2020-2021北京市海淀北部新区实验中学九年级数学下期中一模试卷(附答案)
- 格式:doc
- 大小:864.00 KB
- 文档页数:20
2020-2021北京市海淀北部新区实验中学九年级数学下期末一模试卷(附答案)一、选择题1.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417172.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .1 3.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .255C .52D .235.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .88.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大10.如果关于x的分式方程11222axx x-+=--有整数解,且关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4,那么符合条件的所有整数a的值之和是()A.7B.8C.4D.511.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30二、填空题13.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .16.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.17.计算:82-=_______________.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
2021年北京市海淀区初三数学一模试题及答案北京市海淀区2021年一模第1页北京市海淀区2021年抽样测试初三数学试卷2021.5一、选择题(本题共32分, 每小题4分)下面各题均有四个选项, 其中只有一个是符合题意的...1. ?1的倒数是 211 D.? 22A. 2 B.?2 C.2. 2021年2月12日至28日,温哥华冬奥会官方网站的浏览量为275 000 000人次.将275 000 000用科学记数法表示为A. 2.75?10B.27.5?10C. 2.75?10D.0.275?1077893. 右图是某几何体的三视图,则这个几何体是A. 圆柱B. 正方体C. 球4. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为A. 5B.6C. 7D. 圆锥D. 85.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是6.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s如表所示.如果23 4B.12 C. 43D.1 3选出一个成绩较好且状态稳定的人去参赛,那么应选 A.甲 B.乙322 C.丙 D.丁7.把代数式 3x?6xy?3xy分解因式,结果正确的是A.x(3x?y)(x?3y)B.3x(x2?2xy?y2)EAFBDCC.x(3x?y)2 D.3x(x?y)28. 如图,点E、F是以线段BC为公共弦的两条圆弧的中点,BC?6. 点A、D分别为线段EF、BC上的动点. 连接AB、AD,设BD?x,AB?AD?y,下列图象中,能表示y与x的函数关系的图象是22A. B. C. D.北京市海淀区2021年一模二、填空题(本题共16分, 每小题4分) 9. 函数y? 第3页3x?1的自变量x的取值范围是.10. 如图, ?O的半径为2,点A为?O上一点,OD?弦BC于点D,OD?1,则?BAC?________?OAD11. 若代数式x?6x?b可化为(x?a)?1,则b?a的值是.2212. 如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn?1DnCn的面积为Sn,则S2= ;Sn=____ (用含n的式子表示).三、解答题(本题共30分, 每小题5分)13. 计算:12?2cos30??(3?1)?() .0?11214. 解方程:2x3??2. x?3x?315. 如图, △OAB和△COD均为等腰直角三角形,?AOB??COD?90?, 连接AC、BD.求证: AC?BD.BC DAO 16. 已知:x?3x?10,求代数式(x?2)?x(x?10)?5的值. 17. 已知:如图,一次22函数y?33的图象在第一象限的交点为A(1,n). x?m与反比例函数y?3x(1) 求m 与n的值;(2) 设一次函数的图像与x轴交于点B,连接OA,求?BAO的度数.北京市海淀区2021年一模第5页18. 列方程(组)解应用题:2021年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共20分, 第19题6分, 第20、21题每小题5分, 第22题4分)19. 已知:如图,在直角梯形ABCD中,AD∥BC,?DCB?90?,AC?BD于点O,DC?2,BC?4,求AD的长.AOD20. 已知:如图,?O为?ABC的外接圆,BC为?O的直径,作射线BF,使得BA平分?CBF,过点A作AD?BF于点D. (1) 求证:DA为?O的切线;BC(2) 若BD?1,tan?BAD?1,求?O的半径. 2AFDBOC感谢您的阅读,祝您生活愉快。
海淀区九年级第二学期期中练习数学试卷答案及评分参考说明: 与参考答案不同, 但解答正确相应给分.一、选择题(本题共32分,每小题4分)1. A2. B3. C4. D5. C6. B7.A 8. C二、填空题(本题共16分,每小题4分)9.3x ≠ 10.)2)(2(-+x x x 11. 6 12.()1129933(,);5()4,()4422n n --⨯- (每空2分)三、解答题(本题共30分, 每小题5分)13.解:10)31(45sin 28π)14.3(-+︒-+-=123++ ……………………………………………………………4分=4……………………………………………………………5分14.解:由不等式①解得2x >, …………………………………………………………2分由不等式②解得3x ≤. …………………………………………………4分因此不等式组的解集为23x <≤. ………………………………………………5分15.证明:∵ AC //EF ,∴ ACB DFE ∠=∠. (1)分在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠=,,,EF BC DFE ACB DF AC∴△ABC ≌△DEF . ………………………………………………… 4分∴A B C D E FAB=DE . ………………………………………………… 5分16. 解: 法一:∵ ⎩⎨⎧==b y a x ,是方程组 ⎩⎨⎧=-=+12,32y x y x 的解, ∴⎩⎨⎧=-=+.12,32b a b a …………………………………………………2分解得1,1.a b =⎧⎨=⎩………………………………………………… 4分 ∴()4()(4)541(11)141158a a b b a b -+-+=⨯⨯-+⨯⨯-+=. ………………5分法二:∵ ⎩⎨⎧==b y a x ,是方程组 ⎩⎨⎧=-=+12,32y x y x 的解, ∴⎩⎨⎧=-=+.12,32b a b a …………………………………………………2分2222444545(2)(2)5a ab ab b a b a b a b =-+-+=-+=+-+原式. ………4分123,2=-=+b a b a 将代入上式, 得.85135)2)(2(=+⨯=+-+=b a b a 原式 ……………………………………………5分17.解:(1)∵ 点A (,3m -)在反比例函数x y 3=的图象上, ∴ m33=-. ∴1m =-. (1)分∴ 点A 的坐标为A (-1,-3). …………………………………………………… 2分∵ 点A 在一次函数y kx =的图象上,∴ 3k =.∴ 一次函数的解析式为y =3x . ……………………………………… 3分(2)点P 的坐标为P (1, 3) 或P (-3, -9). (每解各1分) …………………… 5分18.解:设现在平均每天植树x 棵. ……………………………………………… 1分依题意, 得60045050x x =-. …………………………………………………… 2分 解得:200x =. ………………………………………………… 3分经检验,200x =是原方程的解,且符合题意. …………………………………4分答:现在平均每天植树200棵. ……………………………………………… 5分四、解答题(本题共20分, 每小题5分)19.解: ∵∠ABC =90︒,AE=CE ,EB =12,∴ EB=AE=CE =12. ……………………1分∴ AC =AE+CE =24.∵在Rt△ABC 中,∠CAB =30︒,∴ BC=12, cos30AB AC =⋅︒=……………………2分 ∵ DE AC ⊥,AE=CE ,∴AD=DC . ………………………………………………3分 在Rt△ADE 中,由勾股定理得 AD13==. …………4分∴DC =13.∴ 四边形ABCD 的周长=AB +BC +CD +DA=38+ …………………… 5分20.(1)证明:连结BD .∵ AD 是⊙O 的直径,∴∠ABD =90°.∴∠1+∠D =90°.∵∠C =∠D ,∠C =∠BAE ,∴∠D =∠BAE . …………………………1分∴∠1+∠BAE =90°.即 ∠DAE =90°.∵AD 是⊙O 的直径,∴直线AE 是⊙O 的切E D C B A线. …………………………………………………2分(2)解: 过点B 作BF ⊥AE 于点F , 则∠BFE =90︒.∵ EB =AB ,∴∠E =∠BAE , EF =12AE =12×24=12. ∵∠BFE =90︒, 4cos 5E =, ∴512cos 4EF EB E ==⨯=15. ……………………………………………………3分∴ AB =15.由(1)∠D =∠BAE ,又∠E =∠BAE ,∴∠D=∠E .∵∠ABD =90︒,∴54cos ==AD BD D . ………………………………………………………4分 设BD =4k ,则AD =5k . 在Rt △ABD 中, 由勾股定理得AB=3k , 可求得k =5.∴.25=AD∴⊙O 的半径为252. ……………………………………………………………5分 21.解:(1)290-(85+80+65)=60 (万元) . 补图(略) ………………………………1分(2)85⨯23%=19.55≈19.6 (万元).所以该店1月份音乐手机的销售额约为19.6万元. …………………………3分(3)不同意,理由如下:3月份音乐手机的销售额是 6018%10.8⨯=(万元),4月份音乐手机的销售额是 6517%11.05⨯=(万元). …………………4分而 10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了. ………5分 22. 解:△BCE 的面积等于 2 . …………1分(1)如图(答案不唯一): ……2分以EG 、FH 、ID 的长度为三边长的一个三角形是△EGM . …………3分(2) 以EG 、FH 、ID 的长度为三边长的三角 E D C B A G形的面积等于 3 . …………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)当m =0时,原方程化为,03=+x 此时方程有实数根 x = -3. …………1分当m ≠0时,原方程为一元二次方程.∵()()222311296131m m m m m ∆=+-=-+=-≥0.∴ 此时方程有两个实数根. ………………………………………………2分综上, 不论m 为任何实数时, 方程 03)13(2=+++x m mx 总有实数根.(2)∵令y =0, 则 mx 2+(3m +1)x +3=0. 解得13x =-,21x m=-. ………………………………………………3分 ∵ 抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,∴1m =. ∴抛物线的解析式为243y x x =++. ………………………………………4分(3)法一:∵点P ),(11y x 与Q ),(21y n x +在抛物线上, ∴2211121143,()4()3y x x y x n x n =++=++++.∵,21y y =∴22111143()4()3x x x n x n ++=++++.可得 04221=++n n n x . 即 0)42(1=++n x n . ∵ 点P , Q 不重合, ∴ n ≠0.∴124x n =--. (5)分∴ 222211114125168(2)265168x x n n n x x n n n ++++=+⋅+++22(4)6(4)516824.n n n n n =++--+++= (7)分法二:∵ 243y x x =++=(x +2)2-1,∴ 抛物线的对称轴为直线 x =-2.∵ 点P ),(11y x 与Q ),(21y n x +在抛物线上, 点P , Q 不重合, 且,21y y =∴ 点 P , Q 关于直线 x =-2对称.∴11 2.2x x n++=- ∴124x n =--. (5)分下同法一.24. 解:(1) NP =MN , ∠ABD +∠MNP =180︒ (或其它变式及文字叙述,各1分). ………2分(2)点M 是线段EF 的中点(或其它等价写法). 证明:如图, 分别连接BE 、CF .∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,AB ∥DC ,∠A =∠DCB , ∴∠ABD =∠BDC . ∵ ∠A =∠DBC ,∴ ∠DBC =∠DCB .∴ DB =DC . ① ………………………3分∵∠EDF =∠ABD ,∴∠EDF =∠BDC .∴∠BDC-∠EDC =∠EDF-∠EDC .即∠BDE =∠CDF . ②又 DE =DF , ③ 由①②③得△BDE ≌△CDF . …………………………………………………4分 ∴ EB =FC , ∠1=∠2.∵ N 、P 分别为EC 、BC 的中点,∴NP ∥EB , NP =EB 21.同理可得 MN ∥FC ,MN =FC 21.∴ NP=NM . ………………………………………………………5分M1 32 4 PNA E FCDB∴∠NPC =∠4.∴∠ENP =∠NCP +∠NPC =∠NCP +∠4. ∵MN ∥FC ,∴∠MNE =∠FCE =∠3+∠2=∠3+∠1.∴ ∠MNP =∠MNE +∠ENP =∠3+∠1+∠NCP +∠4=∠DBC +∠DCB =180︒-∠BDC =180︒-∠ABD .∴ ∠ABD+∠MNP=180︒. ……………………………………………7分 25.解:(1)依题意, 112=⨯-b, 解得b =-2. 将b =-2及点B (3, 6)的坐标代入抛物线解析式2y x bx c =++得 26323c =-⨯+. 解得 c =3. 所以抛物线的解析式为322+-=x x y . ………………………………………1分(2)∵抛物线 322+-=x x y 与y 轴交于点A ,∴ A (0, 3).∵ B (3, 6),可得直线AB 的解析式为3y x =+.设直线AB 下方抛物线上的点M 坐标为(x ,322+-x x ),过M 点作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图1)∴132ABM AMN BMN B A S S S MN x x ∆∆∆=+=⋅-=. ……………………2分∴()21323332x x x ⎡⎤+--+⨯=⎣⎦.解得 121,2x x ==∴点M 的坐标为(1, 2) 或 (2, 3). (3)如图2,由 PA =PO , OA =c , 可得2c PD =. ∵抛物线c bx x y ++=2的顶点坐标为 ,2(b P -图1∴ 2442cb c =-.∴22b c =. ………………………………………………………∴ 抛物线2221b bx x y ++=, A (0,212b ),P (12b -,214b ), D(12b -,0).可得直线OP 的解析式为12y bx =-.∵ 点B 是抛物线2212y x bx b =++与直线12y bx =-的图象的交点,令 221122bx x bx b -=++.解得12,2bx b x =-=-. 图2可得点B 的坐标为(-b ,212b ). ……………………………………6分 由平移后的抛物线经过点A , 可设平移后的抛物线解析式为2212y x mx b =++.将点D (12b -,0)的坐标代入2212y x mx b =++,得32m b =.∴ 平移后的抛物线解析式为223122y x bx b =++.令y =0, 即2231022x bx b ++=.解得121,2x b x b =-=-.依题意, 点C 的坐标为(-b ,0). …………………………7分∴ BC =212b .∴ BC = OA .又BC ∥OA ,∴ 四边形OABC 是平行四边形.∵ ∠AOC =90︒, ∴ 四边形OABC 是矩形. ……………………………………………………8分。
