反应堆冷中子源中子物理学计算_胡春明
- 格式:pdf
- 大小:1015.37 KB
- 文档页数:3
反应堆物理学反应堆物理学是研究核能反应堆运行原理和性能的学科。
它涉及到核反应、能量释放、中子传输、材料辐照、热工水力、放射性物质扩散等诸多方面。
本文将从反应堆物理学的基本概念、物理过程以及应用领域等方面进行阐述。
一、反应堆物理学的基本概念反应堆物理学是研究核反应堆内核燃料的裂变链式反应及其相关性质的学科。
核反应堆是利用裂变链式反应释放巨大能量的装置。
核反应堆中的核燃料经过裂变反应产生的中子激发其他核燃料,形成连锁反应。
为了保持连锁反应的平衡,需要控制中子的数量和速度,以确保核反应堆的稳定运行。
核反应堆物理学的主要物理过程包括中子源、中子传输、中子裂变、中子乘积因子、反应堆动力学等。
中子源是指产生中子的方式,可以是自发裂变、质子轰击等方式。
中子传输是指中子在核燃料和反应堆结构中的传输过程,包括散射、吸收和漫反射等。
中子裂变是指核燃料中子吸收后分裂成两个或多个碎片的过程。
中子乘积因子是指每一次裂变反应中产生的中子数与前一次裂变反应中的中子数的比值,它决定了反应堆的稳定性。
反应堆动力学是指反应堆的响应速度和稳定性,包括反应堆的启动、停止和功率调节等过程。
三、反应堆物理学的应用领域反应堆物理学在核能领域具有广泛的应用。
首先,它在核电站的设计和运行中起着重要作用。
通过研究反应堆物理学,可以确定核燃料的组成和结构,优化反应堆的设计,提高核电站的经济性和安全性。
其次,反应堆物理学在核燃料循环中也发挥着重要作用。
通过研究反应堆物理学,可以确定核燃料的燃烧程度和寿命,优化核燃料的利用效率,减少核废料的产生。
此外,反应堆物理学还在核武器和核爆炸的研究中有所应用。
反应堆物理学是研究核反应堆运行原理和性能的学科。
它涉及到核反应、能量释放、中子传输、材料辐照、热工水力、放射性物质扩散等诸多方面。
反应堆物理学的基本概念、物理过程以及应用领域都为我们深入了解和应用核能提供了重要的理论基础。
通过不断深入研究和创新,反应堆物理学将为人类创造更加安全、高效和可持续的核能利用方式。
第二批复习-练习题详解1 中子(1)缓发中子的一个重要的特点是:在产生出来时,与大多数其它裂变中子相比,具有较低的动能。
选C项。
(2)由于缓发中子具有较低的动能,与瞬发中子进行比较,它们只需同慢化剂的核进行较少次数的碰撞就可以变为热中子,进而可能在反应堆燃料中引起热裂变。
也就是说,缓发中子更有可能在反应堆燃料中引起热裂变。
选C项。
(3)缓发中子是某些裂变碎片(即所谓先驱核)放射性衰变的产物。
选C项。
(4)在裂变中子中,瞬发中子占绝大部分(占裂变中子的99%以上)。
选C项。
(5)同第(2)题。
选D项。
(6)瞬发中子在裂变的10-17至10-14秒内(孕育时间)产生,而不到1%的缓发中子(以U-235为例)是在裂变后远大于上述时间(最大可达几分钟)内陆续发射出来的。
所以在裂变后10-6秒产生的中子是一个缓发中子。
选B项。
(7)缓发中子更有可能成为热中子,其理由见1-(2)题。
选B项。
(8)缓发中子的孕育时间约为12.5秒,中子的寿命约为10-5秒,所以平均代时间约为12.5秒。
选B项。
(9)因为瞬发中子的动能较大,要变成热中子,需要比缓发中子更多的碰撞次数。
选A项。
(10)因为瞬发中子的动能较大,当其能量大于1.1兆电子伏时,能引起U-238核的快裂变。
而缓发中子的初始能量较低(例如:U-235核热中子裂变的缓发中子能量小于500千电子伏),引起U-238核的快裂变的可能性很小。
选A项。
(11)U-238核的裂变具有阈能的特点:当中子的能量小于阈能时,裂变截面为0。
U-238核的裂变阈能大于1MeV。
热中子的能量接近零;刚产生的缓发中子的平均能量约为0.5MeV;U-238核的共振能区约在1000eV以下;只有刚产生的瞬发中子,其平均能量为2MeV,才有可能引起U-238核的快裂变。
所以可以排除A、C、D三项,选B项。
2 中子生命循环(12)eff k =1.002 > 1,但远远小于βeff 。
第38卷第2期原子能科学技术Vol.38,No.2 2004年3月Atomic Energy Science and TechnologyMar.2004利用蒙特卡罗方法计算6LiD 中子源的产额与能谱分布胡春明1,代君龙1,冯晰宇1,许淑艳2(1.中国工程物理研究院,四川绵阳 621900;2.中国原子能科学研究院,北京 102413)摘要:利用6LiD 中子源转换靶室将反应堆热中子转换成聚变谱中子,可用来进行聚变中子辐照环境下的材料性能研究。
应用蒙特卡罗方法模拟聚变谱中子的产生过程,从理论上验证了这种中子源的可行性。
初步计算表明:1个热中子作用在6LiD 源室外表面将在源室内腔中产生0.1314个快中子;所产生的快中子具有很好的聚变谱特点,能量集中在13.5~15.5MeV 之间。
