《10.2黄金分割》教案备课
- 格式:doc
- 大小:15.21 KB
- 文档页数:3
黄金分割教案设计第一章:黄金分割的定义与历史1.1 黄金分割的定义1.2 黄金分割的历史发展1.3 黄金分割在各领域的应用第二章:黄金分割的数学原理2.1 黄金分割比的计算方法2.2 黄金分割与斐波那契数列的关系2.3 黄金分割与几何图形的构造第三章:黄金分割在艺术设计中的应用3.1 黄金分割在绘画艺术中的应用3.2 黄金分割在建筑设计中的应用3.3 黄金分割在时尚设计中的应用第四章:黄金分割在自然界的体现4.1 黄金分割在植物生长中的应用4.2 黄金分割在动物身体结构中的应用4.3 黄金分割在其他自然现象中的体现第五章:黄金分割在日常生活中的应用5.1 黄金分割在摄影中的应用5.2 黄金分割在室内装饰中的应用5.3 黄金分割在时间管理中的应用第六章:黄金分割在音乐领域的应用6.1 黄金分割与音乐节奏的关系6.2 黄金分割在乐曲结构中的应用6.3 黄金分割在乐器设计中的应用第七章:黄金分割在文学创作中的应用7.1 黄金分割与诗歌韵律的关系7.2 黄金分割在小说叙事结构中的应用7.3 黄金分割在剧本创作中的应用第八章:黄金分割在科技领域的应用8.1 黄金分割在光学仪器设计中的应用8.2 黄金分割在电子产品的布局中的应用8.3 黄金分割在算法优化中的应用第九章:黄金分割在心理学和营销领域的应用9.1 黄金分割在视觉感知中的应用9.2 黄金分割在产品包装设计中的应用9.3 黄金分割在广告创意中的应用第十章:黄金分割的实际操作与创意实践10.1 黄金分割在个人艺术作品中的应用10.2 黄金分割在团队项目中的应用10.3 黄金分割在创新设计中的探索与实践重点和难点解析一、黄金分割的定义与历史重点:黄金分割的概念理解,黄金分割的历史背景和文化意义。
难点:黄金分割比的数学表达和计算方法。
二、黄金分割的数学原理重点:黄金分割比的基本数学原理,斐波那契数列与黄金分割的关系。
难点:黄金分割在几何图形中的应用和构造方法。
2019-2020学年八年级数学下册《10.2黄金分割》教案 苏科版 姓名 学号 班级 教者 课题10.2黄金分割 课型 备课组成员主备 审核 教学目标1、在应用中进一步理解线段的比、成比例线段,了解黄金分割、黄金矩形、黄金三角形的意义。
2、会找出一条线段的黄金分割点,找出一个图形中的黄金分割点。
重 点黄金分割的意义。
难 点 怎样找一条线段的黄金分割点或在一个图形中找出黄金分割点。
学习过程 旁注与纠错一、课前预习与导学 1、(1)如图所示,若点C 是AB 的黄金分割点,AB =1,则AC ≈____BC ≈_____;(2)一条线段的黄金分割点有____个。
2、若线段AB =4cm ,点C 是线段AB 的一个黄金分割点,则AC 的长为多少?(结果保留四个有效数字)3、如图所示的五角星中,AD =BC ,且C 、D 两点都是AB 的黄金分割点,AB =1,求CD 的长。
一、探索新知点B 把线段AB 分成两部分,如果ABBC AC AB =,那么线段AC 被点B 黄金分割。
(有一种通俗的说法是:小段与大段的比=大段与线段全长的比) 点B 为线段AC 的黄金分割点。
AB 与AC 的比值为215-,大约为0.618,这个比值称做黄金比。
一个矩形,如果它的两条边长度的比值约为0.618,这种矩形称做黄金矩形尝试:1.作顶角为036的等腰三角形ABC2.分别量出底边BC 与腰AB 的长度3.作B ∠的平分线,交AC 于点D ,量出BCD ∆的底边CD 的长度。
并分别求出ABC ∆与BCD ∆的底边与腰的长度的比值(精确到0.001)此时比值是多少?(大约是0.618)D C B A我们把顶角为o36的三角形称为黄金三角形。
它具有如下的性质: (1)618.0≈ABBC (2)设BD 是ABC ∆的底角的平分线,则BCD ∆也是黄金三角形,且点D 是线段AC 的黄金分割点(3)如再作C ∠的平分线,交BD 于点E ,则CDE ∆也是黄金三角形,如此继续下去,可得到一串黄金三角形。
《黄金分割》教案教案:《黄金分割》一、教学目标:1.了解黄金分割的概念和原理;2.掌握黄金分割的计算方法;3.认识黄金分割在美术设计中的应用。
二、教学内容:1.黄金分割的概念和原理;2.黄金分割的计算方法;3.黄金分割在美术设计中的应用。
