人教八年级下册数学-二次根式的性质导学案
- 格式:doc
- 大小:1.06 MB
- 文档页数:3
16.1二次根式投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】店铺,不迷路!满招损,谦受益。
《尚书》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈第2课时二次根式的性质一、新课导入1.导入课题我们知道二次根式a中a≥0,那么二次根式a还有哪些性质呢?今天我们学习“二次根式的性质”(板书课题).2.学习目标(1)知道a≥0(a≥0),会用非负数的性质解题.(2)会用公式()2a=a(a≥0)进行计算.(3)知道形如2a的化简方法及结果.3.学习重、难点重点:a≥0(a≥0),()2a=a(a≥0).难点:运用公式()2a=a(a≥0)和2a=a(a≥0)进行计算化简.二、分层学习1.自学指导(1)自学内容:探究:a(a≥0)及a(a≥0)中a的值的特点.(2)自学时间:5分钟.(3)自学方法:围绕探究提纲进行演算归纳.(4)探究提纲:①当a >0时,a 是什么数?当a =0时,a 是什么数?当错误!未找到引用源。
有意义时,a 是什么数?②从①中我们可以探究得出:当a ≥0时,a 是非负数,即a ≥0.③从a (a ≥0)所表示的数值特点,你知道有哪些式子的值具有这种特性?④已知()0112=++-y x ,求x ,y 的值.(x=1,y=-1) 2.自学:学生参照探究提纲进行自学.3.助学(1)师助生: ①明了学情:了解学生在探究中存在的认识偏差和困惑.②差异指导:引导学生分析a 表示的数值特点归纳已学过的非负数及其和为0时所足的条件.(2)生助生:学生相互交流帮助. 4.强化(1)当a ≥0时,错误!未找到引用源。
≥0,即a 的值为非负数.(2)回顾所学过的三类非负数:①一个数的偶次幂;②一个数的绝对值;③a (a 0).(3)非负数性质:若x +2y +|z|=0,则x=y=z=0.(4)练习:已知01=+++y x x ,求x ,y 的值.答案:x=-1,y=1.1.自学指导(1)自学内容:探究()2a (a ≥0)的结果. (2)自学时间:8分钟.(3)自学方法:通过回顾算术平方根的意义,归纳()2a (a ≥0)的结果. (4)探究提纲:①∵3的算术平方根是3,∴()23=3. ②∵32的算术平方根是32,∴232⎪⎪⎭⎫ ⎝⎛=32.③∵非负数a 的算术平方根是a ,∴()2a (a ≥0)=a . ④∵()222b a ab =,∴()()()2223232=⨯=18.⑤计算:答案:3;18;25;21. ⑥由①—⑤的探讨,归纳得出:一般地,()2a =a (a ≥0). 2.自学:学生可结合探究提纲进行自学.3.助学(1)师助生: ①明了学情:关注学生对()2a (a ≥0)的值的理解. ②差异指导:指导学生应用()2a (a ≥0)的结果进行计算. (2)生助生:相互交流帮助,矫正错误,归纳正确结论.4.强化(1)强调()2a =a (a ≥0)及其应用. (2)强调公式()2ab =22b a 和2⎪⎭⎫ ⎝⎛b a =22b a 在二次根式计算中的运用. (3)展示本节所学知识点和数学思想方法.1.自学指导(1)自学内容:探究:当a ≥0时,2a 等于什么?若a 的值无限定,2a 又等于什么?(2)自学时间:5分钟.(3)自学方法:结合探究提纲动手尝试2a (a ≥0)和2a 的化简,结果有何不同?(4)探究提纲:①==4222;==⎪⎭⎫ ⎝⎛4121221;==36.06.020.6;由此可以看出:当a ≥0时,2a =a 。
第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
第16章 二次根式全章导学案16.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。
三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。
(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。
(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。
如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。
思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。
2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足,a才有意义。
3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。
【变式题】实数a 、b 2244a ab b a b ++-.方法总结利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为53的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0负数的算术平0),把下列非负数分别写成一个非负数的平方的形式:。
义务教育基础课程初中教学资料第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx 4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
【变式题】实数a 、b 2244a ab b a b +++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0二、课堂小结 二次根式的性质 内容性质1一个非负数的算术平方根的平方等于它_______.即()()20.aa a =≥性质2一个数的平方的算术平方根等于它的______.即()()200.a a a a a a ≥⎧⎪==⎨-⎪⎩,<0),把下列非负数分别写成一个非负数的平方的形式:。
