周期函数,复合函数,分段函数的精讲与练习(快速提高解函数题的能力)
- 格式:doc
- 大小:101.50 KB
- 文档页数:10
高一数学分段函数抽象函数与复合函数试题答案及解析1.对于函数的性质,①是以为周期的周期函数②的单调递增区间为,③的值域为④取最小值的的取值集合为其中说法正确的序号有_____________.【答案】①②【解析】画出函数的图像,可知,函数的周期为,单调递减区间为,函数的值域为,函数取最小值的的取值集合为【考点】1.分段函数;2.函数的图像与性质.2.已知函数若,则()A.B.C.或D.1或【答案】C【解析】当时,,可得;当时,,可得.【考点】分段函数,分类讨论的数学思想.3.已知函数,则 .【答案】【解析】因为,所以,又因为,所以.【考点】分段函数.4.已知函数。
若,则的值()A.一定是B.一定是C.是中较大的数D.是中较小的数【答案】C【解析】由题意可知,所以,所以的值是中较大的数,故选C.【考点】分段函数的求值问题.5.已知函数则______.【答案】【解析】由题可得.【考点】分段函数的求值.6.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数7.已知函数,则的值是.【答案】【解析】因为,而,所以.【考点】本题考查的知识点是分段函数求函数值的方法,属基础题.8.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.9.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.10.已知函数则等于()A.B.C.D.【答案】D【解析】分段函数的函数值计算要注意自变量的取值范围,,.【考点】分段函数.11.已知则的值等于().A.-2B.4C.2D.-4【答案】B【解析】本题是分段函数,求值时,要注意考察自变量的范围,,,.【考点】分段函数.12.已知,则f(3)为()A.2B.3C.4D.5【答案】A【解析】因为,,所以,,选A。
文章主题:分段函数求f(f(x))类型的题目一、概念介绍分段函数是指在定义域上被分成若干个部分,每个部分用一个不同的函数表达式来表示的函数。
而对于求解f(f(x))类型的题目,首先需要了解分段函数和复合函数的概念。
分段函数的定义域被分成若干个部分,每个部分用一个不同的函数表达式来表示。
复合函数是由一个函数和另一个函数构成的复合而成的新函数。
当要求f(f(x))时,即是对函数f(x)的输出再次进行f函数的操作。
二、分段函数求f(f(x))的具体步骤1. 根据题目给出的分段函数的各个部分的定义域和表达式,对每个部分进行逐一求解f(x)的值。
2. 将得到的f(x)值作为新的输入,再次代入原函数中,得到f(f(x))的值。
3. 根据题目要求,对f(f(x))的值进行进一步的化简或计算。
三、举例说明为了更好地理解分段函数求f(f(x))类型的题目,我们来举一个具体的例子:题目:已知分段函数f(x)为f(x) = {-2x, x < 0x^2, x >= 0}求f(f(x))的表达式和定义域。
解:根据题目给出的分段函数,我们分别对x < 0和x >= 0的情况进行求解。
当x < 0时,f(x) = -2x当x >= 0时,f(x) = x^2将求得的f(x)值作为新的输入代入原函数中,得到f(f(x))的值。
当x < 0时,f(f(x)) = f(-2x) = -2*(-2x) = 4x当x >= 0时,f(f(x)) = f(x^2) = (x^2)^2 = x^4得到f(f(x))的表达式为f(f(x)) = {4x, x < 0x^4, x >= 0}而f(f(x))的定义域为整个实数集。
四、总结回顾通过上面的例子,我们可以发现,分段函数求f(f(x))的过程其实就是先求出f(x)的值,然后再将f(x)的值作为新的输入代入原函数中,得到f(f(x))的值。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
高等数学(数三)复习知识点及作业按照同济大学高等数学第六版制定10.2 重点二重积分的计算法(会利用直角坐标计算二重积分,会利用极坐标计算二重积分),习题10-2:1,2, 4,6,7,8,11,12,13,14,152.掌握二重积分的计算方法(直角坐标.极坐标).3.了解无界区域上较简单的反常二重积分并会计算.10.3 注:本节数学三不考10.4 注:本节数学三不考总复习题十: 2.3.4.5.6.第十一章曲线积分与曲面积分注:本章数学三不考第十二章无穷级数(时间1周,每天2-3小时)12.1 常数项级数的概念和性质(常数项级数的概念,收敛级数的基本性质)习题12-1:1-4注:P254 柯西审敛原理不考1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.12.2 常数项级数的审敛法(正项级数及其审敛法,交错级数及其审敛法,绝对收敛与条件收敛)习题12-2:1-5注:P265 绝对收敛级数的性质不考12.3 重点幂级数(幂级数及其收敛性,幂级数的运算)习题12-3:1.2.12.4 函数展开成幂级数习题12-4:1.2.3.4.5.6.7总习题十二:1-10。