关键词:6LiD 中子源转换靶室;蒙特卡罗方法;中子产额;能谱中图分类号:TL99 文献标识码:A 文章编号:100026931(2004)022*******C alculation of N eutron Yield and Spectrum of 6LiD N eutron Source From Monte 2C arlo SimulationHU Chun 2ming 1,DA I J un 2long 1,FEN G Xi 2yu 1,XU Shu 2yan 2(1.China Academy of Engineering Physics ,Mianyang 621900,China ;2.China Institute of A tomic Energy ,Beijing 102413,China )Abstract :6LiD neutron source ,which converts thermal neutrons from the reactor into fusion neutrons ,is useful in the field of the material research in fusion neutron irradiation environ 2ments.The process of fusion neutron production in 6LiD is simulated from Monte 2Carlo methods ,which indicates the feasibility of the type of neutron source in theory.In the pa 2per ,the calculation result shows that every one thermal neutron acts on the outside surface of the converter ,0.1314fusion neutrons with a spectrum ranging from 13.5to 15.5MeV are produced inside the converter.K ey w ords :6LiD converter ;Monte 2Carlo method ;neutron yield ;energy spectrum收稿日期:2003202217;修回日期:2003207201作者简介:胡春明(1970—),男,安徽桐城人,博士研究生,核物理专业 利用6LiD 在热中子反应堆上实现的聚变谱中子源可用于一些中子学的基础性研究及在聚变环境中子辐照下的材料变化行为的研究[1]。
㊀第44卷㊀第2期2024年㊀3月㊀辐㊀射㊀防㊀护Radiation㊀ProtectionVol.44㊀No.2㊀㊀Mar.2024㊃辐射防护监测㊃反应堆中子通量测量用裂变电离室探测装置研制邱顺利1,肖㊀伟1,董进诚1,葛孟团1,翟春荣2,汤仲鸣2,周宇琳1,曾㊀乐1,刘海峰1,孙光智1,程㊀辉1,石先武2,刘文臻2(1.武汉第二船舶设计研究所,武汉430205;2.国核自仪系统工程有限公司,上海200233)㊀摘㊀要:为建立一套用于反应堆中子通量测量的监测装置,以实现核电站堆外核测量系统测量要求,研制了一种长灵敏区㊁宽量程㊁高灵敏度和强γ抑制能力的裂变电离室探测装置㊂同时对该裂变电离室探测装置的热中子灵敏度㊁高压坪特性㊁甄别特性和γ感应度等典型核性能指标进行了试验验证㊂试验结果表明,该裂变电离室综合性能能够满足AP1000系列核电站堆外核测量系统中间量程测量通道的应用需求㊂关键词:中子通量测量;堆外核测系统;裂变电离室;高压坪特性;热中子灵敏度中图分类号:TL81文献标识码:A㊀㊀收稿日期:2022-12-19基金项目:大型先进压水堆及高温气冷堆核电站国家科技重大专项(2019ZX06002012)㊂作者简介:邱顺利(1992 ),男,2014年毕业于兰州大学核技术专业,2017年毕业于兰州大学核能与核技术工程专业,获硕士学位,工程师㊂E -mail:qsllzu2010@㊀㊀核电厂一般通过在反应堆压力容器周围布置若干个中子探测器来进行反应堆中子通量监测,进而推算出反应堆的实时功率,此即堆外核测系统㊂该系统将反应堆功率水平分为3个区段,即源量程㊁中间量程和功率量程,分别采用三种不同的热中子探测器,每两种相邻量程的探测器在测量范围上互为冗余㊂在三代核电如AP1000核电站中,裂变电离室用于堆外核测系统中间量程测量通道,用于监测反应堆10-6%RTP ~200%RTP(额定热功率)运行时的中子注量率[1-2]㊂裂变电离室具有测量范围宽㊁测量精度高㊁可靠性高㊁使用寿命长㊁具备事故后监测功能等优点㊂基于AP1000系列堆外核测系统中间量程测量通道工程应用需求,研制了一种裂变电离室探测装置,包括位于反应堆压力容器周围测量孔道内的裂变电离室探测器组件㊁位于安全壳内的四轴有机电缆㊁位于安全壳外的三轴有机电缆和位于辅助厂房的前置放大器,及其相关电缆连接器,用于反应堆正常运行工况和事故运行工况下的堆芯中子通量监测㊂1 裂变电离室探测器设计㊀㊀通常,裂变电离室包含一个收集极和一个高压极,收集极外壁和高压极内壁都镀有一层铀沉积层,即灵敏层㊂收集极和高压极为同轴圆柱形设置,在接近大气压的条件下用气体(常为氮氩混合物)填充其间的空间,并在两电极间施加电场㊂当中子在灵敏层引起裂变时,生成的裂变碎片很可能被弹射到气体中,引起气体电离㊂电离产生的电子和离子在电场的影响下向两极运动,并在收集极产生感生电荷,形成电流脉冲㊂裂变电离室结构如图1所示㊂图1中左侧表示两电极间裂变碎片沿着散射轨道电离气体产生的电子和离子漂移,空心圆和实心圆分别表示电子和离子,箭头显示它们分别漂移到相反的电极㊂铀层位于两个电极上,通常只有几微米厚,因为即使裂变碎片的能量很大,重离子通过致密铀化合物的范围也小于10μm㊂因此,尽管较厚的铀层会吸收更多的中子,但也导致大多数源自该铀层气体侧约8μm 