二次根式的概念 (第1课时) 学生姓名:学习目标a ≥0)的意义解答具体题目重点:a ≥0)的式子叫做二次根式的概念;难点:a ≥0)”解决具体问题. 学习过程一、知识准备平方根的性质:正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为5的正方形的边长为 ;(2)要修建一个面积为3的圆形喷水池,它的半径为 m ;(3)一个位图从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时的高度h(单位:m)满足关系h=t 2 如果用含有h 的式子表示t,则t= 。
(4)6的算术平方根的相反数为 ;(5)0的算术平方根为 。
二、探究在上面的问题中,结果分别是 ,它们都表示一些正数的算术平方根。
一般地,我们把形如 ( )的式子叫做二次根式,称为(二次)根号.注:开平方时,被开方数a 的取值范围 (为什么?) 例1.当x 是多少时,2-x 在实数范围内有意义?例2、当x 11x +在实数范围内有意义?例3,求a 2004+b 2004的值.三、练习(1)下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x ≥0,y•≥0) 是二次根式的有: 不是二次根式的有: (2)当a 是怎样的实数时,下列各式在实数范围内有意义?四、课堂小结二次根式的概念需注意:五、课后作业1、形如________ 的式子叫做二次根式.2有意义,则x =_______.3、下列式子中,是二次根式的是( )A .BCD .x 4、已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对5、当x 在实数范围内有意义?6、已知a 、b 为实数,且满足021=-++b a ,求ba的值.六、课后反思二次根式的性质(第2课时) 学生姓名:教学目标1、a ≥0)是一个非负数2、理解二次根式的两个性质2=a (a ≥0)=a (a ≥0)。
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标1.能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.2.能根据算术平方根的意义了解二次根式的概念,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.重点:二次根式的概念,二次根式有意义的条件.难点:二次根式概念的理解,综合运用性质)0(0≥≥a a .学习过程1、回忆旧知识(1)什么叫做算术平方根?什么叫做平方根?(2)正数有几个平方根?0的平方根是多少?负数有平方根吗?2、用带根号的式子填空.(1)3的算术平方根是 .(2)直角三角形的两直角边是1和2,则斜边是 .(3)正方形的面积为3-b ,则边长为 .(4)自主完成课本第二页思考题.观察所列式子,有何共同特点?3、思考下列问题:开平方时,被开方数只能是 和 ,为什么?4、请写出二次根式的概念:5、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 请同学们思考并总结一下,判断一个式子是否是二次根式,需要考虑哪些要点:6、根据开平方时,被开方数只能是 和 这一依据,完成下题:例1:当x 是怎样的实数时,6-x 在实数范围内有意义?7、做完以上例题,请填空:当a 为正数时,a 是a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根.所以,在二次根式a 中,字母a 必须满足 , a 才有意义.8、扩展思考:当a 是怎样的实数时,a 在实数范围内有意义?a 呢?9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10.达标测试1.在式子12x -,13x -x 可以取2和3的是( )A .12x -B .13x - C D2.x 必须满足( ) A .x ≤2 B .x ≥2 C .x >2 D .x <23.x 可以取的最小整数为( )A .0B .1C .2D .34.有意义,则x 的取值范围为_________.5.若y= 22-,则(x+y )y =_________.6.已知a 、b 是一等腰三角形的两边的长,且满足等式,求等腰三角形的周长.7.小组精彩讨论的镜头:你想一起参加讨论吗?若参加你怎么评价这四位同学的解答?并写出你解答的过程?第2课时 二次根式的性质学习目标:1.掌握二次根式的基本性质:)0(0≥≥a a 、)0()(2≥=a a a 和a a =2;2.能利用上述性质公式对复杂的二次根式进行化简. 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算.学习过程1、回忆旧知(1)什么是二次根式,它有哪些性质?(2)二次根式52-x 有意义,则x . 2、计算并总结公式(1)计算:2)4(= 、2)16(= 、2)3(= 、2)21(= 、2)0(= 观察其结果归纳得到:当=≥2)(,0a a 时(2)、计算:=24 、=22.0 、=2)54( 、=220 观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时(3)、计算:-2)4(= 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时(4)、计算:=20 ,所以当==2,0a a 时3、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的两条非常重要的性质(公式):(1)当=≥2)(,0a a 时(2)=2a4、化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )5、请大家思考讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系.6、化简下列各式 (1))0(42≥x x (2) 4x (3))3()3(2≥-a a7、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?8、达标测试 1.