2020-2021九年级数学下期中一模试卷及答案一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的3.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.4.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.35.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.196.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512BC D.BC=512AC7.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.8.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:49.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:211.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.5B.(105 1.5) mC.11.5m D.10m12.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.16.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.17.如图,已知两个反比例函数C1:y=1x和C2:y=13x在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为_____.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.20.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.23.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900, 求证:△ADQ ∽△QCP .24.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)25.如图,四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =⋅;90ADC ∠=o ,E 为AB 的中点,()1求证:ADC ACB △∽△;(2)CE 与AD 有怎样的位置关系?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.4.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 6.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;BC=12AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .8.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.9.B解析:B【解析】【分析】Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=1;∴AC=BC÷ 故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.D解析:D【解析】解:在平行四边形ABCD 中,AB ∥DC ,则△DFE ∽△BAE ,∴DF :AB =DE :EB .∵O 为对角线的交点,∴DO =BO .又∵E 为OD 的中点,∴DE =14DB ,则DE :EB =1:3,∴DF :AB =1:3.∵DC =AB ,∴DF :DC =1:3,∴DF :FC =1:2.故选D . 11.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF与地面保持平行,目测点D到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.12.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k 的几何意义:在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin∠1=故答案为【解析】【分析】 根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =2.sin ∠1=2AB OA =,故答案为2.20.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB V V ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.三、解答题21.(1)90o ,2BC ;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,22AC BD =,因此22AC BD =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,2AC BD ∴=,∴2AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,BC +,(2)结论:90PBD ∠=︒; AB BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD ==Q ,PAC PBD ∴V V ∽2=,90PBD PAC ∴∠=∠=︒,AC BD =,2AC BD ∴=,2AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CF P P∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF P P∴四边形ABGD 和四边形BCHG 是平行四边形,∴CH=BG=AD=9∴FH=CF -DH=5∵:2:5DE DF =∴:2:5GE HF =∴225255GE HF ==⨯= ∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.23.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形.试题解析:在Rt△ADQ与Rt△QCP中,∵∠AQP=90°,∴∠AQP+∠PQC=90°,又∵∠PQC+∠QPC=90°,∴∠AQP=∠QPC,∴Rt△ADQ∽Rt△QCP.24.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.25.(1)详见解析;(2)CE∥AD,理由见解析.【解析】【分析】(1)证明∠DAC=∠CAB,∠ADC=∠ACB=90°,即可解决问题;(2)根据直角三角形的性质,可得CE与AE的关系,根据等腰三角形的性质,可得∠EAC=∠ECA,根据角平分线的定义,可得∠CAD=∠CAB,根据平行线的判定,可得答案.【详解】证明:()1∵AC 平分DAB ∠, ∴DAC CAB ∠=∠,∵90ADC ACB ∠=∠=o , ∴ADC ACB △∽△. (2)//CE AD ;∵E 是AB 的中点, ∴12CE AB AE ==, ∴EAC ECA ∠=∠. ∵AC 平分DAB ∠, ∴CAD CAB ∠=∠, ∴CAD ECA =∠,∴//CE AD .【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
2020-2021九年级数学下期中一模试卷(带答案)(1)一、选择题1.已知一次函数y 1=x -1和反比例函数y 2=2x的图象在平面直角坐标系中交于A 、B 两点,当y1>y 2时,x 的取值范围是( ) A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >02.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .函数图象经过点(﹣3,2) B .函数图象分别位于第二、四象限 C .若x <﹣2,则0<y <3 D .y 随x 的增大而增大3.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍; B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;4.如图,△OAB ∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A .32OB CD=B .32αβ= C .1232S S = D .1232C C =5.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .1036.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺8.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+9.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<10.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.511.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1)D .(8,﹣4)12.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13二、填空题13.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.14.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____. 15.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________.16.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.17.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.18.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .19.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.20.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.三、解答题21.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)22.已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ; (2)AB•BC=BD•BE .23.如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.24.某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小2030405060时)T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.25.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2. 【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1), 如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >. 故选C. 【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.D解析:D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.4.D解析:D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.5.B解析:B【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.7.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.8.D解析:D 【解析】 【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算. 【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C , ∴2(﹣1﹣x )=a+1, 解得x =﹣12(a+3), 故选:D . 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.9.C解析:C 【解析】 【分析】根据题意可知反比例函数2y x=-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案. 【详解】∵反比例函数2y x=-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y xy x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=, ∵有两个不同的交点∴220x mx -+=有两个不相等的实数根, ∴△=m 2-8>0,∴m >m < 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.10.A解析:A 【解析】【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案. 【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2, 故选A .【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.11.A解析:A 【解析】 【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算. 【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1). 故选A . 【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.12.D解析:D 【解析】 【分析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB . 【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB 是等边三角形∴∠PAH=60°∴根据锐角三解析:933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.14.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.15.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y 随x 的增大而增大∵A (-4y1)B (-1y2)解析:y 1<y 2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.6【解析】【分析】利用位似的性质得到AB :DE=OA :OD 然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC 与△DEF 位似原点O 是位似中心∴AB:DE=OA :OD 即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB :DE=OA :OD ,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB :DE=OA :OD ,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF a ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l ∥2l ∥3l , ∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.20.【解析】【分析】如图所示连接BD 过点D 作DE 垂直于BC 的延长线于点E 构造直角三角形将∠CBD 置于直角三角形中设CE 为x 根据特殊直角三角形分别求得线段CDACBC 从而按正切函数的定义可解【详解】解:如解析:31- 【解析】【分析】 如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E ,构造直角三角形,将∠CBD 置于直角三角形中,设CE 为x ,根据特殊直角三角形分别求得线段CD 、AC 、BC ,从而按正切函数的定义可解.【详解】解:如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E,∵在Rt △ABC 中,∠ACB =45°,在Rt △ACD 中,∠ACD =90°∴∠DCE =45°,∵DE ⊥CE ∴∠CEB =90°,∠CDE =45°∴设DE =CE =x ,则CD 2x ,在Rt △ACD 中,∵∠CAD =30°, ∴tan ∠CAD=33=CD AC , 则AC 6x ,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC 3,∴在Rt △BED 中,tan ∠CBD =DE BE (13)x +=312故答案为:312. 【点睛】 本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.三、解答题21.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.23.(1)详见解析;(2)AC=9,CD=15 2.【解析】【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴AB AE AC AB=,∴AB2=AC•AE,∵AB=6,AE=4,∴AC=29 ABAE=,∵AB∥CD,∴△CDE∽△ABE,∴CD CE AB AE=,∴()••651542AB AC AEAB CECDAE AE-⨯====.【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.24.(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v的取值范围是24<v<40【解析】【分析】(1)根据表格中数据,可知v是t的反比例函数,设v=kt,利用待定系数法求出k即可;(2)根据时间t=13小时,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可.【详解】(1)根据表格中数据,可知v=kt,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=12t(t≥0.2).(2)∵1﹣16-12=13,∴t=13时,v=1213=36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.【点睛】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.25.(1)见解析 (2)△ABD∽△ACE【解析】分析:(1)由∠BAD=∠CAE易得∠BAC=∠DAE,这样结合∠ABC=∠ADE,即可得到△ABC∽△ADE.(2)由(1)中结论易得AB ACAD AE=,从而可得:AB ADAC AE=,这样结合∠BAD=∠CAE即可得到△ABD∽△ACE了.详解;(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE=,∴AB AD AC AE=,又∵∠BAD=∠CAE,∴△ABD∽△ACE.点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.。