三、教学过程:Step 1:导入新课教师出示一张钟摆的图片,引导学生观察钟摆,并思考为什么钟摆的摆动会显得和谐美观。
Step 2:学习黄金分割的概念和原理1.教师向学生介绍黄金分割的概念,即将一个整体分为两个部分,使得大部分与小部分之比等于整体与大部分之比。
2.通过示意图和事例,向学生解释黄金分割的原理,即大部分与小部分之比等于黄金分割比例1.618Step 3:学习黄金分割的计算方法1.教师向学生提供一个直线段AB,并指导学生使用黄金分割比例计算中点C的位置。
2.教师以示例的形式,演示黄金分割的计算方法,即将整体长度除以黄金分割比例1.618Step 4:黄金分割在美术设计中的应用1.教师向学生展示一些美术作品,解释其中使用到黄金分割的原因和效果。
2.教师指导学生设计一个简单的海报或画作,其中要运用黄金分割比例来布局。
3.学生开始个别或小组创作,教师给予必要的指导和建议。
4.学生展示创作成果,互相欣赏和评价。
四、教学方法和学法:1.教学方法:导入新课、讲授、示范、实践。
2.学法:观察、思考、尝试、合作、展示。
五、教学资源与评价:1.教学资源:钟摆图片、黄金分割示意图、美术作品图片、美术用品。
2.教学评价:观察学生的学习兴趣和参与度、作品的创意和布局是否符合黄金分割原理。
六、教学延伸:1.教师可引导学生进一步观察和研究其他事物中是否存在黄金分割;2.学生可以通过阅读相关资料,了解黄金分割在建筑、音乐等领域的应用。
七、教学反思:本节课通过导入新课和示范实践的方式,让学生了解和掌握了黄金分割的概念、原理和计算方法,并将其应用于美术设计中。
同时,通过学生的创作展示,培养了学生的审美能力和创造力。
10.2 黄金分割教案【点拔·导学】学习目标:理解黄金分割的定义;会找一条线段的黄金分割点.学习重点:找一条线段的黄金分割点. 难点: 找黄金分割点和画黄金矩形.学法指导:【温故·知新】1.已知线段a =2,b =6,c =3,线段b 是a 和c 的比例中项吗?为什么?2.数12与3的比例中项是 .【探究·研讨】1.动手量一量,并算一算书85页两幅彩图相关线段的比值.2.生活中我们见到过许许多多的图形,形态各异,美观大方.下图是一个五角星图案,在五角星图案中,用刻度尺分别度量线段AC 、BC 的长度,然后计算AB AC 与ACBC ,它们的值相等吗?3.归纳:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割, 点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 其中AB AC =215-≈0.618.4.古希腊时期的巴台农神庙,把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,BCAB BE BC =,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?因为四边形AEFD 是正方形,所以AD=BC=AE,又因为BC AB BE BC =,所以AEAB BE AE =,即C B AAEBE AB AE ,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比.这个矩形叫做黄金矩形.探索:请问矩形BCFE 是否是黄金矩形?请说明你的结论的正确性.【应用·巩固】1.已知C 是线段AB 的黄金分割点.如果A C :AB ≈0.618,那么BC :AC ≈ , BC:AB ≈ .(结果保留3个有效数字)2.若M 、N 是线段AB 上的两个黄金分割点,且AB=1㎝,则MN ≈ ㎝.(精确到0.001)3.如图,在等腰三角形ABC 中,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的角平分线,BD 、CE 相交于点O,则图中的黄金三角形有( )(A )3个 (B )4个 (C )5个 (D )6个 【反思·小结】到此你已经学到了什么?你能记住该了吗?【测试·反馈】1.如下图,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式 ,即AP 是________与________的比例中项.2.黄金矩形的宽与长的比大约为 (精确到0.001)3.以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如右图(1)求AM 、DM 的长. (2)求证:AM 2=AD ·DM.(3)根据(2)的结论你能找出图中的黄金分割点吗?【迁移·提高】【体会·感想】OE D B C AB P A。