要使ba 是二次根式,则应满足的条件是( ) A.a≥0且b≥0 B. a≥0且b >0 C.b a >0 D.ba ≥0且b≠0 2.把414写成一个正数平方的形式是( ) A.2212⎪⎭⎫ ⎝⎛ B. 2212⎪⎭⎫ ⎝⎛或2212⎪⎭⎫ ⎝⎛- C.2217⎪⎪⎭⎫ ⎝⎛ D. 2217⎪⎪⎭⎫ ⎝⎛或2217⎪⎪⎭⎫ ⎝⎛- 3.函数21-=x y 中自变量的取值范围在数轴上表示为( ) A. B. C. D.9.如图,实数a 、b 在数轴上的位置,化简:2a -2b -2)(b a -.10.已知x 、y 为实数,y=214422-+-+-x x x ,试求3x+4y 的值.11.甲同学和乙同学做一道相同的题目:化简a 1+2a a 122-+ ,其中a=51. 甲同学的做法是:原式=a 1+2)a a1(-=a 1+a 1-a=a 2-a =10-51=549;乙同学的做法是: 原式=a 1+2)a 1a (-=a 1+a-a 1=a=51. 到底谁错了?为什么?说明理由.16.2二次根式的乘除第1课时 二次根式的乘法学习目标1a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和化简.2、通过学习和掌握知识目标的整个过程,培养学生对数学化简题目的敏锐度,同时培养学生的计算能力.重点:掌握二次根式乘法法则和积的算术平方根的性质.难点:会用积的算术平方根的性质对二次根式进行化简.学习过程1.填空:(1;(2=____;(3.2、学生交流活动总结规律.一般地,对二次根式的乘法规定为:反过来例1、计算(1(2(3)3(4例2、化简(1(3(4(53、巩固练习(1)计算: ①②55×215 ③312a ·231ay(2)化简4、判断下列各式是否正确,不正确的请予以改正:(1=(2=4请大家讨论:对于9×27的运算中不必把它变成243 后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数.2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解.(2)分解后把能开尽方的开出来.5、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?6、.达标测试1.下列计算正确的是( ) A.912=912⨯=231 B.)4()9(-⨯-=49-⨯-=(-3)×(-2)=6 C.22y x +=y x y x +=+22 D.b a 224=ab a 642⋅=2|a|ab 62.如果232a a +=2+-a a ,则实数a 的取值范围是( )A.a≥0B.0≤a≤2C.-2≤a≤0D.a≤-23.把a a1-根号外的因式移入根号内的结果是( ) A.a - B.a -- C.a D.a -9.计算:(1)27×123×385(2)3031×2140×3222310.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df ,其中v 表示车速(单位:千米/小时),d 表示刹车后车轮滑过的距离(单位:米),f 表示磨擦因数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?11.小明在微机课上设计了一幅矩形图片,矩形的周长是π140cm ,宽是π35cm ,他又想设计一个面积与其相等的圆,请你帮助小明求出圆的半径.第2课时二次根式的除法学习目标1、掌握二次根式的除法法则和商的算术平方根的性质.2、通过学习和掌握知识目标的整个过程,使学生能熟练进行二次根式的除法运算及化简.3、培养学生的数学学习兴趣,感受实数的应用价值.重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质.难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简.学习过程1、计算: (1)38×(-46) (2)3612ab ab ⨯2、填空: (1; 规律:(2;(3;(4.一般地,对二次根式的除法规定:3、计算:(1(2(3(44、化简: (1(2(3(4注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数.2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式.5、阅读下列运算过程:==== 数学上将这种把分母的根号去掉的过程称作“分母有理化”.利用上述方法化简:(1)3=_____ ___ (4=___ ___ 6、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?7、达标测试1.如果6-x x =6-x x 成立,那么( ) A.x≥6 B.0≤x≤6 C.x≥0 D.x>62.下列各数中,与32的积为有理数的是( ) A.32+ B.32- C.32+- D.39.计算:32212332b b b ⋅÷10.(1A ..2E .0问题的答案是(只需填字母): ;(2.11.在进行二次根式化简时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简: 553535535=⨯⨯= (一) 32=363332=⨯⨯ (二) 132+=))(()-(1313132-+⨯=131313222---=)()( (三) 以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:132+=1313+-=131)3(22+-=13)13)(13(+-+=13-.