佛山4G网络根据UE功率余量定位上下行不平衡分析报告
- 格式:docx
- 大小:2.47 MB
- 文档页数:6
关于BTS3012因工程问题引起上下行不平衡问题预警问题分析:通过现场分析,现场工程原因主要包括:1:接收射频电缆连接错误,导致上下行不平衡2:DATU单板拨码开关不正确导致塔放供不上电,导致上下行不平衡3:主集接收电缆没有拧紧(DTRU和DDPU),导致上下行不平衡三、问题影响情况:现场出现上下行不平衡的小区,都是下行大于上行,影响用户的正常接入,严重时用户将无法进行业务。
四、解决方案或规避措施:对于需要安装BTS3012的办事处,在完成合作方招标并且硬件督导到位后,现场需要对所有需要参与项目的BSC督导、BTS督导进行BTS3012产品知识的培训,尤其需要注意以下内容:1:所有参与BTS安装割接的BSC、BTS督导必须掌握DDPU与DTRU之间的射频连接原理、跳线与内部射频连线的对应关系、射频连线与BSC数据配置的对应关系,BTS督导完成安装后必须与BSC数据工程师核对连线与数据配置是否一致,对于先安装后做数据配置的,必须详细告知BSC数据工程师现场连接方法和数据配置方法。
2:BTS3012通过DATU+BiasTee的方式实现对塔放的馈电及告警上报。
替换站原来有塔放时需先确认配发的DATU、BiasTee能否为其供电,不能供电时需拆除塔放或者建议客户申购华为公司配套塔放;可以利旧时,一定要连接DATU为其提供馈电,并正确设置DATU单板的拨码开关。
3:现场工程施工要注意确保射频电缆接头可靠拧紧。
3900系列基站上下行不平衡问题定位指导书“测量报告上下行平衡测量”话统各个等级内的MR个数呈正态分布,波峰处“上下行平衡等级”相对于“上下行平衡点”的位置偏差不超过1个等级的认为系统是上下行平衡的。
偏左认为下行覆盖弱,偏右认为上行覆盖弱。
(注:“上下行平衡点”详细请参看1.2“上下行平衡点”评估标准)例如:如果“上下行平衡点”在等级4,“测量报告上下行平衡测量”话统波峰在等级3、4、5认为系统是上下行平衡的,而此时话统显示话统波峰在等级6,相对“上下行平衡点”偏右,上行覆盖弱。
广东-佛山4G LTE端到端之低速质差小区优化推广验证2019年08月目录佛山LTE端到端之低速质差小区优化推广验证............................................错误!未定义书签。
一、推广背景 (2)二、推广实施 (4)2.1.端到端优化之低速质差 (4)2.1.1低速质差小区定义及统计 (4)2.1.2现网问题分析说明 (5)2.1.3问题分析 (5)2.2.低速质差小区相关处理措施 (6)2.2.1开启下行PRB干扰随机化和上行频选 (6)2.2.2开启CFI自适应功能优化 (8)2.2.3PDCP丢弃定时器时长优化 (8)2.2.4互操作参数优化 (9)2.2.5CQI提升参数优化 (10)2.2.6负荷均衡 (11)三、推广效果 (15)3.1.弱覆盖问题优化效果 (15)3.2.过覆盖问题优化效果 (17)3.3.重叠覆盖问题优化效果 (18)3.4.上行干扰问题优化效果 (20)3.5.多用户高负荷问题优化效果 (22)四、优化总结 (25)【摘要】随着通信网络的不断演进和发展,多业务能力需求的融合,对当今网络的运营能力,提出了更高的要求,尤其网络端到端的优化能力,更能全面评估移动网络承载的能力、效率和质量,端到端指标直接反应现网用户真实使用情况,能直观反馈网络各节点的问题,做好端到端的优化指标,更有利于通信市场的可持续发展,提升网络竞争力。
且随着LTE网络大力建设与业务推广,随之带来的问题也日益明显,无线环境的多样化、复杂化,则主要呈现在LTE网络用户下载速率。
本文将通过多维度分析定位影响下行速率的原因,多手段优化端到端低速质差小区,提升用户下行速率感知。
【关键字】端到端低速质差、下行速率感知。
【业务类别】优化方法、参数优化、承载网。
一、推广背景移动网络的核心竞争力就是在于用户的使用感知,确保用户驻留网络意愿,提升用户使用口碑,确立一切以用户感知体会为中心的服务方向。
4g网络优化分析报告一、引言随着移动通信技术的发展,4G网络已成为现代社会中的主要通信方式,为人们提供高速、稳定的移动互联网服务。
然而,由于用户数量激增,网络数据传输量不断增加,4G网络的效能和用户体验面临了一些挑战。
本报告旨在对4G网络的优化进行深入分析,以帮助提高网络质量和用户体验。
二、4G网络优化的重要性和需求1. 市场需求:随着移动智能设备的广泛应用,人们对于网络速度和稳定性的要求越来越高。
为了满足用户的体验需求和提升运营商的竞争力,对4G网络进行优化势在必行。
2. 用户体验:4G网络速度过慢、延迟高会导致用户上网体验不佳,甚至无法正常进行视频播放、网络游戏等高带宽需求的活动。
3. 成本效益:4G网络的优化可以提高网络的效能,减少基站和网络设备的负荷,降低维护成本,提高运营商的效益。
三、4G网络优化的挑战和问题1. 基站布局:由于城市人口密集、信号干扰等因素,基站之间的距离、覆盖范围和信号质量存在差异,导致网络容量不均衡和数据传输速度不一致的问题。
2. 频谱资源的合理分配:不同运营商之间的频段和带宽资源分配不均衡,导致网络拥塞和传输速度下降。
3. 网络拥塞和负载均衡:随着用户数量的增加,网络流量不断增大,容易引发网络拥塞和网络设备负载不均衡的问题,导致用户无法正常使用网络服务。
4. 不稳定的网络连接:移动终端设备在移动过程中,信号质量可能会发生变化,导致网络连接不稳定,影响用户体验。
四、4G网络优化策略1. 基站优化:根据不同地区和人口密度进行合理的基站布局和功率控制,以提高网络覆盖范围和信号质量。
优化基站的天线、传输设备等硬件设施,提升网络质量。
2. 频谱资源的合理分配:不同运营商之间应合理分配频段和带宽资源,避免频谱浪费和网络拥塞问题。
加强运营商间的合作,共享频谱资源,提高网络效能和用户体验。
3. 网络负载均衡:通过智能路由的方式,实现网络负载均衡,合理分配流量,避免某一基站或区域负载过高引发网络拥塞的问题。
上下行不平衡总结报告2.服务提供商限制:为了提高用户使用体验和网络质量,许多互联网服务提供商采取了一些策略来限制上行带宽,使用户无法大量上传数据。
这主要是因为上传数据会占用更多的网络资源,可能对其他用户的上下行数据传输造成影响。
3.网络架构限制:一些网络架构的设计也会导致上下行不平衡。
例如,对称数字用户线路(SDSL)只支持对称带宽的上下行,而非对称数字用户线路(ADSL)则可以提供更高的下行带宽而较低的上行带宽。
1.上行业务受限:上行带宽有限会限制用户进行上传文件、视频会议、网页上传等操作,尤其在远程办公、在线教育等场景下增加了使用的不便。
2.网络延迟增加:当下行数据流量占用过大时,可能会导致上行数据的发送延时增加,从而导致网络延迟增加,影响用户体验和数据传输效率。
3.网络拥堵:当网络上下行不平衡时,下行数据流量大导致网络的拥堵,可能会出现传输中断、卡顿等问题。
4.不公平的资源分配:由于下行带宽占用较多,可能导致其他用户上行数据传输速度降低,造成资源不公平分配。
针对上下行不平衡的解决方案如下:1.升级带宽:用户可以选择升级更高的上行带宽来满足自己的需求,但这需要用户花费更多的金钱。
2.服务提供商优化:互联网服务提供商可以优化网络策略,根据用户的实际需求进行带宽分配,合理分配上下行带宽比例,提供更好的上行服务。
3.网络架构改进:网络架构设计可以考虑提高上行带宽的能力,例如采用对称带宽的设备或调整ADSL的上行带宽比例,以提供更好的上行服务能力。
4.流量调整和均衡:通过合理的流量调整和均衡,对网络中的上下行数据进行优化,以实现上行和下行的平衡。
总之,上下行不平衡是当前网络中存在的一个重要问题,对网络性能和用户体验产生了一定的影响。
通过采取合适的解决方案,可以有效地解决上下行不平衡问题,提升网络性能和用户满意度。
在未来的网络发展中,我们需要更多关注上下行不平衡的问题,通过技术创新和优化,为用户提供更好的上下行服务。
LTE网络优化方案上下行链路不均衡的优化分析
上下行链路不均衡会导致以下问题:
2.下行带宽浪费:由于下行链路带宽过剩,但上行链路带宽不足,导致下行带宽没有得到有效利用,浪费网络资源。
3.QoS差异:上下行链路不均衡可能导致不同服务质量等级的差异,进一步影响用户体验。
为了解决上下行链路不均衡问题,可以采取以下优化方案:
一、网络规划优化:
1.基站规划:合理规划基站的布局和密度,使得上行链路和下行链路能够平衡地覆盖用户,避免上行链路过于拥塞。
2.频谱分配:根据实际需求,合理分配上行和下行的频谱资源,确保上行链路和下行链路能够得到均衡的利用。
二、上行链路优化:
1.增加上行带宽:通过增加小区的上行带宽或者组播通道的带宽,提高上行链路的传输速度和容量。
3.优化调度算法:采用合适的调度算法,根据不同用户的业务需求和网络状况,合理分配上行传输资源,提高上行链路的利用率。
三、下行链路优化:
1.QoS保证:根据用户的优先级和业务需求,对下行链路上的数据进行合理的调度和优先级控制,确保重要数据的传输质量。