黄金分割说课稿一.说教材:1. 《黄金分割》在教材中的地位和作用《黄金分割》是苏科版8年级数学下册第十章《图形的相似》第2节的内容。
本章是继图形的全等之后集中研究图形形状的内容,它与前后有关几何部分的内容都有着密切的关系,是对图形全等内容的进一步拓广与发展。
《黄金分割》这一节内容通过建筑、艺术等方面的实例让学生进一步体会数学与自然及人类社会的密切联系,感受数学的巨大社会价值,充分认识学习数学的必要性。
2.教材处理:我认为教材这一节的内容安排非常合理,在教学中我不想作大的改变,只是在情境引入和黄金分割的应用价值方面多花些时间,以加深学生的黄金分割的感悟。
3.教学目标设计:(1)教学知识点:①了解黄金分割、黄金矩形、黄金三角形的意义,②会找一条线段的黄金分割点,感受黄金分割的美。
③由黄金分割进一步理解线段的比、成比例线段,感悟数学与生活的联系,会用黄金分割来解决一些问题。
(2)能力训练要求:通过找一条线段的黄金分割点,培养学生的理解与动手能力。
.(3)情感与价值观要求:理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,感受数学的巨大社会价值,充分认识学习数学的必要性。
4.重点:了解黄金分割的意义及其应用.难点:用黄金分割来解决实际问题。
二、说学生:初二学生已经具备了一定的学习能力,对新鲜事物仍特别敏感,且较易接受,所以我认为本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究。
让他们进一步感受数学在生活中的应用价值,认识学习数学的必要性。
三、说教法和学法:教法:演示法、启发式、讨论法、归纳法学法:动手操作法、合作交流法、练习法四、课前准备:制作多媒体课件,搜集有关黄金分割的资料。
五、说教学过程设计(一)、情境引入:情境1、一枝粉笔多长最好?这是我们身边的问题,每枝粉笔都要丢掉一段一定长的粉笔头,单就这一点来说,愈长愈好.但太长了,使用起来既不方便,而且容易折断,每断一次,必然多浪费一个粉笔头,反而不合适.因而就出现了“粉笔多长最合适”的问题,那么,粉笔多长最好呢?(此处学生讨论)再问:这个结论是怎样得到的呢?运用今天所学的数学知识可以解决这个问题!情境2:五粮液的故事(教师讲述,多媒体字幕显示)我想讲的故事如下:1972年,有外商提出,希望能销售五粮液低度酒。
《黄金分割》教案一、教学目标:1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感知,培养学生的审美情趣。
二、教学内容:1. 黄金分割的定义及历史背景。
2. 黄金分割线的画法及应用。
3. 黄金分割在生活中的实例分析。
三、教学重点与难点:1. 黄金分割的概念及画法。
2. 黄金分割在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解黄金分割的概念、历史背景及应用。
2. 采用案例分析法,分析生活中的黄金分割实例。
3. 采用实践操作法,让学生动手画黄金分割线,提高实际应用能力。
五、教学过程:1. 导入新课:通过展示著名的黄金分割作品,引发学生对黄金分割的好奇心,激发学习兴趣。
2. 知识讲解:讲解黄金分割的定义、历史背景及画法,让学生掌握基本知识。
3. 案例分析:分析生活中的黄金分割实例,让学生了解黄金分割在现实生活中的应用。
4. 实践操作:让学生动手画黄金分割线,提高实际应用能力。
6. 板书设计:黄金分割1. 定义:线段分割的比例,使较长线段与整体线段的比等于较短线段与较长线段的比。
2. 画法:通过特定方法画出黄金分割线。
3. 应用:生活中的黄金分割实例分析。
六、教学评价:1. 课后作业:要求学生绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 同伴评价:学生之间互相评价对方的作品,从黄金分割的应用和创意等方面进行评价。