高中数学52种快速做题方法1、适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x 1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(a b)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q mS(n)可以迅速求q6、数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p (n-1) x,这是一阶特征根方程的运用。
高一数学分段函数抽象函数与复合函数试题答案及解析1.设,求的值。
【答案】【解析】先求出来,再由求出,一定要注意定义域选择好解析式.又,而【考点】分段函数的求值2.已知函数,若,则实数的值为 .【答案】【解析】当时,则有,解得或(舍去);当时,则有,解得,所以.【考点】分段函数的求值.3.已知函数的定义域为集合.(1)若函数的定义域也为集合,的值域为,求;(2)已知,若,求实数的取值范围.【答案】(1);(2).【解析】(1)对数定义域真数大于零求定义域,有真数范围,求值域;(2解不等式(注意移项通分)化分式不等式为整式不等式,,对大小关系分三类讨论,再分别求满足的值.试题解析:(1)由,得,, 2分, 3分当时,,于是,即, 5分,。
7分(2))由,得,即. .8分当时,,满足; 9分当时,,因为,所以解得, 11分又,所以;当时,,因为,所以解得,又,所以此时无解; 13分综上所述,实数的取值范围是. 14分【考点】1.函数定义域值域;2.分类讨论思想;3.集合运算.4.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数5.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.6.已知函数,则【答案】【解析】假设,则,所以=,即.【考点】本题考查的是复合函数的知识点,本题的解法是常用的思维方式,要切记.7.已知 (且)在上是的减函数,则的取值范围是()A.B.C.D.【答案】B【解析】是定义域内的减函数,又是定义域内的增函数,由复合函数的单调性知(且)在定义域内单调递减,所以对于此题只需恒成立,即恒成立,,,又所以.故选B.【考点】复合函数的单调性8.函数,则()A.5B.4C.3D.2【答案】D【解析】,所以答案选.【考点】分段函数的求值9.如果函数f(x)的定义域为,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:;(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
高三数学分段函数抽象函数与复合函数试题答案及解析1.设集合A=,函数,当且时,的取值范围是。
【答案】【解析】,解得,【考点】分段函数2.设函数,若,则 .【答案】【解析】若,则,所以,无解;若,则,所以,解得.故.【考点】分段函数,复合函数,容易题.3.设,则f(6)的值( )A.8B.7C.6D.5【答案】B【解析】.【考点】分段函数的函数值.4.已知函数.若,则的取值范围是 .【答案】【解析】当时,,∴;当时,,∴,综上所述的取值范围是.【考点】1、分段函数;2、一元二次不等式的解法.5.若关于的不等式存在实数解,则实数的取值范围是.【答案】【解析】由已知得,函数的最大值是,所以要使得不等式存在实数解,则,解得或.【考点】1.分段函数的图像与性质;2.解不等式6.已知函数,则= .【答案】【解析】这是分段函数的函数值计算问题,计算时一定要分清楚自变量的范围..【考点】分段函数.7.,则 .【答案】【解析】,.【考点】分段函数求值.8.已知函数则的值是 .【答案】【解析】,.【考点】分段函数求值.9.已知函数,,若函数有两个不同的零点,则实数的取值为( )A.或B.或C.或D.或【答案】D【解析】画出函数的图像如图.将的值代入解析式,然后画出图像,可知符合题意 .【考点】1.分段函数;2.数形结合.10.已知函数,则满足方程的所有的的值为 .【答案】0或3【解析】当时,,解得;当时,,解得.综上.【考点】1.分段函数;2.指数、对数函数的求值11.已知函数的图像在点处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)求函数在区间上的最大值;(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)当时在[-1,2]上的最大值为2,当时在[-1,2]上的最大值为;(Ⅲ).【解析】(Ⅰ)由题意先对时的函数进行求导,易得,解得;(Ⅱ)因为函数为分段函数,要求在区间上的最大值,需分别求区间和上的最大值,当时,应对函数进行求导,求函数的单调性,从而求区间上的最大值;当时,应对函数分两种情况讨论,可得结论;(Ⅲ)根据条件可知的横坐标互为相反数,不妨设,其中,若,则,由是直角,得,即,方程无解;若,则由于中的中点在轴上,且,所以点不可能在轴上,即同理有,,得的范围是.试题解析:(I)当时,因为函数图象在点处的切线方程为,所以切点坐标为且解得. 