2.缓存技术:使用缓存技术对热门数据进行缓存,减少对下行链路的
请求,提高用户对数据的响应速度。
3.增加下行带宽:根据网络负载和用户需求,增加下行链路的带宽,
提高传输速度和容量。
四、终端优化:
1.充分利用终端设备的资源:通过优化终端设备的协议栈和传输机制,减少协议开销,提高上行链路的利用率。
2.功率控制:根据终端设备的信号质量和覆盖范围,合理控制终端设
备的功率,确保信号的质量和传输的稳定性。
上下行不平衡的影响及问题处理上下行不平衡,指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。
上下行不平衡的覆盖问题比较容易导致掉话。
这类问题通常包括以下原因:上行干扰(比如直放站和干放等设备上下行增益设置存在问题),天馈系统问题,NodeB硬件原因等。
主要的解决方法是对设备硬件与设备设置进行检查上下行功率不平衡造成单通、掉话[现象描述]路测过程中发现以下现象:手机占上某小区,但不能呼出;单向通话;在距离小区一定距离处总是掉话;频繁的切换后掉话现象。
[处理过程]无线链路分上行和下行两个方向,实际的覆盖范围应由信号较弱的方向决定。
如果上行信号覆盖大于下行信号覆盖,那么小区边缘下行信号较弱,容易被其它小区的强信号“淹没”;如果下行信号覆盖大于上行信号覆盖,那么移动台被迫驻留在该强信号下,但上行信号太弱,手机不能呼出,或造成通话后话音质量差、单向通话,甚至掉话。
当然,平衡并不是绝对的相等,由于基站灵敏度好于移动台的灵敏度,所以下行信号将大于上行信号。
上面提到的路测现象多是缘于上行信号低于下行信号太多而造成的功率不平衡,特别是打开上行功控时。
测试时让手机往小区边缘方向移动,同时用MA10信令分析仪在基站侧跟踪抓取数据,比较BTS和MS各自的接收电平,观察当上行信号达到最低接收门限电平时,下行信号是否还好得足以让手机驻留该小区。
检查上下行功率是否平衡,但从下图可以看出,其差异已近30dB;若出现多个这样的测量结果,肯定是上行接收存在问题,需要检查TRX板、分路器、塔放电流和天馈的驻波比。
当上行功控打开时,功控参数设置不当也会造成明显的功率不平衡。
首先应保证手机静态功率等级设置正确(900为等级5,1800为等级0),曾发现1800手机因上下行功率不平衡造成单通。
无线信号根据传播方向分为上行和下行两个方向,在理想情况下上下行链路是平衡的,考虑到BTS接收灵敏度比MS稍高,上行信号允许稍弱。
即在任何区域基站侧和手机侧均可以同时收到对方的信号,或者同时无法收到对方的信号。
由于无线信号传播路径的不确定性以及实际环境的差异,在整网范围内完全实现无线链路上下行平衡是不可能的。
因此网络中必然存在下行信号可以覆盖而上行信号无法覆盖到的区域,在这些区域内,用户可以收到网络侧的消息而网络侧无法收到用户手机上报的消息,包括寻呼响应。
因此在这些区域内也很容易出现用户已出服务区的现象。
对于这种情况的用户已出服务区现象,首先可以通过调整无线参数,“RACH忙门限”、“RACH错误门限”、“MS最小接入电平”、“RSSI校正”等值来优化上下行平衡关系。
1、上下行不平衡或上行接收灵敏度低问题原因:当下行覆盖范围大于上行。
在小区边缘将产生伪覆盖区;在伪覆盖区内手机能够正常接收基站的信号,但是无法接入系统。
用户做主叫无法获得服务,作被叫时,就会出现不在服务区现象。
定位手段:话统中的“功率控制性能测量”、“上下行平衡性能测量”等解决方法:a、检查工程安装质量;b、调整无线参数。
2、配置基站功率未考虑各种合路器插损的区别问题原因:例如:SCU的插损比CDU高3~4dB,如果配置载频功率等级数据时没有考虑到两者的区别,将会导致配置SCU的小区下行功率偏小,覆盖不良。
3、小区重选频繁导致用户做被叫出现不在服务区现象问题原因:小区重选过于频繁,会影响手机的接入性能。
定位手段:实地路测和拨打测试;解决方法:a、通过网络优化改善小区覆盖b、调整无线参数上下行不平衡,指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。
上下行不平衡的覆盖问题比较容易导致掉话。
上行失步和下行失步上行失步和下行失步上行失步:基站侧检测原因:1、与目标小区上行失步:UE收到物理信道重配置消息,由于UP存在干扰或FPACH 信道的C/I或信号质量较差,UE不能在新小区建立上行同步,导致帧定时跟踪出现问题,这样UE无法在目标小区正确收发,发生切换失败。
如果源小区的RL 没有删除,RNC会通过源小区给UE下发物理信道重配失败(或RB重配失败),UE回到源小区,反之则发生掉话。
(上行同步失败)2、与目标小区上行失步:UE已向目标NodeB发送物理信道重配置(RB重配置)完成信令,但是由于目标小区NodeB底噪过高,或此时多部UE位于小区边缘,且上行发射功率都被抬升的比较高导致产生较大的上行时隙干扰,使得目标小区NodeB无法正确解析重配置完成的信令,而引发物理信道重配置超时。
(uncomplete)判断标准:在同步保持阶段,NodeB对于物理层两个连续同步指示的时间间隔为160ms,NB 在收到N_OUTSYNC_IND个连续失步指示后,将启动“无线链路失败过程定时器”T_RLFAILURE,在收到N_SYNC_IND个同步状态指示后,NodeB将停止和复位T_RLFAILURE,如果T_RLFAILURE超时,NodeB则认为上行无线链路失步。
(上行失步会删除链路,立即断开,造成UE最终掉话。
)挽救措施:NodeB检测到上行无线链路失步后,做如下处理:1)NodeB向RNC上发“Radio link failure indication”,指示同步失败。
(NodeB——RNC)2)NodeB停发下行数据,目的是让UE下行失步,来上发CellUpdate。
(注:此时会在终端侧显示出DPCH陡降现象。
)3)RNC启动“收到RL失败等待定时器”。
在该定时器超时前,如果未收到“Radio link restore”则RNC释放链路,并记为无线链路失败的掉话。
(NodeB——RNC)(注释:上行失步需要基站来检测,也有类似于UE侧的定时器和计数器,一旦发现上行失步,则NodeB会上报RL Failure Indication(NBAP信令)给RNC,同时RNC会启动相应的无线链路失败等待定时器,定时器超时则发起Iu Release Request,记为一次掉话。
3GPP TSG RAN WG2 #58bis Tdoc-R2-072721 Orlando, U.S.A., 25th – 29th June 2007Agenda item: 4.5.1Source: NTT DoCoMo, Telecom Italia, T-MobileTitle: Use of cell specific offsets and reading neighbour BCHDocument for: Discussion1. IntroductionIn RAN2#58 in Kobe, RAN2 has decided that, to allow for sufficient mobility control without NCL, an offset value shall be included in BCH, and that the UE shall read the neighbour cell BCH to obtain this offset value both in ACTIVE and IDLE modes [1]. The offset value biases the measured quantity of the corresponding cell for mobility control. It was expressed by operators that this offset is necessary primarily to control the cell boudaries considering the DL and UL coverage imbalance, caused by DL/UL feeder cable loss difference (due to TMA) and eNBs having different transmission powers adjoining in the network [2]. However, in RAN Plenary #36 in Busan, the decision was taken back after some vendors expressed concerns on the handover/cell reselection delays and UE battery consumption [3]. Revisiting this issue, this document explains why cell specific offsets