(四) (1)请用不同的方法化简352+. (2)①参照(三)式得 352+=____________;②参照(四)式得352+=__________. (2)化简:12121...571351131-+++++++++n n第3课时最简二次根式学习目标:1、理解最简二次根式的概念,把二次根式化成最简二次根式,熟练进行二次根式的乘除混合运算.2、使学生能熟练进行二次根式的乘除运算及化简.重点:最简二次根式的运用.难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算.学习过程1、化简(1)496x = (2=(3= (4= (5= 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1).被开方数不含分母; (2).被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2、化简:(1) 2083、比较下列数的大小(1)8.2与432 (2)7667--与 注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化.2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.4、知识应用:设长方形的面积为S,相邻两边长分别为a,b.已知S=23,b=5.求a 的长.5、计算:(1)6·a 3·b 31 (2)16141÷ (3)50511221832++-6、探究计算:(1)(38+)×6 (2)22)6324(÷-7、探究计算:(1))52)(32(++ (2)2)232(-8、练习计算:(1)12)323242731(-- (2))32)(532(+-(3)2)3223(+ (4)(9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10、达标训练2.下列二次根式中,是最简二次根式的是( )A.22xB.12+bC.a 4D.x1 3.下列判断正确的是( ) A .3<3<2 B .2<2+3<3 C .1<5-3<2 D .4<3·5<59.下列各式中,哪些是最简二次根式?哪些不是?为什么?15,24,ab 27,2235y x +,23,23,24m m +,2x10.把下列各式化成最简二次根式(1)500 (2)323b a (3)b a c abc 4322-(4)ay x 22-(x >y ) 11.比较下来各组数的大小(1)3与22 (2) 52与33 (3) 27与113 (4) 132-与63-(5) 3131-与7121- (6)3π与64216.3 二次根式的加减一、学习目标1、理解同类二次根式,并能判定哪些是同类二次根式.2、理解和掌握二次根式加减的方法.3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重点:二次根式化简为最简根式.难点:会判定是否是最简二次根式.学习过程1、计算. (1)x x 32+; (2)222532x x x +-;(3)y x x 32++; (4)22223aa a +-2、学生活动:计算下列各式.(1)(2)(3(4)由此可见,二次根式的被开方数相同也是可以合并的,如(与整数中同类项的意义相类似我们把33与32-;a 3、a 2-与a 4这样的几个二次根式,称为同类二次根式)如: 所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将同类二次根式进行合并.例1.计算 (1(2例2.计算(1)( 2)+归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.3、练习计算 (1) )27131(12-- (2) )512()2048(-++4、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?5、达标训练2.下列各组中,是同类二次根式的是( ) A.45.0与81.0 B. b a 23与22abC.2x 与32xD.x x 3与xx 122 3.计算12⎪⎪⎭⎫ ⎝⎛-+4831375的结果是( ) A .6 B .43 C .23+6 D .129.(1)计算:⎛÷ ⎝(202)10.(1)先化简,再求值: (a-3)(a+3)-a(a-6),其中a=5+21.(5)已知:a=2-1,求142--a a a ÷⎪⎭⎫ ⎝⎛--12a a 的值.11.有这样一道题:计算4422---+x x x x +4422-+--x x x x -2x (x >2)的值,其中x=1005,某同学把“x=1005”错抄成“x=1050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.。
第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
数学(学科)导学案
课题16.1 二次根式的性质学案编号01使用时间班级姓名
学习目标
1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;
2.会运用二次根式的两个性质进行化简计算.
重
难
点
重点经历二次根式的性质的发现过程,体验归纳、猜想的思想方法.
难点会运用二次根式的两个性质进行化简计算
一、自主学习
回顾思考:表示,a 的取值范围是.
1. 用基本运算符号(包括加、减、乘、除、乘方和开方)把或连接起来的式子,我们称这样的式子为代数式.
2. 你能列举一些你学过的代数式吗?
练一练:在下列式子中,是代数式的有_个,分别是.
π-3,a≠0
二、合作探究
探究1:用学过的方法完成下列式子的计算.
思考
归纳总结:
的性质:
一般地,=.即一个的算术平方根的平方等于 .................