2020-2021初三数学下期中一模试卷含答案一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .3.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条4.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .45.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A.2 B.3 C.4 D.56.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B.9米C.10米D.11米7.已知2x=3y,则下列比例式成立的是()A.B.C.D.8.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d9.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)10.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°11.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°12.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A .B .C .D .二、填空题13.在△ABC 中,∠ABC=90°,已知AB=3,BC=4,点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交直线AB 于点P ,当△PQB 为等腰三角形时,线段AP 的长为_____.14.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.15.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是______________.16.如图,直立在点B 处的标杆AB =2.5m ,站立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10m,FB =3m,人的高度EF =1.7 m,则树高DC 是________.(精确到0.1 m)17.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数y=k x(k>0)在第一象限内过点A ,且与BC 交于点F .当F 为BC 的中点,且S △AOF =123时,OA 的长为__________.19.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .三、解答题21.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.22.马路两侧有两根灯杆AB 、CD ,当小明站在点N 处时,在灯C 的照射下小明的影长正好为NB ,在灯A 的照射下小明的影长为NE ,测得BD=24m ,NB=6m ,NE=2m.(1)若小明的身高MN=1.6m ,求AB 的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.23.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.24.如图,AB 和DE 是直立在地面上的两根立柱.AB =6m ,某一时刻AB 在阳光下的投影BC =4m(1)请你在图中画出此时DE 在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.25.如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=3 4 .(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】 解:由题意,22b x a= ∴2a b b x=, ∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC 有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P 的角等于∠C 时,即图中PD∥BC 时,△APD∽△ACB;当过点P 的角等于∠B 时,即图中当PF⊥AB 时,△APF∽△ABC;②公共角为∠C 时,根据相似三角形的判定:当过点P 的角等于∠A 时,即图中P E ∥AB 时,△CPE∽△CAB ;当过点P 的角等于∠B 时,根据∠CPB <60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A 时:当过点P 的角等于∠C 时,即图中PD∥BC 时,△APD∽△ACB;当过点P 的角等于∠B 时,即图中当PF⊥AB 时,△APF∽△ABC;②公共角为∠C 时:当过点P 的角等于∠A 时,即图中P E ∥AB 时,△CPE∽△CAB ;当过点P 的角等于∠B 时,∵∠CPB=∠A+∠ABP,∴PB>PC ,PC=PA ,∴PB>PA ,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C .4.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BCDC AC,又AD 是中线,BC=8,得DC=4,代入可得AC=42,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.5.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.6.C解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.7.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.8.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A 、a :d=c :b ⇒ab=cd ,故正确;B 、a :b=c :d ⇒ad=bc ,故错误;C 、d :a=b :c ⇒dc=ab ,故正确;D 、a :c=d :b ⇒ab=cd ,故正确.故选B .【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.9.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.10.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 11.C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−3|+(1−tan B)2=0,∴sinA=32,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.12.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.二、填空题13.或6【解析】【分析】当△PQB为等腰三角形时有两种情况需要分类讨论:①当点P在线段AB上时如图1所示由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时如图2所示利用角解析:53或6.【解析】【分析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP 的中点,从而可以求出AP.【详解】解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P o o ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6. 综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 故答案为53或6.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD 再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD解析:26【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴BC=26.故答案为:26.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.15.5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况有两种情况:①B′FC∽△ABC时B′FAB=CF/BC又因为AB=AC=8BC=10BF=BF所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况,有两种情况:① B′FC∽△ABC时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF,所以10810BF BF-=,解得BF=;②△B′CF∽△BCA时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF,BF=B′F,又BF+FC=10,即2BF=10,解得BF=5.故BF的长度是5或.16.2m【解析】【详解】解:过点E作EM⊥CD交AB与点N∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CMV V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM ==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m .【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.17.【解析】【分析】如图所示作BD⊥CA 于D 则在直角△ABD 中可以求出BD 然后求出△ABC 面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥C A 于D 则在直角△AB解析:6750【解析】【分析】如图所示,作BD ⊥CA 于D ,则在直角△ABD 中可以求出BD ,然后求出△ABC 面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD ⊥CA 于D ,则在直角△ABD 中,∠BAD=60°,∴BD=ABsin60°=15, ∴△ABC 面积=12×AC×BD=225.又因为每平方米造价为30元, ∴总造价为30×225=6750(元). 【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.18.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作FM⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:,OH=12x ,由此可得S △AOH 2x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=x ,由此可得S △BMF 2x ,由S △OAF =可得S △OBF =S △OMF =2x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =∴,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =∴S △AOH =28x ,BM=14x ,FM=4x ,∴S △BMF =232x ,∴S △OMF =2x , ∵由点A 、F 都在反比例函数k y x =的图象上, ∴S △AOH =S △BMF ,2=2x , 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.19.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF 的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.三、解答题21.(1)(2,6);(25(3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则AG=22=5,12则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,2,10,∵△A1B1C1∽△ABC2:1,∴A1B12,B1C1=2,A1C15所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.22.(1)AB=6.4m ;(2)AB =CD ,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN ∥AB ,∴△MNE ∽ABE ,∴MN AB =NE BE . ∵NB =6,NE =2,MN =1.6,∴1.6AB =28,∴AB =6.4(m ); (2)这两根灯杆的高度相等,理由如下:∵MN ∥CD ,BD =24,∴MN AB =NE BE =28=14,∴MN CD =BN BD =624=14,∴AB =CD .【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.23.(1)12y x=;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC =2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.24.(1)见解析;(2)13.5m.【解析】【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】解:(1)如图所示:EF 即为所求;(2)∵AB =6m ,某一时刻AB 在阳光下的投影BC =4m ,DE 在阳光下的投影长为9m , ∴64=DE 9, 解得:DE =13.5m ,答:DE的长为13.5m.【点睛】此题主要考查相似三角形的判定与性质,解题法的关键是熟知平行线的性质. 25.(1)见解析;(2)90°【解析】【分析】(1)根据43ADMB=,43AMBN=,即可推出AD AMMB BN=,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵43ADMB=,14334AMBN==∴AD AM MB BN=又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.。
海淀区九年级第二学期期中测评数学2019.5考1.本试卷共 5 页,共五道大题,25 道小题,满分120 分 .考试时间120 分钟 .生2.在答题卡上准确填写学校名称、班级名称、姓名.须3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.知4.考试结束,请将本试卷、答题纸和草稿纸一并交回.一、选择题(本题共32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的.11.的倒数是 ()211A.2B.2 D.C.222. 2019 年 2 月 12日至 28日,温哥华冬奥会官方网站的浏览量为275 000 000 人次 . 将 275 000 000用科学记数法表示为 ()A. 2.75 107B. 27.5107C.2.75108D. 0.275 10 93.右图是某几何体的三视图,则这个几何体是()A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为()A. 5B.6C. 7D. 85.一个布袋中有 4 个除颜色外其余都相同的小球,其中 3 个白球, 1 个红球.从袋中任意摸出 1 个球是白球的概率是 ()A.3B.121 44C.D.336.四名运动员参加了射击预选赛,他们成绩的平均环数 x 及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()A.甲B.乙C.丙D.丁7.把代数式3x36x 2 y 3xy2分解因式,结果正确的是()A. x(3x y)( x 3 y)B.3x( x22xy y2 )C. x(3 x y )2D. 3 x( x y)28. 如图 ,点E、F是以线段 BC 为公共弦的两条圆弧的中点,BC 6 . 点A、D分别为线段EF、 BC 上的动点 .连接 AB 、AD,设BD x,AB2AD 2y ,下列图象中,能表示 y 与 x 的函数关系的图象是()EAFB D CA.B.C.D.二、填空题(本题共16 分,每小题 4 分)9.函数y3x1的自变量 x 的取值范围是 _______.10.如图,⊙ O的半径为2弦 BC 于点D,,点 A 为⊙ O上一点,ODOD 1,则BAC________ .11.若代数式x26x b 可化为 (x a)21,则b a 的值是_____.A OB D C12. 如图,n +1 个边长为 2 的等边三角形有一条边在同一直线上,设△ B2 D1C1的面积为 S1,△ B3D2C2的面积为 S2,,△ B n 1D n C n的面积为 S n,则 S2=_____; S n=_________(用含 n 的式子表示).三、解答题(本题共30 分,每小题 5 分)13.计算:122cos30 ( 31)0( 1 )1.14.解方程:2x3 2 .2x 3x315.如图 , △OAB和△COD均为等腰直角三角形,AOB COD 90 ,连接 AC 、 BD .B求证 : AC BD .CDA O16.已知:x23x 10 ,求代数式 ( x 2)2x(x 10) 5 的值.17.已知:如图,一次函数y3x m 与反比例函数 y3的图象在第一象限的交点为A(1, n) .3x( 1)求 m 与 n 的值;( 2)设一次函数的图像与x 轴交于点B,连接OA,求BAO 的度数.18.列方程(组)解应用题:2019 年 12 月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要 3 小时,若乘汽车需要9 小时.这两种交通工具平均每小时二氧化碳的排放量之和为70 千克,飞机全程二氧化碳的排放总量比汽车的多 54 千克,分别求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共 20 分,第 19 题 5 分,第 20 题 5 分,第 21 题 6 分,第 22 题 4 分)19.已知:如图,在直角梯形ABCD中,AD∥BC,DCB 90,AC BD 于点O,DC2, BC 4 ,求 AD 的长.A DOB C20.