111平面上点的坐标
- 格式:ppt
- 大小:799.50 KB
- 文档页数:19
计算题库及参考答案1、设A 点高程为15.023m ,欲测设设计高程为16.000m 的B 点,水准仪安置在A 、B 两点之间,读得A 尺读数a=2.340m ,B 尺读数b 为多少时,才能使尺底高程为B 点高程。
【解】水准仪的仪器高为=i H 15.023+2.23=17.363m ,则B 尺的后视读数应为b=17.363-16=1.363m ,此时,B 尺零点的高程为16m 。
2、在1∶2000地形图上,量得一段距离d =23.2cm ,其测量中误差=d m ±0.1cm ,求该段距离的实地长度D 及中误差D m 。
【解】==dM D 23.2×2000=464m ,==d D Mm m 2000×0.1=200cm=2m 。
3、已知图中AB 的坐标方位角,观测了图中四个水平角,试计算边长B →1,1→2,2→3,3→4的坐标方位角。
【解】=1B α197°15′27″+90°29′25″-180°=107°44′52″=12α107°44′52″+106°16′32″-180°=34°01′24″=23α34°01′24″+270°52′48″-180°=124°54′12″=34α124°54′12″+299°35′46″-180°=244°29′58″4、在同一观测条件下,对某水平角观测了五测回,观测值分别为:39°40′30″,39°40′48″,39°40′54″,39°40′42″,39°40′36″,试计算:① 该角的算术平均值——39°40′42″; ② 一测回水平角观测中误差——±9.487″; ③ 五测回算术平均值的中误差——±4.243″。
平面直角坐标系与点的坐标平面直角坐标系是数学中常用的坐标系之一,用于描述平面上的点的位置。
它由两个相互垂直的坐标轴组成,分别为x轴和y轴。
一、直角坐标系的定义与特点直角坐标系是由两条相互垂直的直线构成,它们通常被称为x轴和y轴。
这两个轴分别代表了水平方向和垂直方向。
在这个坐标系中,我们可以用有序数对(x, y)来表示平面上的一个点P,其中x表示点P在x 轴上的坐标,y表示点P在y轴上的坐标。
直角坐标系的特点有以下几点:1. 坐标原点:直角坐标系中的原点O位于x轴和y轴的交点处,它的坐标为(0, 0)。
2. 坐标轴:x轴和y轴相互垂直,并且共同构成了整个平面。
3. 坐标值:每个点P在直角坐标系中都有唯一的坐标表示。
x轴的坐标值是实数集上的所有数,y轴的坐标值也是实数集上的所有数。
二、点的坐标表示方法在直角坐标系中,点P的坐标可通过以下方法求得:1. 水平和垂直距离:假设点P的水平距离为x,垂直距离为y,则点P的坐标为(x, y)。
2. 垂直和水平投影:假设点P的垂直投影在x轴上的坐标为x,水平投影在y轴上的坐标为y,则点P的坐标为(x, y)。
例如,点A位于x轴上,其坐标为(3, 0);点B位于y轴上,其坐标为(0, 5);点C位于第一象限,其坐标为(2, 4);点D位于第四象限,其坐标为(-1, -2)。
三、坐标系的应用举例直角坐标系在数学和科学领域中有广泛的应用。
以下是一些具体的应用举例:1. 几何图形:通过直角坐标系,我们可以方便地描述几何图形的位置、形状和大小,如直线、抛物线、圆等。
2. 数据分析:直角坐标系可以用于绘制数据图表,帮助我们分析和比较数据,如折线图、柱状图、散点图等。
3. 物理学:在物理学中,直角坐标系可以用于描述力、速度、加速度等物理量的方向和大小。
4. 工程应用:直角坐标系可以应用于工程领域,如建筑设计、城市规划等,帮助确定位置、测量距离等。
总结:平面直角坐标系是用来描述平面上点的位置的数学工具,由x轴和y轴组成。
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。
过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
学习目标:1、 通过生活中的实例,认识到可以用有序数对表示点的位置。
2、 会用有序数对确定平面内的点。
注意强调数对的 有序”。
3、 让学生感受到可以用数量表示图形位置,形成形数结合的意识。
重点:理解有序数对的概念,用有序数来表示位置。
难点:理解有序数对是“有序的”,并用它解决实际问题。
预习案一、情境1:在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置 如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?j j \\ I I _ I. I >1不知小阴通1情境2:我们到电影院看电影时,每个人都需要一张电影票,你是怎么根据电影票上的 数子找到位置的?1. 有 的两个数a 与b 组成的数对,叫做有序数对,记作2. (a,b)与(b.a)的顺序不同,含义就不同,如(3,4)表示的座位是 (4,3)表示的座次是 。
二、填空1、 有序数对a,b 正确的表示方法是 。
2、 用1, 2, 3可以组成有序数对有 对。
3、 课间操时,小华、小军、小刚的位置如图,小华对小刚说: “如果我的位置用(0, 0)表示,小军的位置用(2, 1)表示, 那么你的位置可以表示成()”A 、 (5, 4)B 、 (4, 5)C 、 (3, 4)D 、 (4, 3)4、在电影票上,将“7排6号”简记为(7, 6),则6排7号可表示为 (8, 6)表示的意义是。