are thought necessary, summarises concerns of reading neighbour BCH, and presents our position on the issue.Note that the support for optional NCL for intra-frequency cells has already been agreed in RAN2, and this has not been reopened. The optional NCL should serve purposes such as to set serving-neighbour pairwise specific offsets or to blacklist certain cells. It can also be used to speed up cell detection, although relevance of this is pending RAN4 response. Hence, the only open question that needs to be addressed is “whether UE reads neighbour BCH and obtains the offset value included therewith,” and this is the exact focus of this paper.2. Use of cell specific offsets2.1 DL/UL imbalance problemAs mentioned in [2], the need for a cell specific offset is mainly motivated by the fact that eNBs of different power classes can be adjoining in many places throughout the network, and that each cell has different DL and UL feeder cable losses (i.e., DL/UL feeder loss difference due to TMA). By setting approprite offset values, the DL/UL imbalance can be mitigated. Before going into how offsetting works, the DL/UL imbalance problem has to be understood.Figure 1 shows the principle of DL/UL imbalance caused by cable loss difference. Assuming two base stations, having the same antennas and propagation coefficients, the cell boundary will be at the centre (equidistant) based on path loss (UL oriented). However, if the two base stations have different cable losses (or different transmission powers), the cell boundary will deviate from the centre based on Ec/N0 (DL oriented), hence causing DL/UL imbalance.Fig. 1 DL/UL imbalance principle.2.2 Mitigating DL/UL imbalanceThe DL/UL imbalance problem can be mitigated/tolerated in a number of ways:Alt.1: Mobility control based on Ec/N0 (do nothing)Alt.2: Adjust DL total transmission power based on the UL coverage (DL/UL balancing)Alt.3: Adjust DL pilot transmission power based on the UL coverageAlt.4: Use cell specific offsetsEach solution is described in detail in the sequel. Note that these solutions are not exclusive, and can be combined if so desired.To simplify the discussion, the traffic distribution aspect is omitted for the qualitative assessment below. However in practice, cell planning has to take into account real traffic distributions, which can be far from ideal uniform. It should be noted that this adds another dimension to network planning, which can be quite complicated.2.2.1 Alt.1: Ec/N0 based mobility control (do nothing)The first solution is to do nothing special, and just rely on Ec/N0 to control mobility (Fig.2). This can be optimum for the DL, however, the UL will deteriorate especially at cell edge. If the UE has sufficient transmission power (typ. small cells), it will transmit at a larger power to satisfy its QoS (i.e., the required SIR for a desired rate). If the UE did not have enough power (typ. large cells), the likely consequence in a scheduler based system as in LTE is that it transmits (is scheduled) more frequently so that the desired rate can be met. In either case, this will create larger interference at the neighbour cell, and hence decreases system capacity in the UL.Fig. 2 Ec/N0 based mobility control (do nothing).2.2.2 Alt.2: DL total Tx power adjusting (balancing)The second solution is to adjust the total DL transmission power of the base station such that the DL boundary matches the UL boundary, while the power ratio of the pilot symbols used for mobility measurements is maintained. An example case is shown in Fig. 3. The total power of the base station having a smaller cable loss is reduced, such that the emitted power from the antenna is equal to that of the neighbour having a larger cable loss. This will balance the DL/UL boundaries, hence resolving imbalance, and will be the optimum in terms of the UL. This has