已知:如图,⊙ O为ABC的外接圆,BC为⊙ O的直径,作射线作 AD BF 于点 D .(1)求证:DA为⊙的切线;O (2)若 BD1, tan1BAD,求⊙ O的半径.2BF ,使得 BA 平分CBF ,过点AAFDBCO21. 2019 年秋季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动 . 同学们采取问卷调查的方式,随机调查了本校150 名同学家庭月人均用水量和节水措施情况.以下是根据调查结果做出的统计图的一部分.请根据以上信息解答问题:( 1)补全图 1 和图 2;( 2 )如果全校学生家庭总人数约为3000 人,根据这 150 名同学家庭月人均用水量,估计全校学生家庭月用水总量.图 1图222 . 阅 读 : 如 图1 , 在ABC 和 DEF 中 , ABC DEF 90 , AB DE a,BC EF ba b , B 、 C 、 D 、 E 四点都在直线 m 上,点 B 与点 D 重合 .连接 AE 、 FC ,我们可以借助于 S ACE 和 S FCE 的大小关系证明不等式: a 2 b 22ab ( b a 0 ) .证明过程如下 : FF∵ BCb, BE a, EC b a.∴ S ACE 1 1EC AB (b a) a,2 2 AA S FCE 1 1 (b a)b.EC FE2 2∵ b a 0 , ∴ S FCE S ACE .B ( D ) EC mB DEC m即 1(b a)b1 图 1(b a)a . 图 222∴ b 2ab ab a 2 .∴ a 2 b 2 2ab .解决下列问题:( 1 )现将△ DEF 沿直线 m 向右平移,设 BDk (b a) ,且 0 k 1.如图 2,当 BD EC 时 , k _______.利用此图 ,仿照上述方法 ,证明不等式: a 2b 22ab ( b a 0 ) .( 2 )用四个与 ABC 全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式 .请你画出一个示意图,并简要说明理由 .五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 8 分,第 25 题 7 分)23.关于 x 的一元二次方程 x 24x c 0 有实数根,且 c 为正整数 .( 1)求 c 的值;( 2)若此方程的两根均为整数,在平面直角坐标系xOy 中,抛物线 yx24x c 与 x轴交于 A 、 B 两点( A 在 B 左侧),与 y 轴交于点 C . 点 P 为对称轴上一点,且四边形 OBPC 为直角梯形,求 PC 的长;( 3)将( 2)中得到的抛物线沿水平方向平移,设顶点 D 的坐标为 m, n ,当抛物线与( 2)中的直角梯形OBPC 只有两个交点,且一个交点在 PC 边上时,直接写出 m 的取值范围 .24. 点 P 为抛物线 y x 2 2mx m 2 ( m 为常数, m 0 )上任一点,将抛物线绕顶点 G 逆时针旋转 90 后得到的新图象与 y 轴交于 A 、 B 两点(点 A 在点 B 的上方),点 ( 1)当 m 2,点 P 横坐标为 4 时,求 Q 点的坐标; ( 2)设点 Q (a, b) ,用含 m 、 b 的代数式表示 a ;( 3) 如图,点 Q 在第一象限内 , 点 D 在 x 轴的正半轴上,点Q 为点 P 旋转后的对应点 .C 为 OD 的中点, QO 平分 AQC ,AQ 2QC ,当 QD m 时,求 m 的值 .25.已知: △ AOB 中, AB OB 2 , △COD 中, CDOC 3 ,∠ ABO ∠ DCO . 连接 AD 、 BC ,点 M 、 N 、 P 分别为 OA 、 OD 、 BC 的中点 .BAM OPBA M (1) 如图 1,若 A 、 O 、 C 三点在同一O直线上, 且 ∠ ABO60 ,则 △PMNPN的形状是 ________________ ,DNCD此时AD________;BCC图 1图 2(2) 如图 2,若 A 、 O 、 C 三点在同一直线上,且 ∠ABO 2 ,证明 △ PMN ∽△ BAO ,并计算AD的值(用含的式子表示) ;BC(3) 在图 2 中,固定 △ AOB ,将 △COD 绕点 O 旋转,直接写出 PM 的最大值 .海淀区九年级第二学期期中测评数学试卷答案及评分参考一、选择题(本题共 32 分,每小题 4 分)题 号 1 2 3 4 5 67 8答 案 B C D B A B DC二、填空题(本题共16 分,每小题 4 分)题 号 910 1112答 案16052 3 , 3nx3 3 n 1三、解答题(本题共 30 分,每小题 5 分)13.计算:122cos30(3 1)0( 1 ) 1.2解: 原式 = 2 3 23 12 ----------------------------------4 分2= 31.---------------------------------5 分14.解方程:2x32 .x 3 x 32( x 2解:去分母,得2x( x 3) 3( x 3) 9) .---------------------------------1 分去括号,得 2x 26x 3x 92x 2 18 .---------------------------------2 分解得 x 1 . ---------------------------------4 分经检验, x1 是原方程的解.∴ 原方程的解是 x 1 . ---------------------------------5 分15.证明:∵AOB COD90 , ∴AOC BOD.---------------------------------1 分∵ △ OAB 与△ COD 均为等腰三角形,∴ OA OB, OC OD . ---------------------------------3 分在△ AOC 和△ BOD 中,AO BO,AOC BOD ,OC OD,∴ △ AOC ≌△ BOD .---------------------------------4 分∴AC BD.---------------------------------5 分16.解: 原式 = x 24x 4 x 2 10x 5 ---------------------------------2 分=2x 26x 1.--------------------------------- 3 分当 x 23x 10 时,原式 =2( x 23x) 1---------------------------------4 分2 10 1 19 .---------------------------------5 分17.解:( 1)∵点 A(1,n) 在双曲线 y3上,∴ n3 .--------------------------------- 1 分x又∵ A(1, 3) 在直线 y3x m 上,∴ m 2 33 3.------------ 2 分( 2)过点 A 作 AM ⊥ x 轴于点 M. ∵ 直线 y3 x 2 3与 x 轴交于33点 B ,∴3 x2 3 0 . 解得 x 2 .33∴ 点 B 的坐标为(-2,0).∴ OB 2 .--------------------------------- 3 分 ∵点 A 的坐标为 (1, 3) , ∴ AM3, OM 1.在 Rt △ AOM 中, AMO 90 ,∴ tanAM3 .∴ AOM 60 .-------------------------4 分AOMOA2 .OM由勾股定理,得 ∴ OA OB. ∴ OBABAO .∴1 AOM 30 .---------------------------------5 分BAO218 .解:设乘飞机和坐汽车每小时的二氧化碳排放量分别是x 千克和 y 千克 .1分xy 70,---------------------------------2依题意,得9 y 54.分3x解得x57,----------------------------4 分y 13.答 : 飞机和汽车每小时的二氧化碳排放量分别是 57 千克和 13 千克 .5 分四、解答题(本题共 20 分,第 19 题 5 分,第 20 题 5 分,第 21 题 6 分,第 22 题 4 分) 19.解法一:过点 D 作 DE // AC 交 BC 的延长线于点 E .----------------------- 901 分 ∴BDEBOC . ∵ AC BD 于 点 O , ∴ BOC . ∴ BDE 90 . --------------- 2 分 ∵ AD / / BC ,∴ 四边形 ACED 为平行四边形 . --------------- 3 分∴ AD CE .∵ BDE 90 , DCB 90 ,∴ DC 2 BC CE .------------------------------- 4 分 ∵ DC 2, BC 4 ,∴ CE 1 . ∴ AD 1 .--------------------------5 分 解法二: AD // BC ,ADC DCB 180 .又DCB 90 , ADC90 . --------------------1 分AC BD 于点 O ,BOC90 .DBCACB 90 .ACBACD90 .DBCACD .------------------------------------------2 分tan DBCtanACD .--------------------------------------------- 3 分在 Rt △ BCD 中, tanCDADDBC.在 Rt △ ACD 中, tan ACD.CD ADBCCD.------------------------------------------4 分BC CDBC 4 , CD 2 , AD 1. ---------------------------------------------5 分20. ( 1)证明:连接 AO .--------------------------------- 1 分∵ AO BO ,∴2 3. ∵ BA 平分 CBF , ∴1 2 . ∴ 3 1 . ∴ DB ∥ AO .--------------------------2 分∵ ADDB ,∴BDA 90 .∴DAO90 . ∵ AO 是⊙ O 半径, ∴ DA 为⊙ O 的切线 .---------------------------------3 分∵ ADDB,BD 1, tanBAD1AD 2 .,∴2A由勾股定理,得AB5 . --------------------------------4 分F4 35.∵ BC 是⊙ O 直径,∴BAC90 .∴sin 4D 125∴ C 2 90 .又∵ 4 1 90 ,21,BO∴4C . 在 Rt △ ABC 中, BCAB ABsin C==5.∴ ⊙ O 的半径为5sin 4.-------------------------5 分EC221. 解: (1)50-------------------------2 分--------------------------4 分(2) 全体学生家庭月人均用水量为3000 10 1 422 503 324 165--------------------------5 分1509040(吨) .9040 吨.--------------------------6 分答:全校学生家庭月用水量约为22.( 1) k 1 ; --------------------------1 分2证明:连接 AD 、 BF .可得 BD1(ba) .2∴ S ABD1BDAB1 1 b a a 1a ba ,22 2 4SFBD1BD FE1 1 b a b 1b b a.2224FAB D EC mI E F∵ b a 0 ,∴SABDSFBD∴ ab a 2 b 2 ab . ∴ a 2 ( 2)答案不唯一,图 1 分,理由举例:如图,理由:延长 BA 、 FE 交于点 I.,即1a b a1b b a .b 24 42ab .--------------------------2 分1 分 .ADHBC Gm∵ b a 0 ,∴ S 矩形IBCES 矩形 ABCD,即 b(ba) a(b a) .∴ b 2ab ab a 2 .∴ a 2b 22ab .--------------------------4 分举例:如图,理由:四个直角三角形的面积和S 141a b2ab ,S 2 a 2b 220 ,∴ S 2S 1 .∴ a 2大正方形的面积 .∵ b a b 2 2ab .--------------------------4 分五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 8 分,第 25 题 7 分)23.解:(1)∵关于 x 的一元二次方程 x 2 4x c0 有实数根,∴ △ =16 4c 0 .∴ c 4. ----------------------- 1 分又∵ c 为正整数,∴c 1,2,3,4 .------------------- 2 分( 2 )∵ 方程两根均为整数,∴ c3,4 .--------------- 3 分又∵ 抛物线与 x 轴交于 A 、 B 两点,∴ c 3 .∴ 抛物线的解析式为 yx 24x 3.--------------4 分∴ 抛物线的对称轴为 x 2 .∵ 四边形 OBPC 为直角梯形,且 COB 90 ,∴ PC ∥ BO .∵ P 点在对称轴上,∴ PC 2 .-------------- 5 分( 3) 2 m 0 或 2 m 4 .-----------7 分(写对一个给 1 分)24. 解:(1)当 m=2 时, y( x 2) 2 ,则 G (2,0) , P(4, 4) . --------------------1 分如图,连接 QG 、 PG ,过点 Q 作 QFx 轴于 F 过点P作PEx 轴于E .依题意 ,可得△ GQF ≌△ PGE .,则 FQ EG2, FG EP4, ∴ FO 2 .∴ Q 2,2 .------------------2 分( 2)用含 m,b 的代数式表示 a : am b 2 . ------ 4 分( 3 )如图,延长 QC 到点 E ,使 CE CQ ,连接 OE .∵C 为 OD 中点 ,∴ OC CD .∵ECO QCD ,∴ △ ECO ≌△ QCD . ∴ OE DQ m . ------------------5 分∵ AQ 2QC ,∴ AQ QE .∵ QO 平分 AQC ,∴ 12 .∴ △ AQO ≌△ EQO . ------------------6 分∴ AOEOm .∴ A 0,m.------------------7 分∵ A 0, m 在新的图象上 , ∴ 0 m m 2 .∴ m 1, m 20 (舍) .∴m . ------------------8 分1125. 解: (1)等边三角形, 1; (每空 1 分 ) ------------------------ 2 分( 2 )证明:连接 BM 、 CN .由题意,得 BMOA , CN OD , AOBCOD 90.∵ A 、 O 、 C 三点在同一直线上,∴ B 、 O 、 D 三点在同一直线上 .∴∠ BMC ∠ CNB 90 .∵ P 为 BC 中点,∴ 在 Rt △ BMC 中, PM1BC .在 Rt △ BNC 中, PN1BC . ∴ PM PN .------------------------- 3 分22∴ B 、 C 、 N 、 M 四点都在以 P 为圆心,1BC 为半径的圆上 .∴ ∠MPN2∠MBN .12又∵ MBNABO ,∴ ∠MPN∴ △PMN ∽△ BAO . -------------------4 分2ABO .∴ MNAO .由题意, MN1AD ,又 PM1BC .∴ AD MN.--------------------5 分PM BA22BC PM∴ ADAO. 在 Rt △ BMA 中,AMsin .BABCBA∴ AOABADM2sin∵AO 2AM ,.∴ 2sin .--------------- 6 分O)5BABCP( 3N.--------------------------------7 分D2(注:本卷中许多问题解法不唯一 ,请老师根据评分标准酌情给分 )C。