以上的裂变碎片不会逃逸,因此其产生的影响没有机会被收集下来㊂最终,铀层厚度㊁裂变截面和灵敏区表面积都会限制裂变电离室的探测效率㊂由于裂变电离室在脉冲模式下具有一个更宽的脉冲频谱分布,导致其灵敏度范围可能较宽,最大灵敏度处于 α截止电压 U α,即α甄别特性曲线中计数率小于1时的甄别电压,裂变电离室最大中子计数灵敏度一般为0.6~0.8cm 2[1]㊂GB /T7164 2022规定,工作在脉冲模式下的裂变电离㊃431㊃邱顺利等:反应堆中子通量测量用裂变电离室探测装置研制㊀图1㊀裂变电离室结构原理图Fig.1㊀Schematic diagram of fission ionization chamber室推荐甄别电压为U n =1.1U α,因此,实际灵敏度比上述值更低㊂AP1000系列核电站对堆外核测系统裂变电离室的热中子灵敏度要求更高,需ȡ1.0cm 2,脉冲幅度需达到0.1pC 或者更高,增大了其设计难度㊂因此考虑从裂变电离室探测器的灵敏涂层厚度㊁工作气体和灵敏体积等关键因素出发进行裂变电离室结构设计㊂研究结果表明[3],探测器裂变材料的涂层厚度一般以不超过2mg /cm 2为宜㊂同时,铀膜的均匀性也是热中子灵敏度关键制约因素,故控制电极镀铀工艺至关重要㊂基于铀的自发衰变α粒子谱进行铀膜厚度定量测量[4]和铀与中子反应生成裂变碎片的量反推铀膜厚度的方法[5],搭建了一套灵敏涂层厚度分布测量装置,并对裂变电离室灵敏电极进行了抽样测量[6],其结果符合预期㊂采用在单原子分子气体中填充少量多原子分子气体的P10混合气体作为裂变电离室工作气体和增大灵敏电极面积的方式进一步增大其热中子灵敏度,如采用多电极结构㊁加长电极长度㊁在收集电极外表面和高压电极内表面均涂覆灵敏物质等㊂裂变电离室设计时,既要确保电离室对中子有足够高的灵敏度,又要控制电离室的电极结构,使绝大多数裂变碎片能完全沉积在灵敏腔体中,以获得足够高的脉冲输出㊂为了获得比较准确的理论值,需要对裂变碎片在裂变电离室中的运动径迹进行模拟计算㊂研究表明,热中子与235U 反应产生的裂变产物在填充气体中的射程,主要集中在9.5~10mm 之间,其中,质量较大的Cs 和Ba在10mm 附近,此即裂变电离室电极结构的较佳设计㊂此外,AP1000系列核电站堆外核测系统中间量程探测器耐事故环境要求较其他核电站更为苛刻,需经受4个月设计基准事故后化学/水淹浸没㊂探测器输出弱信号传输距离远,途经多个大型电机㊁阀门等大功率电气设备,同时距离其它系统的电缆较近,很容易受到干扰,在运核电站类似通道已出现多次闪发报警现象㊂为加强裂变电离室的抗干扰能力和耐恶劣环境性能,在常规同轴电离室结构外绝缘后增加外层承载结构,并设置减震结构㊁惰性氛围保护和多层密封防护,形成可靠的㊁耐受高温高压高湿强辐照环境的三同轴圆柱形全密封结构㊂综上,设计了一套长灵敏区(~900mm)㊁高压极内壁和收集极外壁均涂覆有高浓度裂变材料㊁外加密封保护承载体结构的裂变电离室,以满足AP1000电站堆外核测量系统中间量程探测器高灵敏度㊁宽测量范围㊁强抗干扰能力㊁耐受事故环境等要求㊂2㊀裂变电离室探测装置加工制造㊀㊀裂变电离室探测装置用于堆外核测量系统中间量程探测通道,主要包括裂变电离室探测器组件㊁电缆接线盒㊁前置放大器及其相关特殊电缆和连接器㊂裂变电离室探测器组件包括裂变电离室探测器㊁慢化体组件㊁延伸组件㊁安装支座组件和三同轴铠装电缆㊂探测器组件安装在反应堆外特定的钢衬孔道内,裂变电离室探测器输出与中子注量率呈正比的计数率或MSV (均方电压)信号(高中子注量率下,脉冲信号发生堆积重叠,产生直流电流分量,此时信号的相对均方根涨落值与采样时间内裂变反应发生次数的平方根成正比,利用坎贝尔法处理即可测量中子注量率[7]),经三同轴铠装电缆传输后在电缆接线箱内与高可靠四轴有机电缆连接,再经电气贯穿件输出至安全壳外的前置放大器进行计数率模式或MSV 信号处理,最后传送至核测仪表信号处理机柜的中间量程信号处理组件㊂裂变电离室探测装置组成结构如图2所示㊂㊃531㊃㊀辐射防护第44卷㊀第2期图2㊀裂变电离室探测装置测量结构示意图Fig.2㊀Structure diagram of fission ionization chamber detector2.1㊀探测器组件设计及制造㊀㊀裂变电离室探测器外依次装配慢化体和金属外壳,构成慢化体组件㊂慢化体完全覆盖裂变电离室灵敏区,并采用陶瓷绝缘材料将裂变电离室与金属外壳绝缘㊂工程安装时,慢化体组件由延伸组件和安装组件支撑,安装在探测器竖井内㊂各组件间采用连接结构件连接,并设置有便于快速对准的导向槽,以便于快速安装㊁拆卸㊂裂变电离室探测器组件的制造主要在于裂变电离室探测器的生产,按照相关标准工艺文件完成组装㊁铀膜镀覆㊁焊接㊁充气等关键工序,全程需在质量监督下完成㊂2.2㊀信号处理设计及制造㊀㊀裂变电离室探测装置的信号处理部分主要体现在前置放大器的设计㊂为了实现裂变电离室探测器跨越近9个量级的宽量程测量功能,前置放大器需工作在两种模式下:计数率模式和均方压(MSV)模式㊂低中子通量条件下,裂变电离室前置放大器将探测到的低通量中子脉冲信号进行初级放大并进行幅度甄别,滤除因γ辐射或射频干扰产生的脉冲信号,并将有效中子脉冲进行光电信号转换后,通过光纤传递给核测仪表信号处理机柜;高中子通量条件下,前置放大器将脉冲堆叠转换为电压有效值后输出均方电压信号,该模式可实现反应堆功率0.1%RTP ~200%RTP 的测量[1]㊂裂变电离室前置放大器电路主要由高压滤波㊁测试脉冲产生㊁一级放大及调节㊁二级放大㊁脉冲调理和MSV 处理电路组成,其原理框图如图3所示㊂通过脉冲调理电路可以将幅值低于阈值的脉冲过滤掉,并将幅值高于阈值的脉冲转换为光脉冲后通过光纤传递给核测仪表信号处理机柜㊂其次,当堆功率升高导致脉冲重叠时,通过MSV 处理电路将重叠的脉冲信号转换为与反应堆中子通量成正比的直流电平(均方电压)信号,传送至信号处理机柜后可实现堆功率的转化㊂此外,该前置放大器还设置了测试脉冲产生电路,由核测仪表信号处理机柜发送一测试使能信号后,可通过该电路产生的测试脉冲检测前置放大器功能的好坏㊂前置放大器采用一体化成型的铝合金箱体作为电路板封装盒体,采用全密封结构,便于电路板防潮㊁防霉隔离,并在盒体内部设置电磁屏蔽金属盒,用于封装前置放大电路板,降低外界干扰㊂前置放大器设计制造完成后,采用标准脉冲信号发生器输入模拟信号,验证前置放大器输出结果满足设计精度要求后,可与裂变电离室搭配进行核辐射性能试验㊂㊃631㊃邱顺利等:反应堆中子通量测量用裂变电离室探测装置研制㊀图3㊀前置放大电路原理图Fig.3㊀Schematic diagram of preamplifier circuit2.3㊀传输电缆制造㊀㊀裂变电离室探测装置信号传输电缆主要包括四同轴有机电缆㊁三同轴有机电缆及其配套接插件㊂三同轴电缆主要由中心导体㊁内外屏蔽层㊁绝缘层和外层护套等按照同一轴线加工制造而成,四同轴电缆在三同轴电缆基础上增加一导电屏蔽层㊂电缆制造按照标准生产工艺进行,需格外关注接插件与内外屏蔽层间的接触可靠性㊂3㊀裂变电离室探测装置测试3.1㊀热中子灵敏度试验㊀㊀热中子灵敏度是裂变电离室探测器的关键指标,本试验在中国计量科学研究院的热中子场㊀㊀㊀㊀㊀㊀参考辐射装置[8]上进行㊂该装置外场反射腔内参考中子注量率大于103cm -2㊃s -1,且具有较高的镉比(1433ʒ1)和较大的均匀区(70cm ˑ70cm),均匀性好于1%㊂对于本次灵敏区长度近900mm 的裂变电离室而言,封闭式反射腔内不具备试验条件,因此试验时将外场反射腔拉开,将待测裂变电离室置于反射腔与中子源均整透镜之间,并采用SP93He 探测器测试试验位置处的热中子注量率和均匀性,确保该处热中子场能够覆盖裂变电离室探测器灵敏区,保证试验的准确性㊂热中子场参考辐射装置如图4所示,该装置已经过CNAS 认证,认证报告编号:国基证(2002)第103号㊂图4㊀热中子场参考辐射装置示意图Fig.4㊀Schematic diagram of a thermal neutron radiation reference facility㊃731㊃㊀辐射防护第44卷㊀第2期㊀㊀裂变电离室探测器的热中子灵敏度采用比对法进行测试㊂将已知热中子灵敏度S m,u 的标准3He 计数管置于热中子场中,测量其输出计数率N m,u ,将待测裂变电离室置于同一位置,测量其输出计数率N m,s ㊂则待测裂变电离室探测器的热中子灵敏度可通过式(1)进行计算,试验结果列于表1㊂S m,s =S m,u ㊃N m,sN m,u(1)表1㊀裂变电离室热中子灵敏度测试结果Tab.1㊀Test results of thermal neutronsensitivity for fission ionization chamber3.2㊀高中子通量试验㊀㊀裂变电离室可测量的中子注量率可达1010cm -2㊃s -1以上,测量范围跨越数个数量级㊂因此,验证其关键核性能需在具备高中子通量试验条件的反应堆上进行㊂本次裂变电离室核性能试验在中国原子能科学研究院49-2游泳池式堆水平热柱孔道上进行,主要包括高压坪特性和甄别阈特性㊂热柱孔道深度约为3m,其热中子注量率与孔㊀㊀㊀㊀㊀道深度呈正相关分布㊂3200kW 功率下该热柱孔道内的中子注量率分布如图5所示㊂图5㊀原子能院49-2堆水平热柱孔道内中子注量率分布Fig.5㊀Distribution of neutron fluence rate inhorizontal channel of 49-2reactor3.2.1㊀高压坪特性㊀㊀裂变电离室高压坪特性测试布置如图6所示㊂将裂变电离室放置在49-2堆热柱孔道内,按照现场实际布线方式进行布线,信号经过前置放大器放大成形㊁处理后,由核测仪表信号处理机柜的信号测量装置读取数据㊂图6㊀裂变电离室高压坪特性试验布置图Fig.6㊀Layout of high voltage saturation characteristics test of fission ionization chamber㊀㊀将裂变电离室灵敏区中心置于距热柱孔道口约1.5m 处,反应堆功率稳定在约65kW,对应中子注量率约4.13ˑ106cm -2㊃s -1,测量裂变电离室计数率模式下的高压坪特性曲线,其试验结果如图7所示㊂由图7可知,裂变电离室计数率模式下的高压坪区范围为500~1000V,坪长ȡ500V,坪斜为1.98%/100VDC(直流电压)㊂将裂变电离室置于热柱孔道底部,并继续增大反应堆功率,使裂变电离室进入均方压(MSV)工作模式,直至反应堆满功率下(3200kW,对应中子注量率1.26ˑ1010cm -2㊃s -1),测试此时的裂变电离室MSV 模式高压坪特性,结果如图8所示㊂由其可知,裂变电离室MSV 