七、课后作业:1. 绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 收集生活中的黄金分割实例,下节课分享。
八、教学反思:1. 课堂节奏是否适中,学生是否能跟上教学进度。
2. 教学方法是否有效,学生是否能更好地理解和掌握黄金分割的知识。
3. 学生参与度如何,是否都能积极投入到课堂活动中。
黄金分割教学教案一、教学目标1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感受,培养审美情趣。
二、教学内容1. 黄金分割的定义和比例计算。
2. 黄金分割在自然界和生活中的应用。
3. 黄金分割在艺术创作中的意义。
三、教学重点与难点1. 黄金分割的概念和计算方法。
2. 黄金分割在实际应用中的理解。
四、教学方法1. 采用讲授法,讲解黄金分割的定义、计算和应用。
2. 运用案例分析法,分析黄金分割在自然界和生活中的实例。
3. 启发式教学,引导学生发现黄金分割的美学价值。
五、教学准备1. 课件、图片和实物道具。
2. 练习题和案例分析材料。
六、教学过程1. 引入黄金分割的概念,讲解黄金分割的计算方法。
2. 分析黄金分割在自然界中的实例,如植物、动物的身体比例。
3. 探讨黄金分割在生活中的应用,如建筑、设计、时尚等领域。
4. 引导学生发现黄金分割在艺术创作中的美学价值,如绘画、雕塑、音乐等。
5. 布置练习题,巩固所学知识。
七、课堂互动1. 提问环节:让学生回答黄金分割的概念和计算方法。
2. 小组讨论:分组讨论黄金分割在自然界和生活中的实例。
3. 分享环节:各小组代表分享讨论成果。
八、教学评价1. 课堂问答:评估学生对黄金分割知识的掌握。
2. 练习题:检验学生运用黄金分割解决实际问题的能力。
3. 课后作业:布置相关课题的绘画或设计作品,展示学生对黄金分割的理解和应用。
九、教学拓展1. 引导学生进一步研究黄金分割在数学、物理学、生物学等领域的应用。
2. 组织参观展览或艺术家工作室,深入了解黄金分割在艺术创作中的应用。
十、教学反思2. 根据学生反馈,调整教学内容和方法,提高教学质量。
3. 探索更多黄金分割在各个领域的应用,丰富教学资源。
六、教学活动1. 引入黄金分割的概念,讲解黄金分割的计算方法。
通过展示相关图片和实物道具,引导学生直观地理解黄金分割的概念。
C B A 数学初二下苏科版10.2黄金分割教案学习目标 1、在应用中进一步理解线段的比、成比例线段,了解黄金分割、黄金矩形、黄金三角形的意义。
2、会找出一条线段的黄金分割点,找出一个图形中的黄金分割点。
学习重点 黄金分割的意义。
学习难点 怎么样做一条线段的黄金分割点或在一个图形中找出黄金分割点。
教学流程预习导 航 1、如图的五角星中,AC AB 与BC AC的关系是() A 、相等B.AC AB >BC AC C.AC AB <BC AC D 、不能确定 2、〔1〕如图,假设点C 是AB 的黄金分割点,AB=1,那么AC=_______,BC=______.〔2〕一条线段的黄金分割点有个。
3.如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,假设舞台AB 长为20m ,试计算主持人应走到离A 点至少多少m 处是比较得体的位置?〔结果精确到0.1m 〕合作探究【一】新知探究:1.我们都见过电冰箱吧,你们最常见到的冰箱一般基本上什么形状的啊?把一个冰箱作成正方形,请看看它和往常的相比哪个更美观有用啊?2.把书上10-2中的矩形ABCD 的长AB 与宽BC 画在同一条直线上〔如图10-3〕所示,如今点B 把线段AB 分成两部分,假如ABBC AC AB =,那么线段AC 被点B 黄金分割。
〔有一种通俗的说法是:小段与大段的比=大段与线段全长的比〕点B 为线段AC 的黄金分割点。
AB 与AC 的比值为215-,大约为0.618,那个比值称做黄金比。
关于一个矩形,假如它的两条边长度的比值约为0.618,这种矩形称做黄金矩形,“黄金分割”给人以美的感受,用数学的眼光看事物,不难发明生活中存在着大量的黄金分割。
3.一条线段的黄金分割点有几个?4.你能举出生活中具有黄金分割的实际例子吗?请与同学们交流。