例题精讲
例
练一练
探究2:
1、计算
2、计算
3、对比发现
归纳总结
的性质:
即任意一个数的平方的算术平方根等于.
概念辨析:如何区分与?
例题精讲
(1)
练习
三、能力提升
1、实数a 在数轴上的对应点如图所示,请你化简:
a
-1 0 1
2、已知,则x 的取值范围是.
五、中考链接
已知a、b、c 是△ABC 的三边长,化简:
老师我不会
老师我想说。
16.1.2二次根式的性质教学目标1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。
2、了解二次根式的上述两个性质。
3、会运用上述两个性质进行有关计算。
教学重点是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进行有关计算。
教学过程一、 回顾与引入1、 平方根的概念:一个数的平方等a (a ≥0),则这个数叫做a 的平方根,记做a ±,则()a a =±22、()a a =23、大家抢答 填空()=22 ()=213 =⎪⎪⎭⎫ ⎝⎛271二、新课讲解从熟悉的知识出发先练习、再观察发现总结规律得出性质一 4、性质一:()()02≥=a a a5、能用几何图形作出直观解释吗?用正方形的面积启发诱导数形结合思想6、填空 课本6页7、比较 2a 和a 有何关系?当a ≥0时,2a = 和a ﹤0,2a = 先练习、再观察发现总结规律得出性质二8、性质二:9、课内练习(()(()(()(()()()(2222322211_____,2______,33_____,5141_____,54____,62____.3⎛⎫-=-= ⎪⎝⎭=---=梳理知识使条理清楚,及时练习巩固10、例1 计算(1)()()221317-- (2)()323332+•⎥⎦⎤⎢⎣⎡--规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序11、课本7页课内练习第2题(领悟方法,会正迁移)12、计算:217375212-+⎪⎭⎫ ⎝⎛- 要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断2a 中a 的符号三、引申与提高例4 化简:(1)(2) (3) (a <0,b >0) (4)(a >1 ) 四、分享与体会你能说出这节课你的收获和体验与大家分享吗?五、作业1.课本作业题;2.预习下节课。
《16.1二次根式》导学案小组名称____ 学生姓名:小组评价: ____ 教师评价—学习目标1 、理解和掌握二次根式的性质,正确区分(、a ) 123 4=a(a> 0)与.a2= a (a> 0)2、利用(a )2=a (a>0)与1 a2= a (a > 0)进行计算和化简.重点、难点:二次根式的性质。
一、自主学习1. 什么叫二次根式?2 .当a > 0时,,a叫什么,a叫什么?当a<0时,a有意义吗?3、计算;(、,4 )2= _____ ;(、9 )2= _____ ;, -9 = ______ C, 0 )2= ________.__ 22(后)= ___________ .( a > 0)3计算(1)教材第四页第一题、第五页二题(4计算(-.3 )2(3、.5 )2(」)24二、探究新知5、在实数范围内分解下列因式7、猜一猜:.a 2 = 8、计算:(1)教材4页第二题、5页第二题 (2)当x>2,化简 (x-2)2 - ..(1-2x)2(3) 若-3 w x w 2 时,试化简 I x-2 | +、.(x 3)2 +、x 2 -10x 254、猜一猜:) 2= ____________ ; ( J 3 ) 2= (3、5)2 -(5'、3)2 (2、、3 3 ..2)(2、、3 -3 辽)4、拓展(.厂7 ) 2(x >0)(.a 2 2a 1)(:4x 2 -12x 9 ) 22(1) x-34(2) x-46、计算:JF= ____ ; Jo.0122(4) x-27 x +71)至(4);、了 =9、先化简再求值:当 a=9时,求a+ “ _2a a 2的值10、若 11995-a | +、a -2000 =a ,求 a-19952的值.三、小结: (1)通过这节课的学习,你学到了哪些知识?(2) ( a )2与a 2相同吗?为什么?四、当堂检测:、选择题 1 •下列各式中,15、.. 3a 、乙 b 2-1、•一 a 2 b 2、二 m 2 20、. —144,3、当a >0时,.a 2、•,(-a)2、- -、a 2,比较它们的结果,下面四个选项中正确的是 ().、填空题1 .(-庇)2= ___________ .-寸0.0004 = ________2•若J20m 是一个正整数,则正整数m 的最小值是 ________3 .已知...x - y • 1 + ••. x - 3 =0,求 x y的值.C.a 2 v . (「a )2 <-、a 2 .a 2 > . (-a )2 >-、a 2-.a 2 > a 2 = .. (「a )2 次根式的个数是( )..1 ().《16.2二次根式的乘除》导学案(1)小组名称 _____ 学生姓名: 小组评价: _____ 教师评价 —理解 Ta • J b = >/ab (a > 0, b >0), T ab = Ja • J b (a >0, b > 0),并利用它们 进行计算和化简2、经历探索二次根式乘法法则的过程,发展观察、猜测、验证等能力。