4分(II)由(I)得,当时,令,可得或在和上单调递减,在上单调递增,所以在上的最大值为,当时,,当时,恒成立此时在[-1,2]上的最大值为;当时在[1,2]上单调递增,且,令则,所以当时在[-1,2]上的最大值为,当时在[-1,2]上的最大值为,综上可知,当时在[-1,2]上的最大值为2,时当时在[-1,2]上的最大值为. 9分(III)根据条件可知的横坐标互为相反数,不妨设,其中,若,则,由是直角,得,即,即此方程无解;若,则由于中的中点在轴上,且,所以点不可能在轴上,即同理有,,令由于函数的值域是所以实数的取值范围是 14分【考点】1、分段函数;2、利用导数求函数的单调性及最值;3、函数与导数的综合应用.12.已知函数的定义域为,则的定义域为()A.B.C.D.【答案】C【解析】由于复合函数的定义域为,即,所以,故函数的定义域为,故选C.【考点】复合函数的定义域13.已知函数,函数,若存在,使得成立,则实数的取值范围是 .【答案】.【解析】当时,,此时函数单调递减,则有,,当,,此时,则函数在上单调递增,,即,故函数在上的值域为,,所以,所以,由于,,,故有或,解得.【考点】1.函数的值域;2.存在性命题14.已知函数的定义域为,则函数的定义域是()A.[1,2]B.[0,4]C.(0,4]D.[,4]【答案】D【解析】依题意,得,即,故 .【考点】1.抽象函数的定义域;2.不等式的解法.15.某商场宣传在“五一黄金周”期间对顾客购物实行一定的优惠,商场规定:①如一次性购物不超过200元,不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款()A.608元B.574.1元C.582.6元D.456.8元【答案】C【解析】根据题意,应付款付款176元时没有折扣.付款432元时标价为432÷0.9=480(元).故两次购物的标价为176+480=656(元).500×0.9+(656-500)×0.85=582.6(元).【考点】分段函数.16.设函数,若是奇函数,则 .【答案】2【解析】依题意,由于是奇函数,,.【考点】分段函数,函数的奇偶性.17.已知.①若函数f(x)的值域为R,求实数m的取值范围;②若函数f(x)在区间(-∞,1-)上是增函数,求实数m的取值范围.【答案】① ;②.【解析】①根据复合函数中的对数函数和二次函数的图像和性质解题确定m的取值;②由复合函数的性质,结合二次函数的图像解题,判断区间端点与对称轴的位置关系,注意复合函数单调性的判断是本题的关键.试题解析:①设,要使得函数的值域为R,则能取遍所有的正数, 2分则有, 4分解得; 6分②函数的底数是,那么若函数f(x)在区间(-∞,1-)上是增函数,函数在区间上是减函数, 8分则有, 10分解得. 12分【考点】复合函数的性质,对数函数和二次函数的图像和性质的应用.18.已知函数则______.【答案】【解析】 , ,所以.【考点】分段函数求函数值.19.设函数则关于x的方程的根的情况,有下列说法:①存在实数k,使得方程恰有1个实数根②存在实数k,使得方程恰有2个不相等的实数根③存在实数k,使得方程恰有3个不相等的实数根④存在实数k,使得方程恰有4个不相等的实数根其中正确的是()A.①③B.①②C.②④D.③④【答案】B【解析】因为所以,当时,,,所以当时,关于x的方程的恰有一个实根,则①正确.当时,,所以当时,关于x的方程的恰有2个不相等实根,则②正确;③④错误.【考点】分段函数,方程的根的判断.20.已知函数,则满足的的取值范围是______.【答案】【解析】解不等式组得,解不等式组得,综上得的取值范围是【考点】分段函数的意义、解不等式.21.已知函数是定义在R上的偶函数, 且在区间单调递增. 若实数a满足, 则a的取值范围是()A.B.C.D.【答案】C【解析】排除法:令,则不等式变为,又因为函数是定义在R上的偶函数,所以有,成立,故排除B;令,则不等式变为,即,,而已知函数在区间单调递增,所以不成立,排除A、D,故选C.【考点】本小题主要考查抽象函数的性质(单调性、奇偶性)等基础知识,考查分析问题与解决问题的能力.3)=22.已知函数f(x)满足:当x≥4时,f(x)=x;当x<4时,f(x)=f(x+1).则f(2+log2 A.B.C.D.【答案】A.3)=,【解析】因为,所以f(2+log2又,所以.【考点】分段函数的应用.点评:本题考查分段函数求值及指数对数的性质,对基本运算规则掌握的熟练程度要求较高.23.已知函数若,则实数x的取值范围是()A.B.C.D.【答案】C【解析】画出该分段函数的简图可知,该函数在R上单调递增,所以.【考点】本小题主要考查函数单调性的应用和一元二次函数的解法.点评:解决此类问题,关键是求出已知函数的单调性,而分段函数不论分成几段,始终是一个函数.24.若且,在定义域上满足,则的取值范围是()A.(0,1)B.[,1)C.(0,]D.(0,]【答案】B【解析】根据分段函数单调性是增函数,则说明每一段都是增函数,同时在x=0处的函数值,3a ,故可知,同时要满足,然后求其交集得到为[,1),故选B.【考点】函数单调性点评:解决的关键是理解已知中表示的含义是说函数在定义域内是递增的,属于基础题。
周期函数通俗定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT (k∈Z且k≠0)都是它的周期。