一、 例题分析:例1:假设线段AB=4cm ,点C 是线段AB 的一个黄金分割点,那么AC 的长为多少?C B A方法点拨:点C 把线段AB 分成两条线段AC 和BC ,假如ACBC AB AC =,那么称线段被点C 黄金分割〔goldensection 〕,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,AC ∶AB=215-∶1≈0、681∶1。
黄金分割教案教案题目:黄金分割教案目标:1.了解黄金分割的定义和原理;2.掌握黄金分割的计算方法;3.培养学生的审美能力和艺术鉴赏能力。
教学重点:1.黄金分割的概念和原理;2.黄金分割的计算方法。
教学难点:1.培养学生的审美能力和艺术鉴赏能力;2.理解黄金分割的原理。
教学准备:1.计算器;2.黄金分割的相关教学图片。
教学过程:Step 1:导入新知识(5分钟)通过展示一张黄金分割的例图,提问学生是否觉得该图看起来很美观,引导学生思考美学与黄金分割的关系。
Step 2:讲解黄金分割的原理(15分钟)1.向学生介绍黄金分割的概念,即将一段线段分为两部分,使整段线段与其中一部分的比例等于其中一部分与另一部分的比例,这个比例约为1:0.618。
2.解释黄金分割的原理,即黄金分割点的位置是一种具有视觉和美学上的平衡和和谐感。
Step 3:计算黄金分割(15分钟)1.向学生演示如何计算黄金分割,即将一段线段的长度乘以0.618,得到黄金分割点的位置。
2.让学生自己计算一些线段的黄金分割点。
Step 4:艺术鉴赏(15分钟)通过展示一些著名艺术作品,引导学生分析其中是否存在黄金分割,并让学生讨论这些作品是否看起来很美观。
Step 5:总结与拓展(5分钟)总结黄金分割的概念、原理和计算方法,并鼓励学生在日常生活中观察和欣赏黄金分割的存在。
教学方法:1.讲解法:通过向学生讲解黄金分割的概念、原理和计算方法;2.示范法:向学生演示如何计算黄金分割;3.讨论法:引导学生讨论艺术作品中的黄金分割。
教学评估:1.课堂讨论:根据学生的回答和讨论情况,评估学生对黄金分割的理解程度;2.作业检查:布置相关作业,检查学生对黄金分割的计算方法的掌握情况。
板书设计:黄金分割教案黄金分割的定义和原理:- 将一段线段分为两部分,使整段线段与其中一部分的比例等于其中一部分与另一部分的比例;- 黄金分割点位置具有视觉和美学上的平衡和和谐感。
年月日
一、情境导入
1.图片欣赏(实例引入)如:上某某方明珠、芭蕾舞、正五角星等我们觉得这些建筑、图案等匀称美观,大家知道为什么吗?(这是因为有一个点叫黄金分割点,意思是说分割的比例像黄金一样珍贵.)
二、讲授新课
在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算
AB AC 、AC
BC
,它们的值相等吗?(学生也可利用课本p109上的五角星) 1.黄金分割的定义
在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果
AC
BC
AB AC
,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金
分割点,AC 与AB 的比叫做黄金比.其中
AB AC
=2
1—5≈0.618. 请大家想一想,这个比例式还有其他表示方法吗?
可表示为:AC 2
=BC ×AB.根据这个表达式,你能用自己的语言描述一下黄金分割的定义吗?(突出AC 是AB 、BC 的比例中项)
2.生活中我们见到过许许多多的图形,形态各异,
美观大方.那么这些漂亮的图形你能画出来吗?比
如,右图是一个五角星图案,如何找点C 把AB 分
=
AB 2
教学后记。
《黄金分割》教案一、教学目标1、知识与技能目标(1)理解黄金分割的定义,能准确找出黄金分割点。
(2)掌握黄金分割比的数值,并能进行简单的计算。
(3)了解黄金分割在生活中的应用,提高学生的数学应用意识。
2、过程与方法目标(1)通过观察、计算、推理等活动,培养学生的探究能力和逻辑思维能力。
(2)经历黄金分割的发现和探究过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)感受黄金分割的美,激发学生对数学的兴趣和热爱。
(2)通过了解黄金分割在生活中的广泛应用,体会数学与生活的紧密联系,增强学生的应用意识和创新意识。