2020-2021北京市北大附中九年级数学下期中第一次模拟试题(带答案)一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对3.如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A .7B .7.5C .8D .8.54.用放大镜观察一个五边形时,不变的量是( )A .各边的长度B .各内角的度数C .五边形的周长D .五边形的面积5.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .376.在函数y =21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 27.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A .8米B .9米C .10米D .11米8.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒ 9.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 910.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是( )A .B .C .D .11.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .5B .(105 1.5) mC .11.5mD .10m12.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元二、填空题13.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P 点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.14.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .15.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.16.反比例函数y =k x的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________. 17.如图,已知两个反比例函数C 1:y =1x 和C 2:y =13x在第一象限内的图象,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_____.18.如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m,则玲玲的身高约为________m.(精确到0. 01m)(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m __________ n.(填“>”,“=”或“<”)三、解答题21.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为31000 m到达D 处,在D处测得山顶B的仰角为58°,若点A处的海拔为12米,求该座山顶点B处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53322.如图,AD 是△ABC 的中线,tan B =13,cos C =2,AC =2.求: (1)BC 的长;(2)sin ∠ADC 的值.23.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;24.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.25.如图,四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =⋅;90ADC ∠=o ,E 为AB 的中点,()1求证:ADC ACB △∽△;(2)CE 与AD 有怎样的位置关系?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B 作BP ⊥AC ,垂足为P ,BP 交DE 于Q .∵S △ABC =12AB•BC=12AC•BP , ∴BP=·341255AB BC AC ⨯==. ∵DE ∥AC ,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.3.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.4.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D选项错误.故选B.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.5.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.8.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD=AB .∴△DFE ∽△BFA ,∵DE :EC=1:2,∴EC :DC=CE :AB=2:3,∴C △CEF :C △ABF =2:3.故选C .10.C解析:C【解析】【分析】【详解】 利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C . 11.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC ,∴CDE CD EF A = , 即:0.50.2520AC= , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.12.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题13.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC ∽△PBA , ∴AB PF CD PE =, ∴AB 15x CD 15+=, 依题意CD=20米,AB=50米, ∴15205015x =+, 解得:x=22.5(米).答:河的宽度为22.5米.14.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长再根据此影长列出比例式即可【详解】解:过N 点作ND ⊥PQ 于D 又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.15.2+3【解析】【分析】连接OA 过点A 作AC⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB ﹣OC=2﹣3在Rt△ABC 中根据tan∠ABO=ACBC 可得答案【详解解析:2+.【解析】【分析】连接OA ,过点A 作AC⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB ﹣OC=2﹣,在Rt△ABC 中,根据tan∠ABO=可得答案.【详解】如图,连接OA ,过点A 作AC⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC 中,OC==, ∴BC=OB﹣OC=2﹣,∴在Rt△ABC 中,tan∠ABO==2+. 故答案是:2+.【点睛】 本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键.16.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-,∴点P的坐标是(-2,-2).17.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18.79【解析】【分析】身高影长和光线构成直角三角形根据tan55°=身高:影长即可解答【详解】解:玲玲的身高=影长×tan55°=125×1428≈179(m)故答案为179【点睛】本题考查了解直角三解析:79【解析】【分析】身高、影长和光线构成直角三角形,根据tan55°=身高:影长即可解答.【详解】解:玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m).故答案为1.79.【点睛】本题考查了解直角三角形的应用、正切的概念、计算器的使用.19.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:16【解析】【分析】由正方形的性质易证△ABC ∽△FEC ,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC =x ,则CE =1﹣x ,∵AB ∥EF ,∴△ABC ∽△FEC ∴AB EF =BC CE, ∴12=x 1x - 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.20.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC 由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠, ∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.三、解答题21.1488米.【解析】【分析】过D 作DE ⊥BC 于点E ,作DF ⊥AC 于点F ,易知四边形DECF 为矩形,在Rt △ADF 中,利用三角函数可求出DF 和AF ,设BE=x 米,在Rt △BDE 中,利用三角函数可表示出DE 的长度,再根据AC=BC 建立方程求出x 的值,最后用BC 加上A 点的海拔高度即为B 处的海拔高度.【详解】解:如图,过D 作DE ⊥BC 于点E ,作DF ⊥AC 于点F ,∵DE ⊥BC ,DF ⊥AC ,∠C=90°∴四边形DECF 为矩形,∴DE=FC ,DF=EC∵山坡AD 的坡度为3∴∠DAF=30°, ∴1DF=AD sin 30=1000=5002⋅⨯o 米, 3AF=AD cos30=1000=5003⋅o 设BE=x 米,在Rt △BDE 中,∠BDE=58°, ∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即50035001.6=+x x 解得400034000976-=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.22.(1)BC =4;(2)sin ∠ADC 2. 【解析】(1)如图,作AE⊥BC,∴CE=AC•cos C=1,∴AE=CE=1,1 tan3B=,∴BE=3AE=3,∴BC=4;(2)∵AD是△ABC的中线,∴DE=1,∴∠ADC=45°,∴2 sin2ADC∠=.23.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE=,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.24.(1)12y x =;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.25.(1)详见解析;(2)CE ∥AD ,理由见解析.【解析】【分析】(1)证明∠DAC=∠CAB ,∠ADC=∠ACB=90°,即可解决问题;(2)根据直角三角形的性质,可得CE 与AE 的关系,根据等腰三角形的性质,可得∠EAC=∠ECA ,根据角平分线的定义,可得∠CAD=∠CAB ,根据平行线的判定,可得答案.【详解】证明:()1∵AC 平分DAB ∠,∴DAC CAB ∠=∠,∵90ADC ACB ∠=∠=o , ∴ADC ACB △∽△. (2)//CE AD ; ∵E 是AB 的中点, ∴12CE AB AE ==, ∴EAC ECA ∠=∠. ∵AC 平分DAB ∠, ∴CAD CAB ∠=∠, ∴CAD ECA =∠, ∴//CE AD .【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
2020年海淀区初三一模数学试题及答案(WORD版)海淀区九年级第二学期期中数学考试学校考生须知姓名:准考证号:1.本试卷共8页,共三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)1.-2的相反数是A.2B.-2C.1/2D.-1/22.下列几何体中,主视图为矩形的是3.北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破xxxxxxxx人次大关。
将xxxxxxxx用科学记数法可表示为A.0.19×10^8B.0.19×10^7C.1.9×10^7D.19×10^64.北京大兴国际机场于2019年6月30日完美竣工,下图是世界著名建筑设计大师XXX设计的机场成体俯视图的示意图。
下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C.这个图形既是轴对称图形,又是中心对称图形D.这个图形既不是轴对称图形,也不是中心对称图形5.将抛物线y=2x^2向下平移3个单位长度,所得抛物线的解析式是A。
y=2x^2+3 B。
y=2x^2-3 C。
y=2(x-3)^2 D。
y=2(x+3)^26.如图,AB与⊙O相切于点B,连接AO并延长,交⊙O 于点C,连接BC,若OC=OA,则∠C等于A.15°B.30°C.45°D.60°7.若实数m,n,p,q在数轴上的对应点的位置如图所示,且n 与q互为相反数,则绝对值最大的数对应的点是A.点MB.点NC.点PD.点Q8.如图,在平面直角坐标系xy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是A.AB和CDB.AB和XXX和XXX和GH二、填空题(本题共16分,每小题2分)9.若√(x-1)在实数范围内有意义,则实数x的取值范围是__<x<__。
海淀区九年级第二学期期中练习数学2021.04学校姓名准考证号一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是( A ) 圆柱( B ) 球( C ) 三棱柱( D ) 长方体2.2021年2月24日6时29分,我国自主研制的首个火星探测器“天问一号”成功实施第三次近火制动,进入近火点280千米、远火点59 000千米、周期2个火星日的火星停泊轨道.将59 000用科学记数法表示应为( A )50.5910⨯( B )55.910⨯( C )45.910⨯( D )35.910⨯3.七巧板是我国的一种传统智力玩具.下列用七巧板拼成的图形中,是轴对称图形的是( A ) ( B ) ( C ) ( D )4.如图是一个可以自由转动的转盘,转盘分成4个大小相同的扇形,颜色分为灰、白二种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向白色区域的概率是( A )14( B )12( C )34( D ) 15.若正多边形的一个外角是60°,则该正多边形的边数是 ( A ) 3 ( B ) 4( C ) 5 ( D ) 66.实数a 与b 在数轴上对应点的位置如图所示.则正确的结论是(A )0a < (B )a b < (C )50b +> (D )a b > 7. 已知x =1是不等式20x b -<的解,b 的值可以是 ( A ) 4( B ) 2 ( C ) 0 ( D ) 2-8.如图,AB 是O 直径,点C 、D 将AB ⌒ 分成相等的三段弧,点P 在AC ⌒上.已知点Q 在AB ⌒上且∠APQ =115°,则点Q 所在的弧是( A ) AP⌒ ( B ) PC ⌒ ( C ) CD⌒ ( D ) DB ⌒二、填空题(本题共16分,每小题2分)9.x 的取值范围是 . 10.方程组3,26x y x y +=⎧⎨-=⎩的解为 .11.如图,在一束平行光线中插入一张对边平行的纸板.如果图中∠1是70°,那么∠2的度数是 .12.a 的值为有理数,请你写出一个符合条件的实数a 的值 . 13.计算:211()111x x x x -⋅--+= . 14.已知关于x 的方程2(2)40x m x -++=有两个相等的实数根,则m 的值是 .AB15.图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为S 1,S 2,则12S S -的值为 .图1 图2 图316.图1是一个2×2正方形网格,两条网格线的交点叫做格点.甲、乙两人在网格中进行游戏,规则如下:如图2,甲先画出线段AB ,乙随后画出线段BC .若这局游戏继续进行下去,最终的获胜者是_______.(填“甲”,“乙”或“不确定”).三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0|22cos 45(1)12-︒+π-+18.解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩19.如图,点B ,E ,C ,F 在一条直线上,AB ∥DE ,AB =DE ,BE =CF .A3图1游戏规则a .两人依次在网格中画线段,线段的起点和终点均为格点;b .新画线段的起点为前一条线段的终点,且与任意已画出线段不能有其他公共点;c .已画出线段的所有端点中,任意三个端点不能在同一条直线上;d .当某人无法画出新的线段时,则另一人获胜.AB图2求证:A D ∠=∠.20.已知210a a +-=,求代数式()()()222a a a a +-++的值.21.如图,四边形ABCD 是矩形,点E 是边BC 上一点,AE ⊥ED .(1)求证:△ABE ∽△ECD ;(2)F 为AE 延长线上一点,满足EF =EA ,连接DF 交BC 于点G .若AB =2,BE =1求GC 的长.22.我国是世界上最早发明历法的国家之一.《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时.如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆.正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.图1 图2在一次数学活动课上,要制作一个圭表模型.如图2,地面上放置一根长2m 的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得BD =1.5m ,AD =2.5m .(1)判断:这个模型中AB 与BC 是否垂直.答:________(填“是”或“否”);你的理由是:____________________________________________________.(2)某地部分节气正午时分太阳光线与地面夹角α的值,如下表:节气夏至 秋分 冬至 太阳光线与地面夹角α74°50°27°①记夏至和冬至时表影分别为BM 和BN ,利用上表数据,在射线BC 上标出点M和点N 的位置;②记秋分时的表影为BP ,推测点P 位于( ) A .线段MN 中点左侧 B .线段MN 中点处 C .线段MN 中点右侧GF E DCB A D CB A23.已知直线:(0)l y kx k =≠过点(1,2)A -.点P 为直线l 上一点,其横坐标为m . 过点P 作y 轴的垂线,与函数4(0)y x x=>的图象交于点Q . (1)求k 的值; (2)①求点Q 的坐标(用含m 的式子表示);②若△POQ 的面积大于3,直接写出点P 的横坐标 m 的取值范围.24.牛年伊始,中国电影行业迎来了开门红.春节档期全国总观影人次超过1.6亿,总票房超过80亿元.以下是甲、乙两部春节档影片上映后的票房信息. a .两部影片上映第一周单日票房统计图b .两部影片分时段累计票房如下 上映影片 2月12日-18日累计票房(亿元)2月19日-21日累计票房(亿元)甲 31.56 乙37.222.95(以上数据来源于中国电影数据信息网) 根据以上信息,回答下列问题:(1)2月12日-18日的一周时间内,影片乙单日票房的中位数为_________; (2)对于甲、乙两部影片上映第一周的单日票房,下列说法中所有正确结论的序号是______________; ① 甲的单日票房逐日增加;② 甲单日票房的方差小于乙单日票房的方差;③ 在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大. (3)截止到2月21日,影片甲上映后的总票房超过了影片乙,据此估计,2月19日-21日三天内影片甲的累计票房应超过_______亿元.xA12345–1–2–1–212345O25.如图,AB 是⊙O 的弦,C 为⊙O 上一点,过点C 作AB 的垂线与AB 的延长线交于点D ,连接BO 并延长,与⊙O 交于点E ,连接EC ,∠ABE =2∠E . (1)求证:CD 是⊙O 的切线; (2)若1tan 3E =,BD =1,求弦AB 的长.26.在平面直角坐标系xOy 中,抛物线222(0)y ax ax a a =-+->.分别过点(,0)M t 和点(2,0)N t +作x 轴的垂线,交抛物线于点A 和点B .记抛物线在A ,B 之间的部分为图象G (包括A ,B 两点).(1)求抛物线的顶点坐标;(2)记图形G 上任意一点的纵坐标的最大值与最小值的差为m . ①当a =2时,若图形G 为轴对称图形,求m 的值;②若存在实数t ,使得m =2,直接写出a 的取值范围.27.如图,在△ABC 中,=AB AC ,40BAC ∠=︒,作射线CM ,80ACM ∠=︒.D 在射线CM上,连接AD ,E 是AD 的中点,C 关于点E 的对称点为F ,连接DF .