5、 如图的棋盘中,若“帅”位于点(1, 一2)上, “相”位于点(3, 一 1)上,则“炮”位于点 .6、 某阶梯教室共有12排座位,第一排有16个座位,后面每 排都比前一排多1个座位,若每排座位数为 m 排数为n.(3)用含有 n 的代数式表示 mi : .7、某人在车间里工作的时间 t 与工作总量y 组成有序数对(t, y),若他的工作效率是 不变的,其中两组数对分别为(4, 80), (7, y),则y =.8 、 如图所示,A 的位置为(2,6), 小明从 A 出发,经 (2.5) 7(3,5) 7(4,5) 7(4,4) ^(5,4) ^(6,4),小刚也从 A 出发,经(3.6) 7(4,6) 7(4,7) 7(5,7) ^(6,7),则此时两人相距几个格?探究案1、如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?2、 阅读教材第47页的“用经纬度表示地理位置” 一文.3、 你有没有见过用其他的方式来表示位置的?1)如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如 在一些大型会场,往往把场地分为 A 、B C 等区,这时就要在座位票上写明是哪个区、几排 几号了2)、我们规定:沿正北方向顺时针旋转 9角并前进a 个单位,记作(9 , a),那么你能说明下列有序数对所表示的图形的含义吗? (1) (45度,6)(2) (120度,8)(一)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。
2019新人教版高中数学选择性必修一全册重点知识点归纳总结(复习必背)第一章空间向量与立体几何一、知识要点1、空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2、空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+ ;BA OA OB a b =-=- ;()OP a R λλ=∈运算律:(1)加法交换律:a b b a +=+(2)加法结合律:)()(c b a c b a ++=++(3)数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3、共线向量(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>ACAB λ=<=>OB y OA x OC +=(其中x +y =1)(4)与a 共线的单位向量为4、共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的条件是存在实数x ,y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5、空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
坐标系与曲线的极坐标方程1.在极坐标系中,直线l 的方程为ρsin θ=3,求点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离.解 ∵直线l 的极坐标方程可化为y =3,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1)∴点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为2. 2.在极坐标系中,圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.解化为平面直角坐标系:圆:x 2-2x +y 2=0,即:(x -1)2+y 2=1. 直线:3x +4y +a =0. ∵直线和圆相切,∴|3+a |32+42=1, ∴a =2或a =-8.3.在极坐标系中,已知点O (0,0),P ⎝ ⎛⎭⎪⎫32,π4,求以OP 为直径的圆的极坐标方程.解 设点Q (ρ,θ)为以OP 为直径的圆上任意一点(不包括端点),在Rt △OQP 中,ρ=32cos ⎝ ⎛⎭⎪⎫θ-π4,故所求圆的极坐标方程为ρ=32cos ⎝ ⎛⎭⎪⎫θ-π4.4.从极点O 作直线与另一直线ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12,求点P 的轨迹方程. 解 设动点P 的坐标为(ρ,θ),则M (ρ0,θ). ∵|OM |·|OP |=12.∵ρ0ρ=12.ρ0=12ρ. 又M 在直线ρcos θ=4上,∴12ρcos θ=4, ∴ρ=3cos θ.这就是点P 的轨迹方程.5.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos (θ-π6)上的动点,试求PQ 的最大值. 解∵ρ=12sin θ.∴ρ2=12ρsin θ化为直角坐标方程为x 2+y 2-12y =0, 即x 2+(y -6)2=36. 又∵ρ=12cos (θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6),∴有x 2+y 2-63x -6y =0, 即(x -33)2+(y -3)2=36,∴PQ max =6+6+(33)2+(-3)2=18.6.设过原点O 的直线与圆(x -1)2+y 2=1的一个交点为P ,点M 为线段OP 的中点,当点P 在圆上移动一周时,求点M 轨迹的极坐标方程,并说明它是什么曲线.