a benefit in that it limits DL interference at the neighbour, and generally improves Ior/(Ioc+N0) at cell boundaries. However, it has some drawbacks as the cell with the reduced power now has limited capacity due to reduced power. It may also reduce channel estimation and cell detection performances due to reduced pilot power. This will be more evident in noise limited deployements (e.g., large cells).Fig. 3 DL total Tx power adjusting (balancing).2.2.3 Alt.3: DL pilot Tx power adjustingInstead of adjusting the total transmission power, the transmission power of the pilot symbols can be reduced, while maintaining the total power (Fig. 4). This would also resolve DL/UL imbalance. Since the total power is maintained and data transmissions can be allocated larger powers, the cell can provide larger capacity compared to Alt.2. However, this will create larger interference at the neighbour cell, and will reduce channel estimation and cell detection performance due to reduced pilot power. This alternative will also require some further adjustments e.g.,The transmission powers of other DL common channels (such as BCH) also need to be adjusted considering the channel estimation quality.The pilot/data symbol power ratio must be adjusted and signalled to the UE so that it can correctly demodulate 16QAM or 64QAM signals.These adjustments will have to be performed for each cell, which can incur extensive efforts on operators.Fig. 4 DL pilot Tx power adjusting.2.2.4 Alt.4: Use cell specific offsetsAnother alternative is to use cell specific offsets (Fig. 5). With this alternative, the total and pilot powers do not have to be modified, and the DL/UL imbalance can be mitigated by instead, setting a cell specific offset at each cell. The offset value can be set such that it reflects the cable loss (DL/UL difference). By having the UE take into account the offset value in making mobility decisions, the imbalance can be resolved.The offset can be used to optimise cell boundary for the UL, DL, or anywhere in between, by setting the appropriate offset value. If the offset is used to optimise boundary for the UL, for the cell transmitting at a higher power (left in Fig.5) the DL quality/capacity improves (1), however, the neighbour cell (right in Fig.5) will suffer degraded DL quality/capacity (2) and degraded DL common channel (CCH) quality (3). Note that if the cell boundary is optimised for the DL (offset = 0), the performance will be the same as for Alt.1.Since the pilot power is not reduced as in Alt.3, the channel estimation quality does not degrade with this alternative. The pilot power is usually adjusted considering the optimum (tradeoff) allocation between the pilot and data, and in that sense, this alternative allows to maintain the optimum power allocation settings (i.e., it should not require power adjustments per cell). Although signalling of the offsets incur some additional overhead, this overhead can be trivial considering the entire system bandwidth. As such, it offers a considerably simpler solution to resolving DL/UL imbalance, especially if the offset is read from the neighbour BCH.Fig. 5 DL/UL imbalance mitigation by use of cell specific offsets.2.2.5 Qualitative comparisonTable 1 summarises qualitative comparison of the four alternatives.Table 1 Qualitative comparison.2.2.6 Capacity comparisonHere, two extreme scenarios, i.e., Alt.2 (balancing, hereafter) and Alt.4 (offsetting, hereafter), both optimised for UL,are compared. Note that Alt.3 is expected to perform somewhat similarly as Alt.4, although any difference cannot be assessed without detailed analysis. (It can be expected that Alt.3 performs worse due to poorer channel estimation quality.) The deployment Cases 1 (ISD = 500 m) and 3 (ISD = 1,732 m) in TR 25.814 [4] are assumed, with vertical antenna patterns and tilting also taken