二次根式〔3〕 学案学习目标:1.理解二次根式的性质,能运用二次根式的性质进展二次根式的运算和化简;=|a |的过程,培养分类的数学思想。
学习重点:=|a |及运用。
学习难点:运用二次根式的性质进展二次根式的化简。
学习过程:一、温故互查1.形如 的式子叫做二次根式;a≥0〕是一个 数;2= .二、设问导读 探究新知阅读课本,完成以下问题【探究】⑴计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到: 当=>2,0a a⑵计算:=-2)4( =-2)2.0( =-2)54( =-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 。
⑶计算:=20 ;当==2,0a a【归纳】二次根式的性质:⎪⎩⎪⎨⎧<=>==0)(a _____0)a ( _____0)a ( ____ 2 a a三、自我检测【例1】化简:〔1〔2〔3〔4【例2】求以下各式的值. ⑴2)45( ⑵2)32(- ⑶2)21(- ⑷2)14.3(π-四、稳固训练:实数a 、b 在数轴上的位置如图: 化简:222)(b a b a ---代数式:用根本运算符号〔包括加、减、乘、除、乘方和开方〕把数和表示数的字母连接起来的式子称为代数式。
【课本练习】 第2题五、拓展提升2)2(2-=-x x ,那么x 的取值范围是 。
2.假设1<x<2,那么2)1(|3|-+-x x 的值为 。
3.344+-+-=x x y ,求代数式)4)(4(yx xy y x y x xy y x +-+-+-的值。
六、小结评价1.请说说你本节课的收获?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:. . . . . . . . -1 0 1a b。
第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
第十六章 二次根式
16.1 二次根式
第2课时 二次根式的性质
一、学习目标:1.掌握二次根式的基本性质:(a )2=a (a ≥0);a a =2;
2.能利用上述性质对二次根式进行化简.
二、学习重点、难点
重点:二次根式的性质(a )2=a (a ≥0);a a =2.
难点:综合运用性质对二次根式进行化简和计算。
三、学习过程
(一)自学导航(课前预习)
(1)什么是二次根式,它有哪些性质?
(2)二次根式5
2-x 有意义,则x 。
(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - )
(二)合作交流(小组互助)
1、计算 (1) 2)4(= (2)()=23
(3)2)5.0( = (4)2)3
1(= 根据计算结果,能得出结论: (0≥a )
2.计算:
(1)=24 =22.0 =2)54(
=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a
(2) =-2)4( =-2)2.0( =-2)54(
=-2)20( ________)(2=a
观察其结果与根号内幂底数的系,归纳得到:当a<0时,=2a
(3)=20 得到:当a=0时,=2a
3.归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质: 性质一:(a )2=a (a ≥0) 性质二:⎪⎩
⎪⎨⎧<-=>==0a a 0a 00a a 2
a a 4. (1)阅读课本思考:什么是代数式?我们前面还学过那些代数式吗?
(2)思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区
别与联系。
四.精讲点评 利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简目的,进行化简的关键是准确确定“a ”的取值。
五.当堂达标
1、化简下列各式
(1)(5.1)2 (2)(52)2 (3)22)33()10(-+--计算: ())0(42≥x x (5) 4x
2、化简下列各式
(1))3()3(2≥-a a (2)
()232+x (x <-2)
六.拓展延伸
(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.
(2) 把(2-x)2
1-x 的根号外的(2-x )适当变形后移入根号内,得( )
A 、x -2
B 、2-x
C 、x --2
D 、2--x
(3) 已知2<x <3,化简:3)2(2-+-x x
七.教后反思
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。
博学之,审问之,慎思之,明辨之,笃行之。
我不知道将来会去何处但我知道我已经摘路上。
思想如钻子,必须集中摘一点钻下去才有力量。
失败也是我需要的,它和成功对我一样有价值。
2、为了做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。
你到底想要什么?一生中哪些对你而言是最重要的?什么是你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成 。