黄冈市2012年中考数学适应性模拟试题十二
- 格式:doc
- 大小:588.50 KB
- 文档页数:11
备战2012中考:三角形的边与角精华试题汇编一、选择题1. (2011福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D . 5【答案】C2. (2011山东滨州,5,3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9 【答案】B3. (2011山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于 A .30° B .45° C .60° D .75°【答案】D4. (2011山东济宁,3,3分)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 【答案】B5. (2011浙江义乌,2,3分)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm 【答案】B6. (2011台湾台北,23)如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。
判断下列作法何者正确?E A BCD 30°45° α图3A . 作中线AD ,再取AD 的中点OB . 分别作中线AD 、BE ,再取此两中线的交点OC . 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD . 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O【答案】B7. (2011台湾全区,20)图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分?A . 11B . 12C . 13D . 14 【答案】B8. (2011江苏连云港,5,3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )【答案】C9. (2011江苏苏州,2,3分)△ABC 的内角和为 A.180° B.360° C.540° D.720° 【答案】A 10.(2011四川内江,2,3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是A .32°B .58°C .68°D .60°12【答案】C11. (2011湖南怀化,2,3分)如图1所示,∠A、∠1、∠2的大小关系是A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠1【答案】B12. (2011江苏南通,4,3分)下列长度的三条线段,不能组成三角形的是3,8,4 B. 4,9,6 C. 15,20,8 D. 9,15,8【答案】A13. (2011四川绵阳5,3)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为BA.75° B.95° C.105° D.120°【答案】C14. (2011四川绵阳6,3)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?A.0根 B.1根 C.2根 D.3根【答案】B15. (2011广东茂名,2,3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=A.6 B.8 C.10 D.12【答案】C16. (2011山东东营,5,3分)一副三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75 B.60 C.65 D.55【答案】A17. (2011河北,10,3分)已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A .2B .3C .5D .13 【答案】B18. (2011湖北孝感,8,3分)如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O,点F 、G 分别是BO 、CO 的中点,连结AO.若AO=6cm ,BC=8cm ,则四边形DEFG 的周长是( )A.14cmB.18cmC.24cmD.28cm 【答案】A 二、填空题1. (2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不唯一,如5、6等2. (2011浙江省舟山,14,4分)如图,在△ABC 中,AB=AC ,︒=∠40A ,则△ABC 的外角∠BCD= 度.【答案】1103. (2011湖北鄂州,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.【答案】50°4. (2011宁波市,17,3分)如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC =cmAP第8题图(第14ABCD【答案】85. (2011浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不惟一,在4<x<12之间的数都可6. (2011江西,13,3分)如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC+∠PCA+∠PAB = 度.第13题图 【答案】907. (2011福建泉州,15,4分)如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点18AD BC PEF =∠=,,则PFE ∠的度数是 .【答案】188. (2011四川成都,13,4分) 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE=4, 则AB= .【答案】8.9. (2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。
黄冈市2012年中考数学摸拟试题命题人:浠水县英才学校 占 政 时间:120分钟 满分:120分考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