模式下的高压坪区范围为500~1000V,坪长ȡ500V,坪斜为1.92%/100VDC㊂㊃831㊃邱顺利等:反应堆中子通量测量用裂变电离室探测装置研制㊀图7㊀裂变电离室计数率模式下高压坪特性试验结果Fig.7㊀Test results of high voltage saturationcharacteristics of the fission ionizationchamber at pulsemode图8㊀裂变电离室MSV 模式下高压坪特性试验结果Fig.8㊀Test results of high voltage saturation characteristicsof the fission ionization chamber at MSV mode3.2.2㊀甄别阈特性㊀㊀在无中子源和加工作高压时,测量裂变电离室计数率N 随甄别阈电压U 变化的曲线,得到裂变电离室的α甄别曲线㊂在有中子源和加工作高压时,测量裂变电离室计数率N 随甄别阈电压U 变化的曲线,得到裂变电离室的甄别阈曲线,作为裂变电离室特征曲线㊂裂变电离室甄别阈值曲线如图9所示,由测量曲线可得,该裂变电离室推荐甄别阈值U n =1.1U α=210mV [9]㊂3.3㊀γ感应度试验㊀㊀γ感应度在标准事故水平γ辐射试验装置上进行㊂试验时,将裂变电离室放置在标准γ辐射图9㊀裂变电离室甄别阈曲线Fig.9㊀The discrimination threshold curveof fission ionization chamber场下,施加工作电压,通过电流源表在探测器信号输出电缆端测量电离室输出的电流I o ,则裂变电离室的γ感应度S γ为:S γ=I oX㊃(2)式中,S γ为γ感应度,A ㊃Gy -1㊃h;I o 为输出电流,A;X ㊃为照射量率,Gy ㊃h -1㊂裂变电离室γ感应度测量结果如图10所示㊂经过计算,裂变电离室的γ感应度为S γ=7.57ˑ10-9A ㊃Gy -1㊃h㊂图10㊀裂变电离室γ感应度实验结果Fig.10㊀Test results of gamma sensitivityof fission ionization chamber3.4㊀试验小结㊀㊀表2列出了裂变电离室设计性能指标与工程应用指标的对比,可以看出该裂变电离室主要物理性能指标满足设计要求㊂㊃931㊃㊀辐射防护第44卷㊀第2期表2㊀裂变电离室性能指标Tab.2㊀Performance indicator fission ionization chamber4㊀结论㊀㊀结合AP1000系列核电站实际应用情况,搭建了一套适用于反应堆堆外核测量系统的裂变电离室探测装置,进行了裂变电离室探测器详细设计及探测装置加工制造,并结合国内现行试验条件和相关标准规定,对其进行了核性能试验验证㊂试验结果表明,该裂变电离室探测装置具有高压坪特性优㊁热中子灵敏度高和抗γ干扰能力强等特点,主要性能指标均能满足工程应用指标,可应用于AP1000系列反应堆堆外核测量系统中间量程测量通道,并可推广至其他电站反应堆堆外核测系统或船用核控系统㊂参考文献:[1]㊀杨天,陈科.AP1000电站堆外核测系统(NIS)中间量程(IR)的构成及信号处理特点详析[J].仪器仪表用户,2016,23(2):73-77.[2]㊀汤仲鸣,何文灏,李树成,等.AP1000与VVER1000堆外核测系统设计理念分析[J].核电子学与探测技术,2014,34(5):671-674.[3]㊀杨波.一种高灵敏度裂变室的研制[J].核电子学与探测技术,2012,32(5):587-589.[4]㊀王玫,温中伟,林菊芳,等.小型平板铀裂变电离室研制[J].核电子学与探测技术,2014,34(9):1128-1131.[5]㊀朱通华,刘荣,蒋励,等.裂变室镀层质量厚度的相对测量技术[J].核技术,2009,32(6):459-463.[6]㊀孙光智,任才,毛从吉,等.堆外核测量用裂变电离室铀膜均匀性研究[J].核技术,2019,42(9):090603.[7]㊀黄自平,钟明光,熊国华.基于坎贝尔定理的中子监测技术的研究[J].核电子学与探测技术,2013,33(9):1054-1056.[8]㊀杨竣凯,王平全,张辉,等.热中子参考辐射装置参数的实验测量[J].核技术,2021,44(11):62-68.[9]㊀北京核仪器厂.用于核反应堆的辐射探测器特性及其测试方法:GB/T7164 2004[S].北京:中国标准出版社,2004.Development of fission ionization chamber detector forreactor neutron flux measurementQIU Shunli1,XIAO Wei1,DONG Jincheng1,GE Mengtuan1,ZHAI Chunrong2,TANG Zhongming2, ZHOU Yulin1,ZENG Le1,LIU Haifeng1,SUN Guangzhi1,CHENG Hui1,SHI Xianwu2,LIU Wenzhen2(1.Wuhan Secondary Institute of Ships,Wuhan430205;2.State Nuclear Power Automation System Engineering Company,Shanghai200233) Abstract:In order to