into account. The feeder cable loss was modelled as log-normal with [-5 dB, +5 dB] limits, with the sectors of the same eNB having the same cable loss. The log-normal std. deviation was set in a range 1-4 dB, and the median was set such that the resulting gain on average is equal to that assumed in Cases 1 and 3. Snapshot system level simulations were performed to obtain the Ior/(Ioc+N0) distribution, and from this, the normalised capacity was derived considering two factors: CCH overhead according to the Ior/(Ioc+N0) at 2% coverage, and DL-SCH capacity scaling according to the average Ior/(Ioc+N0). For the CCH factor, it was assumed that a 2 dB degradation in Ior/(Ioc+N0) incurs a 3 dB larger overhead for CCH (based on our internal analysis).Figures 6 and 7 compare the Ior/(Ioc+N0) distribution of offsetting (Alt.4) and balancing (Alt.2). It can be observed that offsetting produces worse Ior/(Ioc+N0) in Case 1 (Fig. 6(a), 7(a)). This is due to increased interference at cell edge. However, in Case 3, offsetting produces better Ior/(Ioc+N0) even at around cell edge (Fig. 6(b), 7(b)). This is because balancing (Alt.2) reduces the total transmission power and increases the impact of thermal noise throughout the entire cell.00.20.40.60.81Ior/(Ioc+N0) [dB]00.20.40.60.81Ior/(Ioc+N0) [dB](a) (b)Fig. 6 Ior/(Ioc+N0) distribution for (a) Case 1 and (b) Case 3.Ior/(Ioc+N0) [dB]00.020.040.060.080.1Ior/(Ioc+N0) [dB](a) (b)Fig. 7 Ior/(Ioc+N0) distribution (cell edge) for (a) Case 1 and (b) Case 3.Figure 8 compares the system capacity. As shown in Fig. 8(a), offsetting provides less capacity in Case 1 when some CCH overhead is considered. This is mainly due to the larger CCH overhead caused by Ior/(Ioc+N0) degradation at around cell edge. However, as shown in Fig. 8(b), offsetting provides larger capacity than balancing in Case 3. The capacity is about 20% larger at 2 dB imbalance and 10% CCH overhead. This is because balancing reduces the total power and hence increases the impact of thermal noise. With offsetting, the impact of thermal noise is kept at minimum. Therefore, offsetting is beneficial in providing larger capacity in moderate/large cell scenarios (more evident in thermal noise limited scenarios).Log-normal std. dev. of DL/UL imbalance [dB]Log-normal std. dev. of DL/UL imbalance [dB](a) (b)Fig. 8 Normalised capacity for (a) Case 1 and (b) Case 3.2.2.7 Benefits of cell specific offsetsSummarising above discussions and analysis, the benefits of cell specific offsets are:Offsetting provides larger system capacity when cell size is moderate/large (i.e., more evident in thermal noise limited scenarios);Offsetting allows the operator to flexibly choose between UL optimised and DL optimised;Easy to operate as the offset is just a parameter on BCCH (or DCCH), and does not involve complicated power adjustments.Note that balancing by DL transmission power adjusting is anyway possible, regardless of support for an offset mechanism. The mechanism to utilise cell specific offsets allows the operator to cope with DL/UL imbalance in various ways, providing flexible countermeasures depending on the deployment scenario. Without the offsetting mechanism, the operator is restricted to either tolerating UL losses, or to engage a complicated process of adjusting DL transmission powers. Therefore, the offsetting mechanism should be supported in LTE.3. Reading neighbour BCH3.1 Ways of signalling cell specific offsetsIn section 2, the need for cell specific offsets has been justified. The question then becomes how the offset values are signalled to the UE. As discussed in [2], there are two ways:Alt.1: UE reads offset included in neighbour BCH-The offset is set for its own cell in BCH (no need to care about neighbours).-The same offset applies to all the neighbouring cells (1-to-all).