一、认真填一填(本题有8个小题,每小题3分,共24分) 1. 化简.16的平方根为 。
(原创) 2.分解因式:a 2b -2ab 2+b 3= .(原创) 3.函数y =3-x x 中自变量x 的取值范围是__________.4.任何一个正整数 都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解 (p≤q )称为正整数 的最佳分解,并定义一个新运算 .例如:12=1×12=2×6=3×4,则F (24)= .(2011年中考模拟卷选择题改编)5.在Rt ABC ∆中, AC =6cm ,BC =8cm ,以BC 边所在的直线为轴,将ABC ∆ 旋 转一周,则所得到的几何体的表面积是 2cm .(结果保留π) (原创)6.如图,已知正三角形ABC 的边长为6,在△ABC 中作内切圆O 及三个角切圆(我们把与角两边及三角形内切圆都相切的圆叫角切圆),则△ABC 的内切圆O 的面积为 ;图中阴影部分的面积为 . (2012年中考模拟卷改编)7.如图,在直角坐标系中,已知点0P 的坐标为(10),,将线段0O P 按逆时针方向旋转45,再将其长度伸长为0O P 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2O P ;如此下去,得到线段3O P ,4O P , ,n O P (n 为正整数)则点6P 的坐标是 ;56P OP △的面积是 ;(摘录)第8题5PBCA E 1 E 2 E 3D 4D 1 D 2D 3(第10题图)8.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S 是 .(改编)二、仔细选一选(本题10小题,每小题3分,共21分) 9. 计算错误的是( )A.1)2012(0=-B.393-=-C.2)21(1=- D.()81322=10 (改编自网络)如图6,边长为n 的正ΔDEF 的三个顶点恰好在边长为m 的正ΔABC 的各边上,则ΔAEF 的内切圆半径为:( )(A) ()6m n -(B))4m n -(C)()3m n - (D))2m n -11.现给出下列四个命题:①无公共点的两圆必外离 ②位似三角形是相似三角形③菱形的面积等于两条对角线的积 ④三角形的三个内角中至少有一内角不小于600其中不正确的命题的个数是( )(原创)13.不等式组⎩⎨⎧8-3x ≥-1x -1>0的解集是( )A .x ≤3B .1<x ≤3C .x ≥3D .x >1 14.已知点P 是半径为5的⊙O 内一定点,且OP =4,则过点P 的所有弦中,弦长可能取到的整数值为( ) A. 5,4,3 B. 10,9,8,7,6,5,4,3C. 10,9,8,7,6D. 12,11,10,9,8,7,6 15. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1C D 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1C D 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233B D E B D E B D E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则( )A .n S =14nABC S △ B .n S =13n +ABC S △ C .n S =()121n +ABC S △ D .n S =()211n +ABC S △图6三.解答题(共9道大题,共75分) 16.(本小题满分5分)先化简再求值:11131332--+÷--x x x x x ,并从不等式组x - 3(x-2) ≥24x - 2 < 5x + 1的解中选一个你喜欢的数代入,求原分式的值。
黄冈2012年中考数学三套模拟 纠错题一、填空题1、4的平方根是____________.2、北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.00000166秒.这里的0.00000166秒请你用科学记数法表示为________秒.(保留两个有效数字)3、若 与 互为相反数,则 的值为____________.4、如图,在直角坐标系中,已知菱形ABCD 的面积为3,顶点A 在双曲线 上,CD 与y 轴重合,则k 的值是____________.5、分解因式:2212123b ab a +-= .第6题图6、已知三个边长分别为4、5、9的正方形如图排列,则图中阴影部分面积为__________.7、如图,一副三角板拼在一起,O 为AD 的中点,AB =4.将△ABO 沿BO 对折于△A ′BO ,M 为BC上一动点,则A ′M 的最小值为____________.8、如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C的面积为,…,△的面积为,则S 5=____________.9、如图,正方形A1B1P1P2的顶点P1、P2在反比例函数(x >0)的图像上,顶点A1、B1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数(x >0)的图象上,顶点A2在x 轴的正半轴上,则点P3的坐标为__________.10、如图,正方形ABCD 的面积为3,点E 是DC 边上一点,DE =1,将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F ,则FC 的长为 .11、在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按如图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-),则点3A 的坐标是________________;点n A 的坐标是___________.第10题图 第11题图二、选择题1、已知关于x 的方程有两个不相等的实根为x 1、x 2,且满足.则a 的值是( )A .-3B .4C .-3或4D .1 2、如图所示,在矩形ABCD 中,垂直于对角线BD 的直线,从点B 开始沿着线段BD 匀速平移到D .