establish a monitoring device for reactor neutron flux measurement to meet the measurement requirements of ex-core nuclear measurement system,a fission ionization chamber detector with long sensitive region,wide range,high sensitivity and strongγ-suppression ability has been developed.At the same time,the thermal neutron sensitivity,high voltage plateau characteristic,screening threshold plateau characteristic andγsensitivity of the fission ionization chamber detector are tested and verified.The test results show that the comprehensive performance of the fission ionization chamber can meet the application requirements of the intermediate range measurement channel for ex-core nuclear measurement system of the AP1000series nuclear power plant.Key words:neutron flux measurement;nuclear instrumentation system;fission ionization chamber;high-voltage saturation characteristics;thermal neutron sensitivity㊃041㊃。
《核反应堆物理分析(谢仲生版)》名词解释及重要概念第一章—核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。
非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
111001100[]AA A ZZ Z AA Z Z X n X X n X n X n +*+→→++→+微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。
宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。
也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。
第二章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。
3-12试计算T =535K ,ρ=802kg/m 3时水的热中子扩散系数和扩散长度。
解:查79页表3-2可得,294K 时:m ,由定义可知:0.0016D =()/31/()(293)(293)()(293)(293)(293)/31/(293)()()()tr s s tr s s T T N K K D T K D K K K N T T T λσρλσρΣ===Σ 所以:0.00195(m)(293)(293)/D K D K ρρ==(另一种方法:如果近似认为水的微观散射截面在热能区为常数,且不受温度影响,查附表3s σ在TN =s ΣD =n T =0.4920(b)()(0.0253a M a kT eV σσ==T n =535×(1+0.46×36×0.4920/103)=577(K)(若认为其值与在0.0253eV 时的值相差不大,直接用0.0253eV 热中子数据计算:T n =535×(1+0.46×36×0.664/103)=592(K)这是一种近似结果)(另一种方法:查79页表3-2,利用293K 时的平均宏观吸收截面与平均散射截面:(m -1)(293) 1.97a K Σ=1/(3×0.0016×0.676)=308(m -1)01(293)3(293)(1)s K D K µΣ==−进而可得到T n =592K )利用57页(2-88)式0.414×10-28(m 2)a σ==1.11(m -1)a a N σΣ==(293)(293)(293)(293)(293)s s N N K N K K N K K σρσρΣ==ΣQ 0.676)=L L L 3-16设有一强度为I (m -2•s -1)的平行中子束入射到厚度为a 的无限平板层上。
试求:(1)中子不遭受碰撞而穿过平板的概率;(2)平板内中子通量密度的分布;(3)中子最终扩散穿过平板的概率。