-The UE has to read the neighbour BCH to avoid any ping-pongs [5].-This was decided as mandatory in RAN2#58 in Kobe, but reopened in RAN Plenary #36.Alt.2: Use NCL-The offsets applicable to the relevant neighbours are broadcast by NCL.-The offset can be specific to certain serving-neighbour relationship (1-to-1).-The use of NCL causes larger overhead compared to Alt.1.-NCL needs to be planned and set by OAM, which can be complicated.-This is already supported optionally in LTE (RAN2 decision).The only question that needs to be addressed is whether LTE shall support Alt.1 or not.3.2 Concerns of reading neighbour BCHAs discussed in detail in [2] and above in section 2, the offset can be used primarily to mitigate DL/UL imbalance. As such it is prevalent that each cell requires a different offset value, and that it is sufficient for most cases if the offset is 1-to-all. That is, the 1-to-1 granularity is not necessary to cope with DL/UL imbalance, but only necessary in irregular cases like tunnels. Hence, it would be preferable, from OAM aspects, that Alt.1 is adopted. However, as expressed by [2] and in particular [3], there are several concerns of mandating the UE to read neighbour BCH:UE will have to read BCH for each cell detected;-It can be battery consuming if the UE cannot decode BCH and repeatedly tries decoding for a detected cell;-This problem is more evident if the BCH error rate does not match (is worse than) the cell detection performance;Note: This may be prevented to some extent by specifying UE behaviours, e.g., UE only reads BCH if RSRP > threshold, and/or UE considers offset = 0 if it fails reading BCH after some attempts.UE implementation may be more complex.-UE may have to decide whether to read BCH or not upon detecting a cell, e.g., UE does not have to read for cells indicated in NCL or if RSRP < threshold, etc.Larger BCH overhead to make it robust.- E.g., by reducing the coding rate, increasing Tx power, repetition, soft combining, etc.These aspects need to be discussed in RAN WGs, and comments from UE vendors are especially valuable in this respect. If these concerns are serious, LTE should certainly not support reading of neighbour BCH.3.3 Other aspects of reading neighbour BCHIn discussing the pros/cons of reading neighbour BCH, another aspect that might be worth considering is the CSG cell (home-eNB) scenario. The requirements of CSG cells [6] state notably:7.It shall be possible to minimise the quantity of measurements which UEs perform on CSG Cells, if the UEdoes not belong to the User Group of a specificCSG Cell.8.The mobility procedures shall allow a large number of (small) CSG Cells to be deployed within the coverageof e-UTRAN, UTRAN and GERAN macro-layer cells. Deployment of (additional) CSG Cells shall not require reconfiguration of other eNodeB (E-UTRAN) or RNC (UTRAN) or BSS (GERAN).This could be easily achieved if the UE reads the BCH of a detected cell, and finds out that the cell is not open to public through some simple indicators or cell id included in BCH. This will allow the UE to omit measurements on that cell, and avoid reporting on CSG cells that it has no access to. If the UE does not read neighbour BCH, other means must be thought of, although approaches such as blacklisting seems to contradict with requirement #8 above.4. ConclusionsThe need for cell specific offset mechanism and concerns of reading neighbour BCH have been discussed. Following the discussions above and in [2], we see only two viable alternatives shown in Table 2.Table 2. Viable alternatives [2].After revisiting the issue, our current position is as below:An offset mechanism is necessary.The current RAN2 WA to support optional NCL to set serving-neighbour pairwise specific offsets should be kept.The optional NCL should also be supported for inter-frequency/RA T neighbour cells [2].The solutions for ACTIVE/IDLE