设直线l 被矩形所截线段EF 的长度为y ,运动时间为t ,则y 关于t 的函数的大致图象是( )3、已知:如图,△ABC 内接于⊙O ,AB 为直径,弦于,是弧的中点,连结并延长交的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .则下列说法中正确的个数为 ①CO ⊥AD ②∠COB =2∠GDC ③P 是△ACQ 的外心④若, 则= ⑤ ⑥A .3B .4C .5D .64、如果0.06005是由四舍五入法得到的近似数,则它有( )个有效数字.A .6B .5C .4D .35、如图,分别以Rt △ABC 的斜边AB 、直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,连接DF 、EF 、DE ,EF 与AC 交于点O ,DE 与AB 交于点G ,连接OG ,若,下列结论:①△DBF ≌△EFA ;②AD =AE ;③EF ⊥AC ;④AD =4AG ;⑤△AOG 与△EOG 的面积比为1∶4.其中正确结论的个数是( )A .2个B .3个C .4个D .5个第3题6、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形;B .等腰梯形;C .平行四边形;D .正十边形7、如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D . 若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40° 第7题图8、 对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是 ( )A .3,6B .2,6-C .2,6D .2-,6三、解答题1、 为迎接黄冈市体育中考,我校对全体初三学生60秒跳绳的次数进行了统计,全年级平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点).求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全年级平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过年级平均次数的概率是多少?2、 为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.3、 我市城市规划期间,欲拆除沿江路一电线杆AB (如图),已知望月堤D 距电线杆AB 水平距离为14m ,背水面CD 的坡度i =2∶1,堤高CF 为2m ,在堤顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2m 的人行道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域)(,)4、 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求tan ∠DCE 的值.5、 如图,△ABC 内接于⊙O ,AD 是 ⊙O 直径,E 是CB 延长线上一点,且∠BAE =∠C.(1)求证:直线AE 是⊙O 的切线;(2)若EB=AB ,54 E cos ,AE =24,求EB 的长及⊙O 的半径.6、 某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表: 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份(10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y 1与x 之间的函数关系式,根据如图所示的变化趋势,直接写出y 2与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p 1(万件)与月份x 满足函数关系式p 1=0.1x +1.1(1≤x ≤9,且x 取整数),10至12月的销售量p 2 (万件)与月份x 满足函数关系式p 2=-0.1x +2.9(10≤x ≤12,且x 取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少8a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润85万元的任务,请你计算出a 的值.月份x 1 2 3 4 5 6 7 8 9价格y 1(元/件) 56 58 60 62 64 66 68 70 727、 某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资50万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x (万元)之间的函数关系满足;该产品的外地销售量y2(万台)与外地广告费用t (万元)之间的函数关系可用如图所示的抛物线和线段AB 来表示.其中点A 为抛物线的顶点.(1)结合图象,写出y2(万台)与外地广告费用t (万元)之间的函数关系式;(2)求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式;(3)如何安排广告费用才能使销售总量最大?8、 已知直线y =kx +6(k<0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒2个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒. (1)当k =-1时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1).①直接写出t =1秒时C 、Q 两点的坐标;②若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2),①求CD 的长; ②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?第7题9、(14分)如图,已知抛物线对称轴为直线x =4,且与x 轴交于A 、B 两点(A 在B 左侧),B 点坐标为(6,0),过点B 的直线与抛物线交于点C (3,).