严格定义设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f (x+T)=f(x);则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。
如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
正弦函数图象编辑本段周期函数性质⑴若T(≠0)是f(X)的周期,则-T也是f(X)的周期。
⑵若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。
⑶若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。
⑷若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。
⑸若T1、T2是f(X)的两个周期,且是无理数,则f(X)不存在最小正周期⑹若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。
⑺周期函数f(X)的定义域M必定是至少一方无界的集合。
编辑本段判定定理1若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。
[1]证:∵T*是f(X)的周期,∴对有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C,∴K f(X)+C也是M上以T*为周期的周期函数。
假设T* 不是Kf(X)+C的最小正周期,则必存在T’(0<T’<T*)是K f(X)+C的周期,则对,有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X),∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C 的最小正周期。
同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。
定理2若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ n }上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。
证:先证是f(ax+b)的周期∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X)+b=ax+b ±T*∈M,且f[a(X+ T)+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。
再证是f(ax+b)的最小正周期假设存在T’(0<T’<;)是f(ax+b)的周期,则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b),因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数,∴aT’是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。
定理3设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。
证:设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x)∴f(g(x+T))=f(g(x))∴=f(g(x))是M1上的周期函数。
例1设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。
同理可得:⑴f(X)=Sin(cosx),⑵f(X)=Sin(tgx),⑶f(X)=Sin2x,⑷f(n)=Log2Sinx(sinx>0)也都是周期函数。
例2f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。
例3f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。
证:假设cos 是周期函数,则存在T>0使cos (k∈Z)与定义中T是与X无关的常数矛盾,∴cos 不是周期函数。
由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。
定理4设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。
证:设((p·q)=1)设T=T1q=T2p则有:有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。
同理可证:f1(X) 、f2(X)是以T为周期的周期函数。
定理4推论设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn 分别是它们的周期,若,… (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。