二、教学重难点1、教学重点(1)黄金分割的定义及黄金分割比的计算。
(2)黄金分割在实际生活中的应用。
2、教学难点(1)理解黄金分割的本质,能准确找出黄金分割点。
(2)灵活运用黄金分割解决实际问题。
三、教学方法讲授法、探究法、讨论法、演示法四、教学过程1、导入新课(1)展示一些具有美感的图片,如建筑、艺术作品等,引导学生观察并思考这些图片中美的共同特点。
(2)提出问题:为什么这些图片会给人一种美的感受?是否存在某种数学规律在其中?2、讲授新课(1)黄金分割的定义通过一个简单的几何图形,如线段,引入黄金分割的概念。
在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果AC/AB = BC/AC,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AC 与 AB 的比值约为 0618,这个比值称为黄金分割比。
(2)黄金分割比的计算设线段 AB 的长度为 1,点 C 为黄金分割点,AC 的长度为 x,则BC 的长度为 1 x。
根据黄金分割的定义可得:x/1 =(1 x)/x解方程可得:x =(√5 1)/2 ≈ 0618(3)黄金分割在几何图形中的应用①展示一些常见的几何图形,如矩形、三角形等,引导学生找出其中的黄金分割点和黄金分割比。
②以矩形为例,讲解如何通过黄金分割比来绘制一个具有美感的黄金矩形。
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
黄金分割课型:新授一、学习目标1、在应用中进一步理解线段的比、成比例线段,了解黄金分割、黄金矩形、黄金三角形的意义.2、会找出一条线段的黄金分割点,找出一个图形中的黄金分割点.二、学习重点:黄金分割、黄金矩形、黄金三角形的定义,会找出黄金分割点。
三、学习难点:探究黄金分割点。
四、学习过程: (一)活动一:观察课本P84—习题10.1第4题给出的一组矩形,你最喜欢哪个矩形?并与同学相互交流,选择大多数同学喜欢的那一个矩形,量出它的宽和长,并求出宽与长的比. 长方形的宽________,长______,宽:长=_________ (二)活动二自学课本p85—87,回答下列问题:1、 请通过度量求出图中芭蕾舞演员和上海东方明珠电视塔中线段AB 与AC 的比值. 芭蕾舞演员:AB:AC=_______;东方明珠:AB :AC=__________2、当点C 把线段AB 分成两条线段AC 和BC ,满足____________时,我们称线段AB 被点C 黄金分割,点C 叫做______________.当AC>BC 时,__________叫做黄金比,它约等于__________. (三)活动三1、请在右边空白处作顶角为036的等腰三角形ABC2、量出底边BC 与腰AB 的长度,求出ABC ∆的底边与腰的长度的比值(精确到0.001)黄金三角形:顶角为______°的_________三角形称为____________ 3、作B ∠的平分线,交AC 于点D ,量出BCD ∆的底边CD 的长度。
黄金分割教案范例讲解第一章:黄金分割的概念与历史1.1 黄金分割的定义引导学生了解黄金分割的概念,即一条线段分割成两部分,使得整体长度与较长部分的长度之比等于较长部分的长度与较短部分的长度之比,这个比值约为1:1.618。
1.2 黄金分割的历史渊源介绍黄金分割在古希腊、古埃及等文明中的运用,以及其在艺术、建筑、自然界中的广泛存在。
第二章:黄金分割在艺术中的应用2.1 黄金分割与绘画通过分析名画作品,如达芬奇的《蒙娜丽莎》等,引导学生发现艺术家如何运用黄金分割来创造视觉平衡和美感。
2.2 黄金分割与音乐探讨黄金分割在音乐创作中的应用,如乐曲的结构、旋律的起伏等。
第三章:黄金分割在建筑中的运用3.1 古代建筑中的黄金分割分析古希腊神庙、埃及金字塔等古代建筑中的黄金分割比例,以及这些建筑的美学价值。
3.2 现代建筑中的黄金分割介绍现代建筑设计师如何运用黄金分割创造和谐的视觉效果,如巴黎圣母院、纽约世贸中心等。
第四章:黄金分割在自然界中的体现4.1 植物世界的黄金分割引导学生观察植物的叶序、花朵的排列等自然界中的黄金分割现象。