(1)写出点A 坐标;(2)求抛物线解析式;(3)在抛物线的BC 段上,是否存在一点P ,使得四边形ABPC 的面积最大?若存在,求出这个最大值及此时点P 的坐标;若不存在,请说明理由;(4)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动,同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动,当其中一个点停止运动时,另一个点也随之停止运动.设运动时间为t 秒,当t 为何值,△MNB 为等腰三角形,写出计算过程.10、(本题满分14分).如图,∠C =90°,点A 、B 在∠C 的两边上,CA =30,CB =20,连结AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P 与B 、C 两点不重合时,作PD ⊥BC 交AB 于D ,作DE ⊥AC 于E .F 为射线CB 上一点,且∠CEF =∠ABC .设点P 的运动时间为x (秒).(1)用含有x 的代数式表示CF 的长.(2)求点F 与点B 重合时x 的值.(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y (平方单位).求y 与x 之间的函数关系式.(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 值.第9题。
黄冈市2012年中考数学适应性模拟试题六二、选择题(请将下列各题中唯一正确答案的序号填入题后的括号内,不填、错填或多填均不得分,每小题3分,共18分)9.2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担.135万用科学记数法可表示为( ) A .60.13510⨯B .61.3510⨯C .70.13510⨯D .71.3510⨯10.如图是某几何体的三视图及相关数据,则判断正确的是( ) A .a c >B .b c >C .2224a b c +=D .222a b c +=2x +(R+r)x+241d =0没有实根,其中R 、r 分别为⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则两圆的公切线的条数为( )12. 请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作轴对称图形的有( )个A.4B.3 C 13、下列运算正确的是( )A 、235a b ab +=B 、623a a a ÷=C 、222()a b a b +=+D 、325·a a a = 14.如图,在□ABCD 中,点M 为CD 中点,AM 与BD 相交于点 N ,如果S △DMN=1 那么S □ABCD = ( )A. 12B.9C. 8D. 62a bc 第6题图主视左视俯视ABCDMN 第14题15.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( ) A .31 B .41 C .51D .5516.某学生每天早晨骑自行车上学,早晨7点准时出发,以某一速度匀速前进。
一天早上,由于有事,停下耽误了几分钟为了按时到校,他加快了速度,仍匀速前进,结果准点到校。
这位同学这天早上7点出发的路程S(千米)与时间t(小时)的函数图像如图所示,则这位同学准点到校的时间为( )三、解答题 17.(6分)解方程xx--=212-x 1-318.(6分).如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .(1)写出图中不全等的两个相似三角形(不要求证明); (2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段, 请选出其中一对加以证明.第8题图FAG H D E B锻炼未超过1小时人数频数分布直方图原因人数不喜欢没时间 其它270超过1小时未超过1小时19.(本题满分6分)国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此,某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”的人数是多少?并补全频数分布直方图;(3)2010年这个地区初中毕业生约为万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?45,60∠,三名救生员同时从BCD≈).(参考数据2≈ 1.7时间t(天) 1 3 5 10 36 …日销售量m(件)94 90 84 76 24 …18.解:(1)∆AEH与∆DFH.(或∆AEH与∆BEG,或∆BEG与∆CFG,或∆DFH与∆CFG)(2)OE =OF .证明:∵四边形ABCD 是平行四边形,AB ∴∥CD ,AO CO =EAO FCO ∠=∠∴,AOE COF ∠=∠∵,∴△AOE ≌△COF ,OE OF =∴(注意:此题有多种选法,选另外一对的,按此标准评分)19.. (1)4136090=∴选出的恰好是“每天锻炼超过1小时”的学生的概率是41. (2)720×(1-41)-120-20=400(人)∴“没时间”的人数是400人.补全频数分布直方图略.×(1-41)=2.4(万人) ∴2010年全州初中毕业生20(1)略 (2)52421. 设:甲种货车x 辆,则乙种货车(10-x )辆;列不等式组得4x+2(10-x)≥30 ① x ≥5解得:x+2(10-x)≥13 ② x ≤7∴5≤x ≤7,∴x 为5、6、7,x-10为5、4、3共三种安排方案。