解 圆(x -1)2+y 2=1的极坐标方程为 ρ=2cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2,设点P 的极坐标为(ρ1,θ1),点M 的极坐标为(ρ,θ),∵点M 为线段OP 的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.∴点M 轨迹的极坐标方程为ρ=cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2,它表示原心在点⎝ ⎛⎭⎪⎫12,0,半径为12的圆.7.⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. (1)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (2)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解 (1)ρ=4cos θ,两边同乘以ρ,得ρ2=4ρcos θ; ρ=-4sin θ,两边同乘以ρ,得ρ2=-4ρsin θ. 由ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2, 得⊙O 1,⊙O 2的直角坐标方程分别为 x 2+y 2-4x =0和x 2+y 2+4y =0.(2)由⎩⎨⎧ x 2+y 2-4x =0,x 2+y 2+4y =0,①②①-②得-4x -4y =0,即x +y =0为所求直线方程. 8.求圆心为C ⎝ ⎛⎭⎪⎫3,π6,半径为3的圆的极坐标方程.解 如图,设圆上任一点为P (ρ,θ), 则OP =ρ,∠POA =θ-π6, OA =2×3=6,在Rt △OAP 中,OP =OA ×cos ∠POA ,∴ρ=6cos ⎝ ⎛⎭⎪⎫θ-π6.∴圆的极坐标方程为ρ=6cos ⎝ ⎛⎭⎪⎫θ-π6. 9.已知A 是曲线ρ=12sin θ上的动点,B 是曲线ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,试求线段AB 长的最大值.解 曲线ρ=12sin θ的直角坐标方程为x 2+(y -6)2=36, 其圆心为(0,6),半径为6;曲线ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6的直角坐标方程为(x -33)2+(y -3)2=36,其圆心为(33,3),半径为6. 所以AB 长的最大值=(33-0)2+(3-6)2+6+6=18.10.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解 (1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 11.已知圆锥曲线C 的极坐标方程为ρ=8sin θ1+cos 2θ,以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线C 的直角坐标方程,并求焦点到准线的距离. 解 由ρ=8sin θ1+cos 2θ,得ρcos 2θ=4sin θ,ρ2cos 2θ=4ρsin θ.又ρcos θ=x ,ρsin θ=y ,故所求曲线的直角坐标方程是x 2=4y ,故焦点到准线的距离为2. 12.已知直线l 的参数方程:⎩⎨⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22·sin ⎝ ⎛⎭⎪⎫θ+π4.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解 (1)消去参数,得直线l 的普通方程为y =2x +1. ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,即ρ=2(sin θ+cos θ),两边同乘以ρ,得ρ2=2(ρsin θ+ρcos θ).得⊙C 的直角坐标方程为(x -1)2+(x -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2, 所以直线l 和⊙C 相交.13.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π2,判断点P 与直线l的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 解(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.14.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=3 2.(1)把直线l 的极坐标方程化为直角坐标方程;(2)已知P 为椭圆C :x 216+y 29=1上一点,求P 到直线l 的距离的最大值. 解 (1)直线l 的极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π4=32,则22ρsin θ-22ρcos θ=32,即ρsin θ-ρcos θ=6,所以直线l 的直角坐标方程为x -y +6=0.(2)P 为椭圆C :x 216+y 29=1上一点,设P (4cos α,3sin α),其中α∈[0,2π),则P 到直线l 的距离 d =|4cos α-3sin α+6|2=|5cos (α+φ)+6|2,其中cos φ=45,所以当cos(α+φ)=1时,d 的最大值为112 2.。