒,ABC 的高AD ,BE 相交于点F .则AFB ∠的度数是 .15.如图,在Rt ABC △中90C ∠=︒,AD 平分CAB ∠交BC 于点D ,BE AD ⊥交AD 的延长线于点E .若24DBE ∠=︒,则CAB ∠= .三、解答题16.在△ABC中,△B=△A+5°,△C=△B+5°,求△ABC的各内角的度数.17.如图,AB△CD,△A=45°,且OC=OE,求△C 的度数.18.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O70∠=︒.C∠的度数;(1)若60ABC∠=︒,求DAE(2)求∠BOE的度数.19.如图,以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处.(注:△DOE =90°)(1)如图△,若直角三角板DOE的一边OD放在射线OB上,且△BOC=70°,则△COE=°;(2)如图△,将直角三角板DOE绕点O逆时针方向转动到某个位置时,△BOC=70°,使OD在△BOC内部,且满足△AOE=5△COD,求△BOD的度数;(3)如图△,将直角三角板DOE绕点O逆时针方向转动到如图所示位置时,若OE恰好平分△AOC,试说明OD所在射线是△BOC的平分线.参考答案1.D2.B3.C4.B5.B6.B7.C8.D9.C10.B11.3612.78°/78度13.90°.14.120︒/120度15.48︒/48度16.△B=60°,△A=55°,△C=65°.17.22.5°18.(1)5︒(2)55︒19.(1)20;(2)65°;。
第11章《三角形》
同步练习
(§11.2 与三角形有关的角)
班级学号姓名得分
1.填空:
(1)三角形的内角和性质是____________________________________________________.
(2)三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的
推理过程如下:
已知:△ABC,
求证:∠BAC+∠ABC+∠ACB=______.
证明:过A点作______∥______,
则∠EAB=______,∠F AC=______.
(___________,___________)
∵∠EAF是平角,
∴∠EAB+______+______=180°.( )
∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.( )
即∠ABC+∠BAC+∠ACB=______.
2.填空:
(1)三角形的一边与_________________________________________叫做三角形的外角.
因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.
(2)利用“三角形内角和”性质,可以得到三角形的外角性质?
如图,∵∠ACD是△ABC的外角,
∴∠ACD与∠ACB互为______,
即∠ACD=180°-∠ACB.①
又∵∠A+∠B+∠ACB=______,
∴∠A+∠B=______.②
由①、②,得∠ACD=______+______.
∴∠ACD>∠A,∠ACD>∠B
由上述(2)的说理,可以得到三角形外角的性质如下:
三角形的一个外角等于____________________________________________________.
三角形的一个外角大于____________________________________________________.
3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,
求:∠1+∠2+∠3.
(2)结论:三角形的外角和等于______.
4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.
5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.
6.依据题设,写出结论,想一想,为什么?
已知:如图,△ABC中,∠ACB=90°,则:
(1)∠A+∠B=______.即∠A与∠B互为______;
(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.
7.填空:
(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.
(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=
______.
(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.
(4)如图,直线a∥b,则∠A=______度.
(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.
(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.
(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______
(8)在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=______,∠B=______,
∠C=______.
8.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.
9.已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数.
(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.
10.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB.
(1)若∠A=46°,求∠BOC;
(2)若∠A=n°,求∠BOC;
(3)若∠BOC=148°,利用第(2)题的结论求∠A.
11.已知:如图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.
(1)若∠A=46°,求∠BOC;
(2)若∠A=n°,用n的代数式表示∠BOC的度数.
12.类比第10、11题,若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=n°,画出图形并用n的代数表示∠BOC.
13.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB;∠CNB=3∶2
求∠CAB的度数.
14.如图,已知线段AD、BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.。