黄冈市2012年初中毕业生学业考试数学试题(满分:120 分考试时间:120 分钟)一、选择题(下列各题A、B、C、D 四个选项中,有且仅有一个是正确的,每小题3 分,共24 分)1.下列实数中是无理数的是2.2012 年5 月25 日有700 多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909 260 000 000 元,将909 260 000000 用科学记数法表示(保留3 个有效数字),正确的是A.909×1010B.9.09×1011C.9.09×1010D.9.0926×10113.下列运算正确的是4. 如图,水平放置的圆柱体的三视图是5. 若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是A. 矩形B. 菱形C. 对角线互相垂直的四边形D. 对角线相等的四边形6.如图,AB 为⊙O 的直径,弦CD⊥AB 于E,已知CD=12,则⊙O 的直径为A. 8B. 10C.16D.207.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确命题有A. 1 个B. 2 个C. 3 个D. 4 个8. 如图,在Rt △ ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒cm的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设Q点运动的时间t 秒,若四边形QPCP′为菱形,则t 的值为二、填空题(共8 小题,每小题3 分,共24 分)9.- 的倒数是__________.10.分解因式x3-9x=__________.11.化简的结果是.12.如图,在△ ABC 中,AB=AC,∠A=36°,AB的垂直平分线交AC 于点E,垂足为点D,连接BE,则∠EBC 的度数为________.13.已知实数x 满足x+=3,则x2+的值为_________.14.如图,在梯形ABCD 中,AD∥BC ,AD=4,AB=CD=5,∠B=60°,则下底BC 的长为________.15.在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A、B、C 的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为__________.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100 千米/时;②甲、乙两地之间的距离为120 千米;③图中点B 的坐标为(3,75);④快递车从乙地返回时的速度为90 千米/时.以上4 个结论中正确的是____________(填序号)三、解答题(共9 小题,共72 分)17.(5分)解不等式组18.(7分)如图,在正方形ABCD 中,对角线AC、BD 相交于点O,E、F 分别在OD、OC 上,且DE=CF,连接DF、AE,AE 的延长线交DF于点M.求证:AM⊥DF.19.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号l、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.20.(6 分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15 名学生家庭的年收入情况,数据如下表:(1)求这15 名学生家庭年收入的平均数、中位数、众数.(2)你认为用(1)中的哪个数据来代表这15 名学生家庭年收入的一般水平较为合适?请简要说明理由.21.(6 分)某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A、B 两个制衣车间,A 车间每天加工的数量是B车间的1.2 倍,A、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A、B 两车间每天分别能加工多少件.22.(8 分)如图,在△ABC 中,BA=BC,以AB 为直径作半圆⊙O,交AC 于点D.连结DB,过点D 作DE⊥BC,垂足为点E.(1)求证:DE 为⊙O 的切线;(2)求证:DB2=AB·BE.23.(8 分)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B 四点在平行于斑马线的同一直线上.)(参考数据:tan15°=2-,sin15°=cos15°=≈1.732,≈1.414)24.(12 分)某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)25.(14 分)如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m 的值.(2)在(1)的条件下,求△BCE 的面积.(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH 最小,并求出点H 的坐标.(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.。
初中数学试题p54190题型:填空题难度:中等来源: 2012年湖北省黄冈市黄州中学中考数学二模试卷(解析版)函数的自变量x的取值范围是.难度:中等来源: 2012年湖北省黄冈市黄州中学中考数学二模试卷(解析版)-7的倒数是.难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)如图,菱形OABC放在平面直角坐标系内,点A在x轴的正半轴上,点B在第一象限,其坐标为(8,4).抛物线y=ax2+bx+c过点O、A、C.(1)求抛物线的解析式;(2)将菱形向左平移,设抛物线与线段AB的交点为D,连接CD.①当点C又在抛物线上时求点D的坐标;②当△BCD是直角三角形时,求菱形的平移的距离.难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)如图,草原上有A,B,C三个互通公路的奶牛养殖基地,B与C之间距离为100千米,C在B的正北方,A在C的南偏东47°方向且在B的北偏东43°方向.A 地每年产奶3万吨;B地有奶牛9 000头,平均每头牛的年产奶量为3吨;C 地养了三种奶牛,其中黑白花牛的头数占20%,三河牛的头数占35%,草原红牛有4500头,其他情况反映在表格中.C基地平均每头牛年产量黑白花牛5吨/年三河牛 3.1吨/年草原红牛 2.1吨/年(1)比较B地与C地中,哪一地平均每头牛的年产奶量更高?