mobility should be aligned [2], i.e., the choice should only be between Alt.1 and Alt.2 in Table 2.If reading of neighbour BCH has serious impacts on UE complexity/battery and system performance, Alt.2 in Table 2 should be adopted. Otherwise Alt.1 should be adopted.To progress this issue and reach a firm decision in Orlando, we propose the following way forward:RAN4 should discuss this issue first and provide to RAN2 during the Orlando meeting a consolidated view on reading of neighbour BCH.The final decision shall be made during RAN2#58bis in Orlando, taking into account the comments received from RAN4, and the decision shall be informed to RAN1 and RAN4.References[1] R2-072188, “LS on neighbour cell lists and reading of neighbour cell P-BCH,” RAN WG2.[2] R2-072010, “Operator’s view on neighbour cell information,” NTT DoCoMo, V odafone, Telecom Italia, T-Mobile,Orange.[3] RP-070464, “LTE mobility consideration,” Nokia, Nokia Siemens Networks.[4] TR 25.814, “Physical layer aspects for E-UTRA,” V7.1.0.[5] R2-071296, “Consideration on 1-to-all Qoffset,” NTT DoCoMo, Inc.[6] R2-072139, “Report of email discussion on Home-eNB requirement (point 8),” V odafone Group.。
佛山4G网络RRC重建比例高的优化分析1.问题描述1.1.问题简述发生区域:佛山市桂城详细情况:每日全网指标监控分析,FOA网管RRC连接重建比例指标于2019/1/19~2019/1/22三日连续偏高,主要为Top桂澜喜悦酒店_7小区连日来RRC连接重建比例每日平均值超过18%,大幅度超过业务区的平均值2%,被列为RRC重建比例较高TOP 小区,影响用户感知,急需解决。
FOA网管RRC连接重建比例指标变化情况如下:2.问题分析中国电信关于RRC重建立比例定义的公式:RRC重建立比例=RRC重建立请求次数/(RRC 重建立请求次数+RRC连接建立请求次数)从计算公式来看,如果要降低RRC重建立比例,最好的方法就是要降低RRC重建立请求次数。
通常情况下,触发RRC 重建立的原因有以下几种情况:1)UE检测到无线链路失败:这种失败一般又分为两种情况,一种情况是RLC达到最大重传次数,另一种情况是上/下行失步,随机接入失败。
2)切换失败,包括系统内和系统外的切换:该类失败是指如果网络侧发送给UE的RRC连接重配置消息中包含Mobility ControlInfo,则执行切换。
若切换失败,UE会发起RRC重建立请求,并在重建立原因封装时携带HO failure。
3)E-UTRA侧移动性失败;4)底层制式完整性校验失败:该类失败不常见,多为终端问题。
原因是由于信令的完整性保护失败发生RRC重建立,例如:UE和基站的加密算法或者完整性保护算法不一致。
5)RRC连接重配失败。
通过以上分析,我们从OMC后台统计的失败原因最多的就是:切换失败原因触发的RRC 重建立,其次是其它原因触发的RRC重建立,根据这些原因我们进行了相关的排查,结果如下:2.1.检查无线参数邻区参数中影响切换准备失败的最需关注的几个参数是MCC(邻接小区所在的移动国家码)、MNC(邻接小区所在移动网络码)、eNBID(邻接小区所在eNodeB标识)、TAC(跟踪区码)、PCI、cellLocalId(小区标识)、频段指示、上行链路的中心载频(MHz)和下行链路的中心载频(MHz)。
1【现象描述】NB FDD-LTE项目,15M带宽,在对慈富民村站进行单验过程中,发现某扇区下行吞吐率维持在80Mbps多,达不到平均90Mbps的要求。
2【问题分析】我们首先查看信号强度,符合要求,RSRP > -85dB, SINR > -24dB。
OK。
调度次数PDCCH DL Grant Count维持在近1000。
OK。
再查看调度RB, PDSCH RB Number维持在70以上。
OK。
初传误码率维持在10%左右,有点高。
NOK。
我们看到下行MCS阶数比较低,正常接近峰值时应该为28才对。
NOK。
另外,我们发现两天线接收的RSRP并不平衡,相差比较大。
如下图所示:当两根天线差值持续在5dB以上时,我们认为通道不平衡,RRU的通道不平衡会导致终端的解调能力下降,因此IBLER会比较高,此时基站为了将误块率收敛在10%,不得不降低MCS阶数。
遇到这种情况,对于外置天线UE,我们可以尝试调整终端天线来解决。
对于内置天线UE(如E392),可以改变UE位置使其主分集相对平衡,或者我们在天线正打方向找到主分集平衡的点进行测试。
我们对慈富民村该扇区进行了复测,复测时在天线正对方向找到比较好的点,并且UE两天线接收RSRP比较平衡。
平均吞吐率可达90Mbps以上了。
3【结论】当我们单验过程中,遇到下行吞吐率不达标问题时,我们可以按如下思路进行排查。
当UE两根天线接收RSRP差值持续在5dB以上时,我们认为通道不平衡,RRU的通道不平衡会导致终端的解调能力下降,因此IBLER会比较高,此时基站为了将误块率收敛在10%,不得不降低MCS阶数。
遇到这种情况,对于外置天线UE,我们可以尝试调整终端天线来解决。
对于内置天线UE(如E392),可以改变UE位置使其主分集相对平衡,或者我们在天线正打方向找到主分集平衡的点进行测试。
上行覆盖不足影响VoLTE丢包案例XXXX年XX月目录一、问题描述 (2)二、功率余量报告(PHR)原理 (3)二、问题分析 (5)(1)告警核查,无影响业务告警 (5)(2)干扰核查,无干扰 (5)(3)覆盖核查,上行覆盖不足 (6)(4)指标分析,上行丢包严重 (7)(5)现场CQT测试,下行SINR质差 (7)三、解决方案 (7)(1)优化思路和方法 (7)(2)效果验证 (8)四、经验总结 (9)上行覆盖不足影响VoLTE丢包案例XX【摘要】本案例以黄村荔院LTE-RRU06GZV2347高质差小区整治为例,研究分析发现,该小区因PHR(功率余量)为负,存在上行覆盖不足问题,从而导致数据传输过程中丢包严重,大大影响VoLTE质差。
通过FDD PDCP SDU丢弃定时器参数调整,以取得良好的VoLTE上行丢包率和感知的平衡,降低丢包率,有效改善了问题小区性能指标和用户VoLTE通话感知。
【关键字】UE功率余量、上行覆盖不足、FDD PDCP SDU丢弃定时器【业务类别】参数优化一、问题描述提取最近一周指标,黄村荔院LTE-RRU06GZV2347小区平均每天质差次数达到6次且质差比达到55.56%,严重影响用户感知。
该问题小区周边环境如下图所示,主要覆盖区域有高速、商务区等场景。
二、功率余量报告(PHR)原理PH,全称Power Headroom,中文为功率余量,即UE允许的最大传输功率与当前评估得到的PUSCH传输功率之间的差值,用公式可以简单的表示为:PH = UEAllowedMaxTransPower - PuschPower。
它表示的是除了当前PUSCH传输所使用的传输功率之外,UE还有多少传输功率可以使用。
PH的单位是dB,范围是[-23dB,+40dB]。
如果PH 值为负,表示当前的PUSCH传输功率已经超过UE允许的最大传输功率(PH是计算值,不是UE的实际传输功率,因此有可能超过最大功率导致该值为负),在下次调度时可以考虑减少该UE的RB资源分配;而如果PH值为正,那么后续分配的RB数目还可以继续增加。
佛山电信南海片区volte丢包率优化小结问题描述从网管上提取指标显示,近期佛山电信南海片区的VOLTE丢包率较差,因此针对该问题进行跟进。
由于目前VOLTE用户数量较少,因此我们取周粒度相关指标进行分析。