第34卷 第9期 核 技 术 V ol. 34, No.9 2011年9月 NUCLEAR TECHNIQUES September 2011——————————————第一作者:胡春明,男,1970年出生,2007年于原子能科学研究院获博士学位,主要从事核技术和冷中子源技术研究 收稿日期:2010-11-22,修回日期:2011-04-19反应堆冷中子源中子物理学计算胡春明 余朝举 童剑飞(中国科学院高能物理研究所 北京 100049)摘要 用MCNP 软件计算反应堆冷中子源,慢化剂室内平均中子注量率为6.69×1013/cm –2·s –1,波长为0.4 nm 和0.6 nm 的冷中子增益因子~16和32。
冷源慢化剂中正仲氢比例对输出的冷中子能谱有较大影响,而在3 K 范围内慢化剂温度变化对冷中子能谱的影响很小。
计算结果表明,冷中子源性能达到基本设计要求。
关键词 反应堆,冷中子源,中子物理学,MCNP 软件 中图分类号 TL99在一座新研究堆上正在建立冷中子源(CNS ,简称冷源)装置,为今后在该堆上开展中子散射实验提供多种特征波长的冷中子束[1]。
所谓“冷中子”,通常指能量为0.1–5 meV 的中子,这种中子的波长与原子间距、分子间距相当,其能量与原子间热运动具有同一数量级,是在分子原子水平上研究物质结构和微观运动规律的理想工具之一。
在这座反应堆冷中子源建成投产的早中期,曾对中子物理学参数进行了多次计算[1,2],但因最终建成的冷源实际方案以及影响冷中子输出的某些反应堆参数出现局部调整,故须重新计算该冷源的中子物理学参数,计算结果可用于正确评估该冷源的实际性能,指导应用。
冷源中子物理参数包括冷源慢化剂中的冷中子注量率、中子能谱分布及冷中子增益因子等,其计算结果可为使用冷中子的各种中子谱仪提供设计输入参数。
液氢慢化剂正、仲氢的比例以及慢化剂温度等因素,对冷源中子输出能谱具有较大影响,为此,有必要对其进行对比计算。
1 计算条件与模型采用蒙特卡罗三维粒子输运计算软件MCNP [3]完成冷源中子物理参数计算,用基于ENDF-BV 截面库,力图真实模拟冷源非均匀三维几何结构。
MCNP 计算模型与反应堆堆芯结构及堆芯附近的冷源结构基本一致。
慢化剂室为环形结构,环形空间充满温度为20 K 的液氢,液氢靠氦气冷却。
为得到慢化剂室内冷中子注量率的空间分布信息,计算中将慢化剂室中间环柱体液氢部分上下划分为6部分,每部分又在周向分成6个扇形区域,即慢化剂室环柱体液氢部分共分为36个计数区域(图1)。
(a) (b)图1 冷源结构的MCNP 计算模型的竖(a)、横(b)剖面图Fig.1 Vertical (a) and h orizontal(b) cross section of the MCNP model for CNS.第9期胡春明等:反应堆冷中子源中子物理学计算 667中子注量率计算中,仅考虑冷态无燃耗状态;冷包内液氢平均温度为20 K,密度为0.071 g/cm3。
计算结果按反应堆功率进行了归一化处理。
2计算结果及讨论2.1慢化剂室内冷中子注量率及能谱计算得到慢化剂室内平均中子注量率为6.69×1013/cm–2·s–1,其中冷中子注量率(E n<5 meV)为2.0×1013/cm–2·s–1,热中子注量率(E n<0.215 eV)为6.23×1013/cm–2·s–1。
正、仲氢比例会影响慢化剂性能,计算外,取正、仲氢各占50%。
该冷源仅一个冷中子引出孔道(图1),计算得到引出孔道对应处60°扇区内直圆柱段液氢慢化剂内平均中子注量率为5.0×1013/cm–2·s–1,其波长谱中(图2),注量率峰值出现在0.375 nm处,对应的最大中子注量率为4.38 1012 cm–2·s–1。
图2 冷源冷中子波长谱Fig.2Cold neutron flux vs wavelength.2.2冷中子增益冷中子增益即冷慢化剂和暖慢化剂中冷中子注量率的比率。
暖慢化剂指~300 K的慢化介质。
计算时要求常温介质具有类似低温介质的中子散射特性,在以液氢为冷介质的冷源系统下,暖慢化剂可使用同体积轻水。
图3为正对冷中子水平孔道入口的60°扇区内直圆柱段液氢慢化剂的冷中子增益曲线,波长0.4 nm和0.6 nm对应的增益分别~16和32,符合冷源设计要求。
2.3慢化剂中正、仲氢比例的影响常温下,氢慢化剂由分子自旋方向相反的75%正氢(ortho-hydrogen)和25%仲氢(para-hydrogen)组成,在 20 K低温稳态下,仲氢所占比例增至99.8%,有助于冷中子从慢化剂中逸出,从而增加冷中子增益[4,5]。
然而,实际中的冷中子增益还受到慢化剂层厚度、冷源外围反射体结构与布局设计等多种因素的影响,是复杂的冷源中子物理设计方面的问题。
图3 冷中子增益Fig.3Cold neutron gain factor.20 K环境下,若无转换催化剂的作用,正氢向仲氢转换速度缓慢。
因此,从冷源装置低温运行时刻起,慢化剂中仲氢比例随装置运行时间逐渐增加,最终达到动态平衡(仲氢比例~99.8%),此过程约数十至一百多小时[6,7]。
在此过程中,不同时刻输出的冷中子谱有差异,为此,对该冷源慢化剂中正、仲氢不同比例进行对比计算。
由图4的计算结果,正、仲氢比例对该冷源的中子输出能谱影响较为明显。
图4 不同正仲氢比例下的冷中子波长谱Fig.4Cold neutron wavelength spectra with differentratios of ortho-H2/para-H2.2.4慢化剂温度的影响受堆运行功率波动、冷源氦制冷系统冷却能力正常扰动等因素影响,慢化剂室中液氢温度在20 K 上下小幅度波动,温度变化对冷源的中子物理性能有一定影响,图5是不同慢化剂温度下的冷中子波长谱,可见在3 K的变化范围内,慢化剂温度对0.4 nm以上波长的冷中子能谱影响程度很小。