4.2 动物世界的黄金分割探讨动物身体比例、迁徙路线等方面的黄金分割应用。
第五章:黄金分割的实际应用5.1 黄金分割与设计引导学生了解黄金分割在平面设计、广告设计等领域的应用,如版面布局、图像组合等。
5.2 黄金分割与时尚分析黄金分割在服装设计、珠宝首饰设计等方面的应用。
第六章:黄金分割与数学之美6.1 黄金分割与斐波那契数列引导学生了解斐波那契数列与黄金分割之间的关系,探讨斐波那契数列在自然界中的广泛存在。
6.2 黄金分割与几何图形分析黄金分割在各种几何图形中的应用,如正五边形、黄金矩形等。
第七章:黄金分割与心理学7.1 黄金分割与视觉感知探讨黄金分割在视觉艺术中的心理效应,如视觉焦点、平衡感等。
7.2 黄金分割与审美观念分析黄金分割如何影响人们的审美观念,以及它在设计中的应用。
黄金分割教案姓名 班级 课题 学号 10.2黄金分割[教案]课型 新授 教者时间 第十章第3课时 教学目标 重点 难点 学习过程 一、课前预习与导学 1、 在应用中进一步理解线段的比、 成比例线段,了解黄金分割、黄金矩形、 黄金三角形的意义。
2、 会找出一条线段的黄金分割点,找出一个图形中的黄金分割点。
黄金分割的意义。
怎样找一条线段的黄金分割点或在一个图形中找出黄金分割点。
旁注与纠错 1、如图所示的五角星中, A •相等 AC BC BAB >ACC. AC v AC D 不能确定 AC BC AB 与AC 的关系是AB = 1,贝U AS _____ BS 如图所示,若点 C 是AB 的黄金分割点, (2) —条线段的黄金分割点有 ____个。
3、 若线段AB = 4cm ,点C 是线段AB 的一个黄金 分割点,则AC 的长为多少?(结果保留四个有效数字) 4、 如图所示的五角星中, AD = BC,且C 、D 两点都是 AB = 1,求 CD 的长。
一、课题引入,激发学习兴趣 请同学们欣赏以下两幅图片 2、( 1) 1、 AB 的黄金分割点, B (1) 图(2) (1)调查并统计学生最喜欢一组矩形中的哪一个?( (2欣赏芭蕾舞演员身体各部分之间适当的比例与人以匀称、 上海东方明珠塔体的挺拔秀丽。
引人课题:黄金分割 二、探索新知 1•我们都见过电冰箱吧,你们最常见到的冰箱一般都是什么形状的? 形)请看屏幕,如果老师把一个冰箱作成正方形,请同学们看看它和以前的 相比哪个更美观实用呢?(学生判断感觉还是长方形好看。
2•根据提供的一系列的数值计算出冰箱门宽与长的比值。
3•书上P86页上方也有一个类似的图形,请同学们量出线段 值,算算大约是多少? 4•把书上10-2中的矩形ABCD 的长AB 与宽BC 画在同一条直线上(如图10-3) P84 T3) 协调的美感及(长方 BC 与AB 的比AB BC 所示,此时点B 把线段AB 分成两部分,如果 AC AB ,那么线段AC 被 点B 黄金分割。
黄金分割教学教案第一章:黄金分割的概念与历史1.1 黄金分割的定义解释黄金分割的概念,即一条线段分割成两部分,使得整体长度与较长部分的长度之比等于较长部分的长度与较短部分的长度之比,这个比值约为1:1.618。
1.2 黄金分割的历史渊源介绍黄金分割在古希腊数学、艺术和建筑中的应用,如帕台农神庙的立面和柱子的比例。
探讨黄金分割在中世纪和文艺复兴时期的艺术作品中的应用,如达芬奇的绘画和米开朗基罗的雕塑。
第二章:黄金分割在自然界中的应用2.1 黄金分割在植物中的体现分析植物的叶序、花朵和果实的形态中黄金分割的比例。
2.2 黄金分割在动物界的应用探讨动物身体比例、羽毛和鳞片的排列中黄金分割的存在。
第三章:黄金分割在艺术创作中的应用3.1 绘画中的黄金分割讲解如何在绘画中运用黄金分割来构图,创造美感。
3.2 雕塑中的黄金分割分析雕塑作品中黄金分割的比例如何影响视觉效果。
第四章:黄金分割在建筑设计中的应用4.1 古典建筑中的黄金分割探讨古希腊、古罗马建筑中黄金分割的应用,如柱式、立面和空间布局。
4.2 现代建筑中的黄金分割分析现代建筑设计师如何运用黄金分割创造和谐的建筑形态。
第五章:黄金分割在日常生活中的应用5.1 时尚与黄金分割讲解如何在服装设计和时尚配饰中运用黄金分割来提升美感。
5.2 黄金分割在摄影中的应用探讨摄影中如何利用黄金分割来构图,捕捉最佳的视觉效果。
第六章:黄金分割在音乐创作中的应用6.1 音乐作品的节奏与黄金分割分析如何将黄金分割比例应用于音乐作品的节奏和节拍中,以达到和谐的效果。