(2)如果从B,C两地中选择一处建设一座工厂解决三个基地的牛奶加工问题,当运送一吨牛奶每千米的费用都为1元难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)某校学生会准备调查初中2010级同学每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到初中2010级每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理;(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,则他们共调查了多少名学生?请将两个统计图补充完整;(3)若该校初中2010级共有240名同学,请你估计该年级每天(除课间操外)课外锻炼时间不大于20分钟的人数.(注:图2中相邻两虚线形成的圆心角为30°.)难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)如图,在平面直角坐标系中,点B的坐标为(3,0),OA=6,将△AOB绕点O 逆时针旋转60°,点A落在点C处,点B落在点D处,作出△COD(尺规作图,保留作图痕迹,不要求写作法).难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)题型:解答题难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)如图,小丽在观察某建筑物AB.(1)请你根据小亮在阳光下的投影,画出建筑物AB在阳光下的投影;(2)已知小丽的身高为1.65m,在同一时刻测得小丽和建筑物AB的投影长分别为1.2m和8m,求建筑物AB的高.难度:中等来源: 2012年湖南省岳阳市中考数学模拟试卷(四)(解析版)计算:-a-1.。
二次函数的图象和性质一、选择题1、(2012年浙江金华一模)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+- C .()213y x =-- D .()213y x =-+答案:D2、.(2012年浙江金华四模)抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1)答案:C3、(2012年浙江金华五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ▲ ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A4、(2012年浙江金华五模)抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3答案:B5、(2012江苏无锡前洲中学模拟)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x =C .2225y x= D .245y x =答案:B(第1题) AB D6.(2012荆门东宝区模拟)在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).(第2题)答案:D7. (2012年江苏海安县质量与反馈)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是A .y =2x 2+2B .y =2x 2-2C .y =(x -2)2D .y =2(x +2)2答案:D.8. (2012年江苏沭阳银河学校质检题)下列函数中,是二次函数的是(▲) A 、xx y 12-= B 、x x y 322+= C 、22y x y +-= D 、1+=x y 答案: B.9. (2012年江苏沭阳银河学校质检题)抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y下列说法①抛物线与x 轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=21,④在对称轴的左侧,y 随x 的增大而增大,正确的有(▲) A 、1个 B 、2个 C 、3个 D 、4个 答案:C.10.马鞍山六中2012中考一模).二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是( )A .B .C .D .答案:A11.(2012荆州中考模拟).将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 答案:A12.(2012年南岗初中升学调研).抛物线y=一x2-2与y轴的交点坐标是( )。
黄冈市2012年中考数学适应性模拟试题十一一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求)2)2(-的结果正确的是( )A .-2B .2C .±2D .42.对于抛物线3)5(312+--=x y ,下列说法正确的是( ) A.开口向下,顶点坐标(5,3) B. 开口向上,顶点坐标(5,3) C. 开口向下,顶点坐标(-5,3) D. 开口向上,顶点坐标(-5,3) 3.二次函数c bx ax y ++=2的图像如图所示,则点Q ( a,bc)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.如图,四个边长为2的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为2,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( )A .30° B.45°C.60°D.90°5.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s6.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动.设运动时间为t (s ),∠APB=y(°),则下列图象中表示y 与t 之间函数关系最恰当的是( )7.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( ) A .25πB .65πC .90πD .130πB 4题图第6题图OPDCBA AB CD8.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( ) A . 33 B .23C .42D .32二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上)9.=⋅-312。