备用图(1)依题意补全图形;(2)判断AB 与DF 的数量关系并证明;(3)平面内一点G ,使得DG DC =,FG FB =,求CDG ∠的值.28.在平面直角坐标系xOy 中,对于点A 和线段MN ,如果点A ,O ,M ,N 按逆时针方向排列构成菱形AOMN ,且∠AOM =α,则称线段MN 是点A 的“α-相关线段”.例如,图1中线段MN 是点A 的“30°-相关线段”.图1 图2(1)已知点A 的坐标是(0,2).①在图2中画出点A 的“30°-相关线段”MN ,并直接写出点M 和点N 的坐标; ②若点A 的“α-相关线段”经过点,求α的值;(2)若存在,()αβαβ≠使得点P 的“α-相关线段”和“β-相关线段”都经过点(0,4),记PO=t ,直接写出t 的取值范围.xxy海淀区九年级第二学期期中练习数学试卷答案一、选择题 (本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1x ≥ 10.3,0x y =⎧⎨=⎩11.110° 12.答案不唯一,如:13.114.2或-6 15.916.乙三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23题6分,第24题5分,第25-26题,每小题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.(本小题满分5分)解:原式21-++ 1=+18.(本小题满分5分)解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①②解不等式①,得1x ≥. 解不等式②,得2x <. ∴ 原不等式组的解集为12x ≤<.19.(本小题满分5分)证明:∵ AB ∥DE ,∴ ∠B =∠DEF .∵ BE =CF ,∴ BE +EC =CF +EC . ∴ BC =EF . 在△ABC 和△DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌ △DEF . ∴ ∠A =∠D .20.(本小题满分5分)解:()()()222a a a a +-++ 2242a a a =-++ 2224a a =+-∵ 210a a +-=∴ 21a a += ∴ 原式()224a a =+-2=-21.(本小题满分6分)(1)证明:∵ 四边形ABCD 是矩形, ∴ ∠B =∠C =90°. ∴ ∠BAE +∠AEB =90°. ∵ AE ⊥ED , ∴ ∠AED =90°. ∴ ∠AEB +∠CED =90°. ∴ ∠BAE =∠CED .∴ △ABE ∽ △ECD . (2)解:∵ 由(1),△ABE ∽ △ECD , ∴AB ECBE CD=. ∵ 矩形ABCD 中,CD =AB =2,BE =1,GFEDCBA∴ EC =4. ∴ BC =BE +EC =5. ∵ AD ∥BC ,∴ △AFD ∽ △EFG . ∴AD AFEG EF=. ∵ AE =EF , ∴ AF =2EF . ∴2AD EG =,即115222EG AD BC ===. ∴ CG =EC -EG =32.22.(本小题满分5分)(1)是,理由:由测量结果可知222AB BD AD +=,由勾股定理的逆定理可知AB ⊥BC . (2)① 如图,点M 和点N 即为所求.② A .23.(本小题满分6分)(1)解:∵ 直线y kx =过点A (1-,2),∴ 2k -=,即2k =-. (2)① 解:∵ P 在直线2y x =-上且横坐标为m , ∴ 点P 的纵坐标为2P y m =-, ∵ PQ ⊥y 轴,∴ 点Q 的纵坐标为2Q y m =-. ∵ 点Q 在函数4y x=(0x >)的图象上, ∴ 点Q 的横坐标为422Q x m m==--. ∴ 点Q 的坐标为(2m-,2m -). ② 1m <-24.(本小题满分5分)(1)4.36 (2)②③ (3)8.6125.(本小题满分6分)(1)证明:连接OC ,在⊙O 中 ∵ ∠BOC =2∠E ,∠ABE =2∠E , ∴ ∠BOC =∠ABE . ∴ AB ∥OC .∴ ∠OCD +∠ADC =180°. ∵ AB ⊥CD 于点D , ∴ ∠ADC =90°.∴ ∠OCD =90°. ∴ OC ⊥CD .∴ CD 是⊙O 的切线. (2)解: 方法1: 连接AC ,BC , ∵ BE 是⊙O 的直径, ∴ ∠BCE =90°. ∴ ∠OBC +∠E =90°. ∵ ∠OCD =90°, ∴ ∠OCB +∠BCD =90°. ∵ OB =OC , ∴ ∠OCB =∠OBC .∴ ∠E =∠BCD . ∴ 1tan tan 3BCD E ∠==. ∴ 在Rt △BCD 中,3tan BDCD BCD==∠.∵ ∠A =∠E ,∴ 在Rt △ACD 中,9tan CDAD A==. ∴ 8AB AD BD =-=. 方法2:连接CD ,过点O 作OH ⊥AB 于H ,设⊙O 的半径为r . 同方法1可得∠BCD =∠E ,CD =3. ∵ OH ⊥AB ,∴ ∠OHD =90°=∠OCD =∠ADC . ∴ 四边形OHDC 是矩形. ∴ OH =CD =3,HD =OC =r , ∴ 1HB HD BD r =-=-.∵ Rt △OHB 中,222OH HB OB +=, ∴ ()2223+1r r -=. 解得:5r =. ∴ 4HB =.∴ 由垂径定理,AB =2HB =8.26.(本小题满分6分)(1)抛物线的解析式为()222212y ax ax a a x =-+-=--, ∴ 抛物线的顶点坐标为(1,2-). (2)① 当2a =时,抛物线为()2212y x =--,其对称轴为1x =. ∵ 图象G 为轴对称图形,∴ 点A ,B 必关于对称轴1x =对称. ∵ 点A 的横坐标为t ,点B 的横坐标为2t +, ∴ AB =2,∴ 0t =,点A 为(0,0),点B 为(2,0).∵ 当01x ≤≤时,y 随x 的增大而减小,当12x ≤≤时,y 随x 的增大而增大, ∴ 图象G 上任意一点的纵坐标最大值为0,最小值为2-.∴2m=.②02<≤a27.(本小题满分7分)(1)下图即为所求(2)AB 与DF 的数量关系是AB =DF . 证明:∵ 点F 与点C 关于点E 对称,∴ CE =FE . ∵ E 是AD 的中点, ∴ AE =DE . ∵ ∠AEC =∠DEF , ∴ △AEC ≌ △DEF ∴ AC =DF . ∵ AB =AC ,∴ AB =DF .(3)如图所示,点G 的位置有两种情况.① 点G 与点C 在直线DF 同侧时,记为1G ,连接AF , ∵ AE =DE ,CE =EF ,∴ 四边形ACDF 是平行四边形. ∴ AF =CD . ∵ 1DG CD =, ∴ 1DG AF =,B21B∵ AB =DF ,1BF FG =, ∴ △ABF ≌ △DF 1G . ∴ 1FDG BAF ∠=∠.∵ □ACDF 中,∠CAF =∠CDF , ∴ 1FDG CDF BAF CAF ∠-∠=∠-∠. ∴ 140CDG BAC ∠=∠=︒.② 点G 与点C 在直线DF 异侧时,记为2G , ∵ 12DG DG =,12FG FG =,DF =DF , ∴ △1DFG ≌ △2DFG . ∴ 12DFG DFG ∠=∠.∵ □ACDF 中,AC ∥DF ,∠ACD =80°, ∴ ∠CDF =180°-∠ACD =100°. ∵ 由①,140CDG ∠=︒,∴ 11140FDG ACD CDG ∠=∠+∠=︒. ∴ 2140FDG ∠=︒.∴ 22360120CDG CDF FDG ∠=︒-∠-∠=︒. 综上,∠CDG 的度数为40°或120°28.(本小题满分7分)(1)① 如图,MN 即为所求.点M 的坐标是(1,点N 的坐标是(12). ② 解:∵ 点A 的“α-相关线段”MN经过点,∴ 点M 必在直线x =记直线x =x 轴交于点H 0),∵ OM =OA =2,OH ,∴ 1MH ==,30MOH ∠=︒. 分两种情况:a ) 当点M 在x 轴上方时,点M 恰为,符合题意, 此时∠AOM =60°,60α=︒;b ) 当点M 在x 轴下方时,点M 为1)-,由MN =2知点N 为, 也符合题意,此时∠AOM =120°,120α=︒. 综上,α的值为60°或120°.(2)4t <≤。
2020-2021九年级数学下期中一模试卷(及答案) 一、选择题1.若反比例函数kyx=(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-42.已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B.C.D.3.如图所示,在△ABC中, cos B=2,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.214.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x5.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.126.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.17.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=8.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D.9.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为()A.1 : 2B.1 : 3C.2 : 3D.4 : 910.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m11.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252-B.25-C.251-D.52-12.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为A.423B.2C.823D.2二、填空题13.如图,矩形ABOC的面积为3,反比例函数y=kx的图象过点A,则k=_____.14.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.15.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.16.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;17.如图,等腰△ABC 中,底边BC 长为8,腰长为6,点D 是BC 边上一点,过点B 作AC 的平行线与过A 、B 、D 三点的圆交于点E ,连接DE ,则DE 的最小值是___.18.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,这时CD =2,则AB =_____.19.反比例函数y =k x的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________.20.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;23.如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长24.计算:cos45tan45sin60cot60cot452sin30︒⋅︒-︒⋅︒︒+︒.25.如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EO FO BO=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【详解】 解:由题意,22b x a= ∴2a b b x=, ∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .3.A解析:A【解析】【分析】【详解】试题分析:过点A 作AD ⊥BC ,∵△ABC 中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.4.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.【详解】过A作AM⊥x轴于M,过B作BN⊥x轴于N,则∠AMO=∠BNC=90°,∵四边形AOCB是菱形,∴OA=BC=AB=OC,AB∥OC,OA∥BC,∴∠AOM=∠BCN,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM和△BCN中AMO BNCAOM BCNOA BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B点的坐标是(8,4),把B的坐标代入y=kx得:k=32,即y=32x,故答案选C.【点睛】本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质. 5.D解析:D【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.6.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.7.D解析:D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.8.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.9.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴C △CEF :C △ABF =2:3.故选C .10.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 11.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 12.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒=3,∵BE平分∠ABC,∴∠EBD=30°,∴,∴AE=AD-DE=33=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题13.-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=的图象中任取一点过这一个点向x轴和y轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k|解析:-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=kx的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.14.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG =90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.15.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 16.【解析】【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y解析:【解析】【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB=2222=22,∵四边形ABCD是菱形,∴BC=AB=22,∴菱形ABCD的面积=BC×AH=42,故答案为42.【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.17.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE 的值最小【详解】如图连接AEADOEOD作A解析:5【解析】【分析】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.首先证明∠EOD=2∠C =定值,推出⊙O的半径最小时,DE的值最小,推出当AB是直径时,DE的值最小.【详解】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.∵BE∥AC,∴∠EBC+∠C=180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C =6,∴3EK ,∴EK∴DE =∴DE 的最小值为故答案为【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.18.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB =3CO∴OA:OD =BO :CO =3:1∠AOB=∠DO解析:6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3CO ,∴OA :OD =BO :CO =3:1,∠AOB =∠DOC ,∴△AOB ∽△DOC ,∴31AO AB OD CD ==, ∴AB =3CD ,∵CD =2,∴AB =6,故答案为:6.【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.19.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2{b 2=-=-,∴点P 的坐标是(-2,-2).20.【解析】【分析】如图所示连接BD 过点D 作DE 垂直于BC 的延长线于点E 构造直角三角形将∠CBD 置于直角三角形中设CE 为x 根据特殊直角三角形分别求得线段CDACBC 从而按正切函数的定义可解【详解】解:如解析:31 -【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=33=CDAC,则AC6x,在Rt△ABC中,∠BAC=∠BCA=45°∴BC3,∴在Rt△BED中,tan∠CBD=DEBE(13)x+=312故答案为:31 2.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.三、解答题21.