例4f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍数2π为周期的周期函数。
例5讨论f(X)= 的周期性解:2tg3 是以T1= 为最小正周期的周期函数。
5tg 是以T2 为最小正周期的周期函数。
tg2 是以T3= 为最小正周期的周期函数。
又都是有理数∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。
同理可证:⑴f(X)=cos ;⑵f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。
是周期函数。
定理5设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。
证先证充分性:若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又∈Q由定理4可得f1(x)与f2(x)之和、差、积是周期函数。
再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。
⑴设sina1x-cosa2x为周期函数,则必存在常数T>0,使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+)sin = -2sins(a2x+) sin ⑴。
令x= 得2cos(a1x+),则(K∈Z)。
⑵或C∈Z⑶又在⑴中令 2sin(a2x+)sin =-2sin =0由⑷由sin ⑸由上述⑵与⑶,⑷与⑸都分别至少有一个成立。
由⑶、(5得)⑹∴无论⑵、⑷、⑹中那一式成立都有a1/a2。
⑵设sinaxcosa2x为周期函数,则是周期函数。
编辑本段非周期函数的判定[1]⑴若f(X)的定义域有界例:f(X)=cosx(≤10)不是周期函数。
⑵根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
例:f(X)=cos 是非周期函数。
⑶一般用反证法证明。
(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
例:证f(X)=ax+b(a≠0)是非周期函数。
证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
例:证f(X)= 是非周期函数。
证:假设f(X)是周期函数,则必存在T(≠0)对,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使对,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T 有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。
复合函数目录依y=f(u),μ=φ(x)的增减性决定。
即“增增得增,减减得增,增减得减”,可以简化为“同增异减”判断复合函数的单调性的步骤如下:⑴求复合函数定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。
复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须将已知的所有条件加以转化。
求导复合函数求导的前提:复合函数本身及所含函数都可导法则1:设u=g(x)f'(x)=f'(u)*g'(x)法则2:设u=g(x),a=p(u)f'(x)=f'(a)*p'(u)*g'(x)例如:1、求:函数f(x)=(3x+2)^3+3的导数设u=g(x)=3x+2f(u)=u^3+3f'(u)=3u^2=3(3x+2)^2g'(x)=3f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^22、求f(x)=√[(x-4)^2+25]的导数设u=g(x)=x-4,a=p(u)=u^2+25f(a)=√af'(a)=1/(2√a)=1/{2√[(x-4)^2+25]}p'(u)=2u=2(x-4)g'(x)=1f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25]目录定义分段函数;对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.类型1、分界点左右的数学表达式一样,但单独定义分界点处的函数值(例1)2、分界点左右的数学表达式不一样(例2)例子例1 某商场举办有奖购物活动,每购100元商品得到一张奖券,每1000张奖券为一组,编号为1号至1000号,其中只有一张中特等奖,特等奖金额5000元,开奖时,中特等奖号码为328号,那么,一张奖券所得特等奖金y元与号码x号的函数关系表示为0 ,x≠328y={ 5000, x=328例2 某商店卖西瓜,一个西瓜的重量若在4kg以下,则销售价格为0.6元/kg;若在4kg 或4kg 以上,则销售价格为0.8元/kg,那么,一个西瓜的销售收入y元与重量xkg的函数关系表示为0.6x 0〈x〈4y={ 0.8x, x≥4分段函数题型由于课本没有明确给出分段函数的定义,只以例题的形式出现,不少学生对它认识肤浅模糊,以致学生解题常常出错。