经网管提取指标显示,佛山电信南海片区2018/11/18-2018/11/24小区下行QCI1 PDCP总的SDU个数是84930058个,其中小区下行丢包个数为428497,VOLTE丢包数主要集中在海南片区黄岐区域,如下表所示,该10个TOP小区在一周内产生了148151个下行丢包数,占了总丢包数的三分之一。
问题分析解决方案由于该部分小区受到上行干扰,因此我们采用调整门限的方法将发生在此类小区上的语音业务转移到不受干扰的频段的小区上进行。
具体方案如下:方案一:将发生在受到干扰的小区上面的语音业务转移到未收到干扰的小区上将发生在800M小区上面的语音业务转移到L1.8G和L2.1G的小区上800M切换L1.8G和L2.1G使用的是A5切换事件,因此我们将A5的门限2下调,由全网配置的-100调整为-104,参数位置如图所示:将发生在L1.8G小区上面的语音业务转移到L2.1G的小区上L1.8G与L2.1G切换使用的是A3事件,因此我们将L1.8G切换到L2.1G的偏执改小,由全网配置的0修改到-3,方案二:配置基于业务的PerQCI策略配置配置基于业务的PerQCI策略配置,可以在VOLTE用户起呼的瞬间切换到L2.1G频点的小区(1)业务总开关配置测量参数-》基于业务的切换开关设置为1(通用策略:当UE建立专用承载时,可优先将改UE切换到后台配置的策略优先级最高的QCI对应的目标异频频点上)(2)判决在承载建立前进行切换还是承载建立后进行切换测量参数-》基于业务类型切换的语音接纳开关置为1(打开:LTE小区会接纳语音承载并并行基于业务的切换,关闭时,LTE不进行语音接纳仅执行基于业务的切换)。
UE上下文掉线率分析定位方法1概述UE上下文掉线率是提现用户业务保持性和用户体验的重要KPI,因此,本文主要介绍了FDD-LTE无线掉线率原理与问题优化方法,通过对出现各种counter的掉线问题进行讲解说明,总结了优化方案,为后续处理无线掉线率问题提供了优化经验。
2分析思路UE上下文掉线率=∑(eNB请求释放上下文数-正常的eNB请求释放上下文数)/∑(初始上下文建立成功次数+遗留上下文个数)*100% ,其中∑代表将本地网范围内的各个小区的统计结果累加。
UE上下文掉线率是网管KPI,首先通过掉线原因Counter初步判断原因,然后根据掉线原因进行分析与优化。
3理论分析3.1掉线的常见问题从UE角度进行掉线分析,大致有以下几种现象:➢UE收到非正常的RRC Release消息后,UE进入idle状态➢UE RRC重建,失败超时后进入idle状态➢UE直接进入idle状态➢商用终端UE数据业务中断没有流量等现网的掉线率主要通过网管统计来监测掉线率情况,通过统计掉线率和掉线次数来评估是否存在异常,通常从导出的网管数据看如下信息:➢全网掉线率,掉线次数以及掉线原因。
➢掉线的TOP小区、掉线失败时间段。
3.2掉线问题的分析掉线可以分为UE initialed Drop,eNB initialed Drop以及MME initialed Drop.3.2.1UE initialed Drop过程UE initialed Drop,涉及RRC连接重建过程。
当UE处在RRC连接状态,并且RRC安全激活时,UE可以出发RRC连接重建过程。
如果RRC连接状态时,UE RRC安全没有激活,UE直接进入空闲模式,执行小区重选或TAU。
RRC重建消息中Cause包括以下几种:1.Other Failure (UE radio link failure)2.Handover Failure (T304 HO timer expiry)3.Reconfiguration Failure其中,无线链路失败又可包括以下几种场景:1.T310超时RLF2.达到最大上行RLC重传次数RLF3.非切换随机接入问题RLF如果重建成功,重建SRB1以发送RRC信息,重新激活RRC安全,不需要变更算法,SRB1重建后才能重建DRB。
广东-佛山上下行平衡协同优化助力网络壮健提升VoLTE用户感知2019年09月目录一、问题描述 (2)1.1上下行链路简述 (2)1.2上下行覆盖评估方法 (3)1.3现网上下行平衡评估 (5)1.3.1上下行平衡量化标准 (5)1.3.2上下行平衡情况统计 (6)二、分析过程 (6)2.1上下行平衡与VoLTE质量的关联 (6)2.2上下行平衡分析 (7)2.2.1功率配置与链路预算的关系 (7)2.2.2路测质量拐点分析 (9)2.2.3功率配置与上行覆盖的关系 (10)2.2.4功率配置与上行丢包的关系 (10)2.2.5功率配置与覆盖距离的关系 (11)2.2.6场景化功率配置原则 (11)三、解决措施 (12)3.1控制下行覆盖 (12)3.1.1A镇下行覆盖调整策略优化效果 (12)3.1.2B镇下行覆盖调整策略优化效果 (14)3.1.3下行功率控制策略小结 (16)3.2上行覆盖增强 (17)3.2.1RoHC(头压缩)功能原理与应用 (17)3.2.2上行RLC分段增强功能原理与应用 (19)3.2.3上行功率控制策略小结 (20)四、经验总结 (20)【摘要】VoLTE对无线网络提出了对称业务模型发展要求,但当前4G终端类型上行最大发射功率为23 dBm,当基站发射功率设置过高时,上行受限问题会越发突出,在弱场环境下,上行受限会导致用户的VoLTE语音、VoLTE视频发生卡顿、单通现象,严重影响感知。
通过研究丢包率、上行弱覆盖和功率之间的关系,确定功率配置与质量拐点,开展上下行平衡协同优化,实现上行能力与VoLTE感知的匹配提升。
本文即总结了佛山电信对上下行平衡评估方法探讨以及相关协同优化的应用效果与后续推广建议。
【关键字】VoLTE,语音质量,上下行平衡,协同优化【业务类别】VoLTE一、问题描述1.1上下行链路简述FDD LTE系统是一个双向通信系统,上行链路和下行链路都有自己的发射功率和路径衰落,为了使系统工作在最佳状态,就要保证每个小区的链路达到基本平衡(上下行链路平衡)。
佛山4G网络根据UE功率余量定位上下行不平
衡分析报告
目录
1PHR:(POWER HEADROOM REPORT)功率余量介绍 (2)
2PHR指标提取以及计算方式 (2)
3案例分析 (3)
3.1问题描述 (3)
3.2问题分析 (4)
3.3问题解决 (5)
3.4效果对比 (5)
4总结 (6)
1PHR:(Power Headroom Report)功率余量介绍
在LTE中,UE的UU协议栈L2的MAC子层,将基于L1测量及某些入参,计算得到Power Headroom Report(功率余量),并将功率余量报告PHR最终封装在MAC控制格式的PDU中,向ENB上报自己的发射功率余量(PHR)。
UE功率余量报告过程,是为了向ENB提供UE配置的最大的传输功率(configured maximum output power)与当前UL-SCH传输功率估计值之间的差异值(CA中要考虑PUCCH和PDSCH同时存在的影响)。
进一步说,PHR表示的是除了当前传输所使用的传输功率外,UE还有多少传输功率可以使用。
PHR的单位是dB,范围是[-23dB,+40dB],如果是负值,则表示网侧给UE调度了一个高于其当时可用发送功率所能支持的数据传输速度(如下图所示)。
另外,PHR逐渐用作判断上行弱覆盖的一种辅助手段。
2PHR指标提取以及计算方式
在U31网管“历史性能查询”内的“查询指标/计数器”内搜索PHR,勾选中如图所示11类计数器。
提取后使用“功率余量小于0”采样点总是除以总采样点数量,得出“功率余量小于0”采样点占比,用来辅助判断上行弱覆盖的程度。
3案例分析
3.1问题描述
经网管提取佛山市近11天KPI“RRC重建比例”TOP小区,发现“狮山狮北接入机房LBBU4_3”RRC重建比例较高,在80%左右,而且这个小区接入类的相关KPI,RRC连接建立成功率,ERAB 建立成功率等均较差。
指标明细如下:
3.2问题分析
1.核查该小区所在基站的告警,发现近几天无重大严重告警。
2.提取小区的干扰指标进行分析,该小区各通道平均RSSI值均小于-100,故排除干扰导致各项指标
差。
3.从mapinfo上看,该站点为农村站点,如图所示:
4.经核查该小区TA分布,用户和基站的平均距离较远;初步判断该小区RRC重建比例较高以及其
它KPI
5.
6.24.2”。
因此判断该
TOP小区是由于PA值设置过低,RS参考信号功率过高导致越区覆盖,从而导致上下行覆盖不平衡引起的指标较差。
3.3问题解决
在2018年11月5日对该小区进行操作
1.将该小区的PA值由“-6”修改为“0”。
2.将该小区的RS参考信号功率由“24.2”调整为“16.2”。
3.4效果对比
在2018年11月8日取指标对比效果。
经对比,各项指标现已恢复正常水平,用户感知良好。
指标明细如下:
4总结
1:对比修改参数前后指标,用户感知良好是建立在上下行平衡的基础上。
因此,由于终端功率受限,过度增大ENB功率并不是解决弱覆盖的有效手段。
2:核查“功率余量小于0占比”是一种定位上行弱覆盖的有效手段。