(1)90o ,2BC BD +;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】 (1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,AC BD =,因此AC =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒, 45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,AC BD ∴=,∴2AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,2BC BD +,(2)结论:90PBD ∠=︒; AB BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD ==Q ,PAC PBD ∴V V ∽=,90PBD PAC ∴∠=∠=︒,2AC BD =,AC BD ∴=,AB AC BC BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC 、∠ABD 、∠CBD 的度数,求出∠D 度数,根据三角形内角和定理求出∠BAF 和∠BAD 度数,即可求出答案;(2)求出△AEF ∽△DEA ,根据相似三角形的性质得出即可.【详解】(1)∵AD ∥BC ,∴∠D=∠CBD ,∵AB=AC ,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC )=72°, ∴∠AFB=∠ACB=72°,∵BD 平分∠ABC , ∴∠ABD=∠CBD=12∠ABC=12×72°=36°, ∴∠D=∠CBD=36°, ∴∠BAD=180°﹣∠D ﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF ﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB ﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD ,∴∠FAC=36°=∠D , ∵∠AED=∠AEF ,∴△AEF ∽△DEA , ∴AE ED EF AE=, ∴AE 2=EF×ED. 【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(1)详见解析;(2)10【解析】【分析】(1)由正方形的性质得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,证出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性质得出AE ABDF DE=,解得DE=2,证明△EDF∽△GCF,得出DE DFCG CF=,求出CG=6,即可得出答案.【详解】(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,∵∠BEF=90°,∵∠AEB+∠EBA=∠DEF+∠EBA=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴AE ABDF DE=,即441DEDE-=,解得:DE=2,∵AD∥BC,∴△EDF∽△GCF,∴DE DFCG CF=,即213CG=,∴CG=6,∴BG=BC+CG=4+6=10.【点睛】本题考查了相似三角形的判定及性质、正方形的性质,掌握相似三角形的判定和性质是解题的关键.24.【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式11122322.124122=-==+⨯ 25.见解析【解析】【分析】由AB ∥CD 得△AOB ∽△COE ,有OE :OB=OC :OA ;由AD ∥BC 得△AOF ∽△COB ,有OB :OF=OC :OA ,进而解答.【详解】∵AB ∥CD ,∴△AOB ∽△COE .∴OE :OB=OC :OA ;∵AD ∥BC ,∴△AOF ∽△COB .∴OB :OF=OC :OA .∴OB :OF=OE :OB , 即:BO EO FO BO= 【点睛】 本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。
一、选择题1.(0分)[ID:11130]如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是()A.B.C.D.2.(0分)[ID:11120]已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大3.(0分)[ID:11080]如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C 的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)4.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:95.(0分)[ID:11070]河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.1036.(0分)[ID:11064]如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+7.(0分)[ID:11052]如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.55C.233D.2558.(0分)[ID:11051]如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:69.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2510.(0分)[ID:11046]在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°11.(0分)[ID:11045]如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.12.(0分)[ID:11041]在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)13.(0分)[ID:11034]下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个14.(0分)[ID:11063]已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP 的长是()A.252B.25-C.251D5215.(0分)[ID:11037]制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元二、填空题16.(0分)[ID:11232]如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.17.(0分)[ID :11189]一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.18.(0分)[ID :11187]若反比例函数y =﹣6x 的图象经过点A(m ,3),则m 的值是_____. 19.(0分)[ID :11158]如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC=______.20.(0分)[ID :11155]如图,等腰△ABC 中,底边BC 长为8,腰长为6,点D 是BC 边上一点,过点B 作AC 的平行线与过A 、B 、D 三点的圆交于点E ,连接DE ,则DE 的最小值是___.21.(0分)[ID :11148]如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,3C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____22.(0分)[ID :11139]如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.23.(0分)[ID :11216]如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.24.(0分)[ID :11182]如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________. 25.(0分)[ID :11134]如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题26.(0分)[ID :11323]等腰Rt PAB 中,90PAB ∠=,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:27.(0分)[ID :11316]由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为 ;(3)在不改变主视图和俯视图的情况下,最多可添加 块小正方体.28.(0分)[ID :11274]如图,一次函数y =kx +2的图象与反比例函数y =m x的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA =. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.29.(0分)[ID :11266]已知:如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,连接DE 交AC 于点F .()1求证:四边形ADCE为矩形;()2当ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.()3在()2的条件下,若AB AC22==,求正方形ADCE周长.30.(0分)[ID:11253]如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.A4.B5.B6.D7.D8.B9.A10.C11.C12.A13.D14.A15.C二、填空题16.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为17.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA 的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E18.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-219.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键20.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD作A21.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴22.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B23.3【解析】试题分析:如图∵CD∥AB∥MN∴△ABE∽△CDE△ABF∽△MNF∴即解得:AB=3m答:路灯的高为3m考点:中心投影24.【解析】【分析】根据勾股定理可得OA的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin∠1=故答案为25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.4.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.5.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.7.D解析:D【解析】【分析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=255,故选D.8.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.9.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.10.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−32|+(1−tan B)2=0,∴sinA=32,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.11.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.12.A解析:A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.13.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .14.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 15.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C .【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题16.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为解析:【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.【详解】解:∵坡度为1:2=6米,∴株距:坡面距离=2∴坡面距离=株距×5352=(米).【点睛】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.17.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.18.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数y=−6x的图象过点A(m,3),∴3=−6m,解得=−2.19.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.20.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠E OD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD作A解析:5【解析】【分析】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.首先证明∠EOD=2∠C =定值,推出⊙O的半径最小时,DE的值最小,推出当AB是直径时,DE的值最小.【详解】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.∵BE∥AC,∴∠EBC+∠C=180°,∵∠EBC+∠EAD=180°,∴∠EAD=∠C,∵∠EOD=2∠EAD,∴∠EOD=2∠C=定值,∴⊙O的半径最小时,DE的值最小,∴当AB是⊙O的直径时,DE的值最小,∵AB=AC=6,AJ⊥BC,∴BJ =CJ =4,∴AJ =22A C CJ -=2264-=25,∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C =256, ∴3EK =256, ∴EK =5,∴DE =25,∴DE 的最小值为25.故答案为25.【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.21.(1)【解析】【分析】先根据题意求得CD 和PE 的长再判定△EPC∽△PDB 列出相关的比例式求得DP 的长最后根据PEDP 的长得到点P 的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC 是AB 的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD 和PE 的长,再判定△EPC ∽△PDB ,列出相关的比例式,求得DP 的长,最后根据PE 、DP 的长得到点P 的坐标.【详解】由题意可知,OB=23,AO=8,∵CD ⊥BO ,C 是AB 的中点,∴BD=DO=12BO==PE ,CD=12AO=4. 设DP=a ,则CP=4﹣a ,当BP 所在直线与EC 所在直线第一次垂直时,∠FCP=∠DBP , 又∵EP ⊥CP ,PD ⊥BD ,∴∠EPC=∠PDB=90°,∴△EPC ∽△PDB.DP DB PE PC∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.22.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12 AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt △BCG 中,CG =22BC BG -=2282- =215,故答案为:215.【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.3【解析】试题分析:如图∵CD∥AB∥MN∴△ABE∽△CDE△ABF∽△MNF∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.24.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin ∠1=故答案为3 【解析】【分析】 根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA 22OB AB +=2.sin ∠1=32AB OA =,故答案为32.25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题26.(1)90,2BC BD +;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,22AC BD =,因此22AC BD =,即可得出结论.【详解】 解:(1)PCD 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又12PA PB =,~PAC PBD ∴∆∆=,2AC BD ∴=,∴AC BD =,∴AB BC AC BC BD =+=+,故答案为90,2BC BD +,(2)结论:90PBD ∠=︒; 2AB BD BC =-;理由如下: PCD 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又12PA PC PB PD==,PAC PBD ∴∽=,90PBD PAC ∴∠=∠=︒,2AC BD =,2AC BD ∴=,AB AC BC BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键. 27.