668 核 技 术 第34卷图5 不同温度慢化剂的冷中子波长谱Fig.5 Cold neutron wavelength spectrum with differentmoderator temperature.3 结语利用MCNP 程序,计算得到反应堆冷中子源慢化剂室内平均中子注量率为 6.69×1013/cm –2·s –1,波长为0.4 nm 和0.6 nm 的冷中子增益因子分别~16和32,表明该反应堆冷中子源的基本性能达到设计指标要求。
冷源慢化剂中正、仲氢不同比例对慢化能力有一定影响,其输出的冷中子能谱有较大差异,实验中应考虑或规避此差异对实验结果的影响。
此外,慢化剂的温度变化对输出的长波长冷中子谱有一定影响,但影响程度很小。
参考文献1胡春明, 代君龙, 沈文德, 等. 一个拟建的反应堆冷中子源[J]. 核技术, 2005, 28(3): 209–212HU Chunming, DAI Junlong, SHEN Wende, et al . Cold neutron source to be established at a research reactor[J]. Nucl Tech, 2005, 28(3): 209–212 2唐凤平, 胡春明, 杨成德, 等. 冷中子源中子学计算[J]. 核动力工程, 2010, 31(3): 34–35TANG Fengping, HU Chunming, YANG Chengde, et al . Neutronic calculation of cold neutron source[J]. Nucl Power Engi, 2010, 31(3): 34–35 3 MCNP-A General Monte Carlo N-Particle Transport Code[R]. LA-13709-M, 20004丁大钊, 叶春堂, 赵志祥, 等. 中子物理学(下册)[M]. 北京: 原子能出版社, 2001: 718–719DING Dazhao, YE Chuntang, ZHAO Zhixiang, et al . Neutron physics (V ol.2)[M]. Beijing: Atomic Energy Press, 2001: 718–719 5MacFarlane R E. Cold-moderator scattering kernel methods[R]. LA-UR-98-655, Los Alamos National Laboratory, 1998 6Kai Tetsuya, Harada Masahide, Teshigawara Makoto, et al . Couple hydrogen moderator optimization with ortho/para hydrogen ratio[J]. Nucl Instrum Methods Phys Res, 2004, A523: 398–414 7Daemen L L, Brun T O. Ortho- and Para-hydrogen in neutron thermalization[Z]. Workshop on “Cold modera- tors for pulsed neutron source” Argonne National Laboratory, 1997Neutronics calculation of a reactor cold neutron sourceHU Chunming YU Chaoju TONG Jianfei(Institute of High Energy Physics of CAS , Beijing 100049, China )Abstract The construction of a reactor cold neutron source (CNS) will be completed in the near future. To evaluate performance of the CNS, a neutronics calculation using MCNP4C code has been carried out. The results show that the average neutron flux in the moderator is 6.69×1013/cm 2·s, and the cold neutron gain factors corresponding to 4-Å and 6-Å wavelengths are 16 and 32, respectively. The results also indicate that different ratios of ortho-H 2/para-H 2 have an obvious impact on cold neutron spectrum in the moderator, but within 3 K of the moderator temperature changes, the spectrum varies slightly.Key words Reactor, CNS, Neutronics, MCNP CLC TL99。