6.2 音乐结构的黄金分割探讨音乐家如何利用黄金分割来设计曲式结构,如交响曲、奏鸣曲等。
第七章:黄金分割在宇宙探索中的应用7.1 宇宙中的黄金分割介绍宇宙中天体、星系和宇宙法则中黄金分割的发现和应用。
7.2 黄金分割与相对论简述黄金分割如何在爱因斯坦的相对论中发挥作用,以及与宇宙时空结构的关系。
第八章:黄金分割在心理学和认知科学中的应用8.1 黄金分割与人类视觉感知讲解黄金分割如何影响人类的视觉感知,以及如何在视觉艺术中应用这一原理。
《10.2黄金分割》教案备课
教学目标
1.知识与技能目标:
(1)通过观察、分析、思考、画图、测量、计算、理性反思,了解黄金分割、黄金矩形、黄金三角形的意义;
(2)会找一条线段的黄金分割点,感受黄金分割的美,知道一条线段有两个黄金分割点;
(3)通过黄金分割进一步理解线段的比、成比例线段,感悟数学与生活的联系,会用黄金分割来解决一些问题。
2.过程与方法目标:
(1)通过找一条线段的黄金分割点、画黄金三角形,培养学生的动手能力。
(2)经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
3.情感、态度与价值观目标:
(1)理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,感受数学的巨大社会价值,充分认识学习数学的必要性。
(2)了解黄金分割在生产、生活、建筑、艺术、自然界、医学中的广泛应用的特点,在运用黄金分割表述和解决问题的过程中,体会黄金分割的价值。
(3)敢于发表自己的想法、提出质疑,养成独立思考、合作交流等学习习惯。
教材分析
教学内容:苏科版新课程实验教科书8年级下册85~88页《10.2 黄金分割》(共一课时)。
内容分析:“黄金分割”是公元前六世纪古希腊数学家毕达哥
拉斯所发现的。
后来古希腊美学家柏拉图将此称为黄金分割。
这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。
0.618,以严格的比例性、艺术性和谐性,蕴藏着丰富的美学价值。
本节课借助“黄金分割”这个题材,让学生经历借助图形思考问题的过程,初步建立几何直观。
学会独立思考,体会数形结合的基本思想;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
学情分析:该内容属于义务教育课程标准实验教材中8年级下
册的内容,学生在在此之前,学生们已经学习了线段的比、成比例线段、等腰三角形、特殊的等腰三角形(等边三角形)、矩形、分式、数的开方、算术平方根、近似数与有效数字等有关知识,这为过渡到本节课的学习起到了铺垫的作用;本节课的教学对象是8年级的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣.而且,在前面的学习中,学生已经历过探索
概念的形成过程,获得了初步的数学活动经验和体验.有了线段的比
和成比例线段的知识储备学生对黄金分割的定义理解不存困难. 8年级的学生尚未学过一元二次方程,所以对于黄金比知道即可.对于黄
金分割的作图,可以使用三角板、刻度尺以及量角器,对于尺规作图,由于前面所学的尺规作图方法有限,教材对用尺规作黄金分割点没作要求,因此,确定教学重难点如下:
教学重点:了解黄金分割的意义,认识黄金分割的文化艺术价值。
重点的依据:只有掌握了黄金分割的概念,才能理解和掌握黄金矩形概念、黄金三角形概念和性质;才能理解黄金分割的严格的比例性、艺术性、和谐性,感受其丰富的美学价值。
教学难点:黄金三角形概念和性质。
难点的依据:黄金三角形概念和性质是建立在学生能正确理解画图语句正确画图的基础之上的,一部分学生动手能力比较弱,黄金三角形的性质有别于一般等腰三角形,是黄金分割的应用与提升,较抽象;学生没有这方面的基础知识。
教学准备:1.教学之前用百度在网上搜索“黄金分割”的相关教学材料,找了很多资料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。
2.根据课堂教学需要,利用百度搜索在.kejian123.网找到有关“黄金分割”的多媒体课件(PPT),给学生直观上的感受,引发学生学习的积极性和探索欲望。