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体, 28.(1)D (0,2); (2)22y x =+;12y x=;(3)2x > 【解析】【分析】 (1)在y=kx+2中,只要x=0得y=2即可得点D 的坐标为(0,2).(2)由AP ∥OD 得Rt △PAC ∽Rt △DOC ,又12OC OA =,可得13OD OC AP AC ==,故AP=6,BD=6-2=4,由S △PBD =4可得BP=2,把P (2,6)分别代入y=kx+2与m y x =可得一次函数解析式为y=2x+2反比例函数解析式为12y x=; (3)当x >0时,一次函数的值大于反比例函数的值的x 的取值范围由图象能直接看出x >2.【详解】解:(1)在y=kx+2中,令x=0得y=2,∴点D 的坐标为(0,2)(2)∵AP ∥OD ,∴∠CDO=∠CPA ,∠COD=∠CAP ,∴Rt △PAC ∽Rt △DOC , ∵12OC OA =,即13OD OC AP AC ==, ∴13OD OC AP AC == ∴AP=6,又∵BD=6-2=4, ∴由142PBD S BP BD =⋅=,可得BP=2, ∴P (2,6)(4分)把P (2,6)分别代入y=kx+2与m y x =可得一次函数解析式为:y=2x+2, 反比例函数解析式为:12y x=(3)由图可得x >2.【点睛】 考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.29.(1)证明见解析;(2)BAC 90∠=且AB AC =时,四边形ADCE 是一个正方形;证明见解析;(3)8;【解析】【分析】( 1 )根据等腰三角形的性质,可得 ∠ CAD=12∠ BAC ,根据等式的性质,可得∠CAD+ ∠CAE=12( ∠BAC+ ∠CAM )=90°,根据垂线的定义,可得∠ADC=∠CEA ,根据矩形的判定,可得答案;( 2 )根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;( 3 )根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.【详解】()1∵AB AC =,AD BC ⊥,垂足为点D , ∴1CAD BAC 2∠∠=. ∵AN 是ABC 外角CAM ∠的平分线, ∴1CAE CAM 2∠∠=. ∵BAC ∠与CAM ∠是邻补角,∴BAC CAM 180∠∠+=, ∴()1CAD CAE BAC CAM 902∠∠∠∠+=+=. ∵AD BC ⊥,CE AN ⊥,∴ADC CEA 90∠∠==,∴四边形ADCE 为矩形;(2)BAC 90∠=且AB AC =时,四边形ADCE 是一个正方形,∵BAC 90∠=且AB AC =,AD BC ⊥, ∴1CAD BAC 452∠∠==,ADC 90∠=, ∴ACD CAD 45∠∠==,∴AD CD =.∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;()3由勾股定理,得AB =,AD CD =,=,AD 2=,正方形ADCE 周长4AD 428=⨯=.【点睛】本题考查了的正方形的判定与性质,(1)利用了等腰三角形的性质,矩形的判定;(2)利用了正方形的判定;(3)利用了勾股定理,正方形的周长,灵活运用是关键.30.电视塔OC高为米,点P的铅直高度为)10013(米). 【解析】【分析】过点P 作PF ⊥OC ,垂足为F,在Rt △OAC 中利用三角函数求出,根据山坡坡度=1:2表示出PB =x , AB =2x, 在Rt △PCF 中利用三角函数即可求解.【详解】过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA•tan ∠OAC =(米), 过点P 作PB ⊥OA ,垂足为B .由i =1:2,设PB =x ,则AB =2x .∴PF =OB =100+2x ,CF =x .在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x =x ,∴x,即PB【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.。
2020—2021年北师大版九年级数学下册期中模拟考试加答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣25 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A.180 B.182 C.184 D.1869.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45︒B.50︒C.60︒D.75︒二、填空题(本大题共6小题,每小题3分,共18分)1.364的平方根为__________.2.分解因式:2x3﹣6x2+4x=__________.3.若a、b为实数,且b=2211a a-+-+4,则a+b=__________.4.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:2211(1)m m m m +--÷,其中m=3+1.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、C7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±22、2x(x﹣1)(x﹣2).3、5或34、-45、406、.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.23、(1)略;(2)2.4、(1)直线BC与⊙O相切,略;(2)2 35、(1)30;(2)①补图见解析;②120;③70人.。
2020-2021北京市海淀北部新区实验中学九年级数学下期中一模试卷(附答案)一、选择题1.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB .则cos ∠AOB 的值等于( )A .B .C .D .2.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)3.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .25B .5C .5D .124.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍; B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;5.若35x x y =+,则x y 等于 ( ) A .32 B .38 C .23 D .856.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .377.在△ABC 中,若=0,则∠C 的度数是( ) A .45°B .60°C .75°D .105° 8.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( )A .a :d =c :bB .a :b =c :dC .c :a =d :bD .b :c =a :d 9.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12 11.若270x y -=. 则下列式子正确的是( ) A .72x y = B .27x y = C .27x y = D .27x y = 12.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④C .②④D .②③ 二、填空题13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.15.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.17.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB="AC=8" cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.18.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.19.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.20.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.三、解答题21.如图,∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N .(1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.22.如图,在OABC Y 中,22OA =45AOC ∠=︒,点C 在y 轴上,点D 是BC 的中点,反比例函数()0k y x x=>的图象经过点A 、D(1)求k的值;(2)求点D的坐标.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小2030405060时)T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.25.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE V V ∽.(2)若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB 是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB ,由图可知:OA=0B ,AO=AB∴OA=AB=OB ,即三角形OAB 为等边三角形,∴∠AOB=60°,∴cos ∠AOB=cos60°=. 故选B .【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.3.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.5.A解析:A【解析】【分析】先根据比例的基本性质进行变形,得到2x=3y,再根据比例的基本性质转化成比例式即可得.【详解】根据比例的基本性质得:5x=3(x+y),即2x=3y,即得32xy=,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解本题的关键. 6.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.7.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.8.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.9.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以,,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以,,,所以B选项错误;C、因为x y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.10.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误;C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.故选B . 点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x 尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈解析:四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴x 15=1.50.5, 解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.15.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC根据该相似三角形的对应边成比例求得DP的长度【详解】设DP=x则CP=5-x本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=5-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,AD BC = DP CP∴225xx=-,解得:x=2.5;②、当△APD∽△PBC时,ADCP=DPBC,即25x=2x,解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.16.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD =xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.17.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:48-163【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=33x.所以x+33x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16318.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 2【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠3CDAC,则AC6x,在Rt△ABC中,∠BAC=∠BCA=45°∴BC3,∴在Rt△BED中,tan∠CBD=DEBE(13)x+31-故答案为:31 2.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.19.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC此时AE=;故答案是:解析:512 35或【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=·52563 AC ADAB⨯==;故答案是:125 53或.20.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=6三、解答题21.(1)见解析;(2)MC=7.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC22BD CD-4836-3∵BM ∥CD∴∠MBD =∠BDC ,∠MBC =∠BCD =90°∴∠ADB =∠MBD ,且∠ABD =90°∴BM =MD ,∠MAB =∠MBA∴BM =MD =AM =4∴MC .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.22.(1)4k =;(2)()1,4D .【解析】【分析】(1)根据已知条件求出A 点坐标即可;(2)四边形OABC 是平行四边形OABC ,则有AB x ⊥轴,可知B 的横纵标为2,D 点的横坐标为1,结合解析式即可求解;【详解】(1)Q OA =45AOC ∠=︒,∴()2,2A ,∴4k =, ∴4y x=; (2)四边形OABC 是平行四边形OABC ,∴AB x ⊥轴,∴B 的横纵标为2,Q 点D 是BC 的中点,∴D 点的横坐标为1,∴()1,4D ;【点睛】本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点B 的横坐标是解题的关键.23.(1)见解析(2)见解析(3)AC 7AF 4=. 【解析】【分析】 (1)由AC 平分∠DAB ,∠ADC=∠ACB=90°,可证得△ADC ∽△ACB ,然后由相似三角形的对应边成比例,证得AC2=AB•AD.(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=12AB=AE,从而可证得∠DAC=∠ECA,得到CE∥AD.(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得AFCF的值,从而得到ACAF的值.【详解】解:(1)证明:∵AC平分∠DAB ∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴AD AC AC AB=即AC2=AB•AD.(2)证明:∵E为AB的中点∴CE=12AB=AE∴∠EAC=∠ECA.∵∠DAC=∠CAB ∴∠DAC=∠ECA ∴CE∥AD.(3)∵CE∥AD∴△AFD∽△CFE∴AD AF CE CF=.∵CE=12AB∴CE=12×6=3.∵AD=4∴4AF 3CF =∴AC7 AF4=.24.(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v的取值范围是24<v<40【解析】(1)根据表格中数据,可知v是t的反比例函数,设v=kt,利用待定系数法求出k即可;(2)根据时间t=13小时,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可.【详解】(1)根据表格中数据,可知v=kt,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=12t(t≥0.2).(2)∵1﹣16-12=13,∴t=13时,v=1213=36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.【点睛】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.25.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.()1证明:ACD ABE V V ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=o .∵A A ∠=∠,∴ACD ABE V V ∽.()2若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由. ∵ACD ABE V V ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC V V ∽.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.。