黄冈市2012年中考数学选择、填空易错题一、填空题。
1. 关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是m >2 且m ≠3.2. 已知二次函数y =a (a +1)x2-(2a +1)x +1,当a 依次取1,2,…,2012时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2012B 2012的长度之和为. 3.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下, 剪下一个边长等于矩形宽度的正方形(称为第一次操作); 再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩 形宽度的正方形(称为第二次操作);如此反复操作下去. 若在第n 此操作后,剩下的矩形为正方形,则操作终止. 当n =3时,a 的值为__0.6或0.75__. 4. 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__625__。
7. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时, x 的取值范围是x <-1或x >2 。
二、选择题。
第一次操作第二次操作第2题图(1)A 1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第2题图(2)第7题图8.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E,AE=3,ED=4,则AB 的长为( C )A 3B 23C 21D 359.如图,已知A 、B 是反比例函数k y x=(k >0,x <0)图象上的两点, BC ∥x 轴,交y 轴于点C 。
B 第12题黄冈市2012年中考数学适应性模拟试题十二分值120分一、选择题(A,B,C,D 四个答案中,有且只有一个是正确的每小题3分,共24分) 1.3)2(-等于( )A .6-B .6C .8-D .8 2.下列运算,正确的是( )A .523a a a =⋅B .ab b a 532=+C .326a a a =÷D .523a a a =+3. 函数y =x -2+31-x 中自变量x 的取值范围是( )A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 4.如图,是一个正五棱柱,作为该正五棱柱的三视图,下列四个选项中,错误的一个是( )5. 如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P =90°,则∠3=( )度 A. 35 B. 55 C. 60 D. 706. .今年我省遭遇历史罕见的干旱,全省八十多个县(市)不同程度受灾,直接经济损失达2 870 000 000元,这笔款额用科学记数法(保留两个有效数字)表示正确的是( ) A .28.7×108 B .2.87×109 C .2.8×109 D .2.9×1097. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>8. 函数y= 4x 和y=1x 在第一象限内的图像如图,点P 是y= 4x 的图像上一动点,PC ⊥x 轴于点C ,交y=1x 的图像于点B.给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA= 13AP.其中所有正确结论的序号第8题l 1l 2l 3 3 12 P(第5题)A B C D是( )A. ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题(每小题3分,共24分) 9. 4的平方根是-----------。
B 第12题黄冈市2012年中考数学适应性模拟试题十二分值120分 命题人:巴驿中学 宋腊平一、选择题(A,B,C,D 四个答案中,有且只有一个是正确的每小题3分,共24分) 1.3)2(-等于( )A .6-B .6C .8-D .8 2.下列运算,正确的是( )A .523a a a =⋅B .ab b a 532=+C .326a a a =÷D .523a a a =+3. 函数y =x -2+31-x 中自变量x 的取值范围是( )A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 4. 如图,是一个正五棱柱,作为该正五棱柱的三视图,下列四个选项中,错误的一个是( )5. 如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P =90°,则∠3=( )度 A. 35 B. 55 C. 60 D. 706. .今年我省遭遇历史罕见的干旱,全省八十多个县(市)不同程度受灾,直接经济损失达2 870 000 000元,这笔款额用科学记数法(保留两个有效数字)表示正确的是( ) A .28.7×108 B .2.87×109 C .2.8×109 D .2.9×1097. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>8. 函数y= 4x 和y=1x 在第一象限内的图像如图,点P 是y= 4x 的图像上一动点,PC ⊥x 轴于点C ,交y=1x 的图像于点B.给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA= 13AP.其中所有正确结论的序号第8题l 1 l 2l 3 3 12 P(第5题)A B C D是( )A. ①②③ B. ②③④ C. ①③④ D. ①②④ 二、填空题(每小题3分,共24分) 9. 4的平方根是-----------。
10. 抛物线y =x 2-4x +m2 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.11.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是----------.12. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6,sin B =13,则线段AC 的长是------------.13. .代数式3x 2-4x -5的值为7,则x 2- 43 x -5的值为_______________.14. .如图, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是------------.15.如图,在平行四边形ABCD 中,E 是AD 边上的三等分点.若∠AEB=∠BDC ,AB=3, 则平行四边形ABCD 的周长是 .16如图,平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……,依次类推,这样作的第n 个正方形对角线交点的坐标为M n ____________.三、解答题(本大题共72分)17.(本题满分5分)解不等式组⎪⎩⎪⎨⎧≥②-x6)1x +(3-1①1<x-3+32x -解,由①得 -2x<-10 x>5由②得 -2x≥8 x≤-4 所以此不等式组无解第15题图18.(本题6分)果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(1(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B 的概率.19.(本题6分)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.20,(本题6分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个第24题转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m ,乙转盘中指针所指区域内的数字为n (若指针指在边界线上时,重转一次,直到指针都指向一个区域为止). (1)请你用画树状图或列表格的方法求出|m+n|>1的概率; (2)直接写出点(m ,n )落在函数y=- 图象上的概率.21、(本题满分7分)2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心。
“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水? 22、(本题满分8分)如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD .(1)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切. (2)若AD =3,BD =4,求边BC 的长;1 xA BE F QP 23、(本题满分8分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z (元)与生产时间x (天)的关系如图所示.(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?25(本题14分)如图(1),直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.16,(2n -12n ,12n )17,解,由①得 -2x<-10 x>5由②得 -2x≥8 x≤-4 所以此不等式组无解19,(1)证明:∵四边形ABCD 是正方形 ∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE∴∠BEC =∠DEC =12∠BED …………4分 ∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分21., 解,设原计划每天生产x 吨纯净水则x 1800—x5.11800=3 解之得 x=200经检验x=200是原方程的解且符合题意 答 原计划每天生产200吨纯净水22, 解 (1)证明:连接OD 则OD=OB∴∠OBD =∠BDOAB 是直径 ∴∠ADB =90°∴∠ADB =∠BDC =90°在R t △BDC 中, E 是BC 的中点∴BE=CE=DE ∴∠DBE =∠BDE又∠ABC =∠OBD +∠DBE =90°∴∠ODE =∠BDO +∠BDE =90° 即ED 与⊙O 相切.(2)在R t △ABD 中AD =3,BD =4 ∴AB=5又在R t △BDC 和R t △ADB 中∠ADB =∠BDC =90°,∠ABC =90°∴∠ABD =∠BCD ∴ △BDC ∽△ADBAB BC ∴=ADBD .即5BC =34 得 BC=3202324, 解:(1)由表格知,y 是x 的一次函数设y=kx+b 则 , ∴; ∴y=2x+20;检验:当x=3时,y=2×3+20=26, 当x=4时,y=2×4+20=28, ∴(3,26),(4,28)均满足y=2x+20; (2)由题意得:z=400(1≤x≤5的整数),当6≤x≤12的整数时, 设z=k′x+b′, ∴.∴,∴z 1=40x+200;当1≤x≤5时.W 1=(2x+20)(1570-400),即W 1=2340x+23400,∵2340>0,∴W 1随x的增大而增大.∴x=5时,W最大=2340×5+23400=35100(元),当6≤x≤12时,W 2=(2x+20)(1570-40x-200)=(2x+20)(1370-40x),即W 2=-80x 2++1940x+27400,∵-80<0,∴开口向下对称轴x=-=12,在对称轴的左侧,W随x的增大而增大.∴当x=12时,W 2最大=39160(元)∵39160>35100,∴第12天获得最大利润为39160元;(3)设捐款a元后的利润为Q(元)∵6≤x≤12,∴Q=(2x+20)(1570-40x-200-a)=(2x+20)(1370-2a)x+27400-20a,∵-80<0,开口向下,对称轴x=,在对称轴的左侧,Q随x的增大而增大.∴≥12,∴a≤10,∴a的最大值是10,共得到基金(32+34+36+38+40+42+44)×10=2660(元)第11 页共11 页。