《电路的频率特性与谐振》
- 格式:pptx
- 大小:921.26 KB
- 文档页数:20
竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告篇一:RLc串联电路的幅频特性与谐振现象实验报告_-_4(1)《电路原理》实验报告实验时间:20XX/5/17一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的1.测定R、L、c串联谐振电路的频率特性曲线。
2.观察串联谐振现象,了解电路参数对谐振特性的影响。
1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即:Z?R?j(?L?1)?Zej??c三、实验原理当?L?1时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。
即?0?1Lc或f0?12?LcR无关。
图4-12.电路处于谐振状态时的特征:①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。
②电感电压与电容电压数值相等,相位相反。
此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q?uLuc?0L11ususR?0cRRc在L和c为定值时,Q值仅由回路电阻R的大小来决定。
③在激励电压有效值不变时,回路中的电流达最大值,即:I?I0?usR3.串联谐振电路的频率特性:①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图形称为串联谐振曲线。
电流与角频率的关系为:I(?)?us1??R2??L???c??2?us0??R?Q2?0??I00??1?Q2?0?2当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频特性曲线(图4-2)图4-2有时为了方便,常以?I为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I下降越厉害,电路的选择性就越好。
I0为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。
回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw??2?1??0?0由图4-3看出Q值越大,通频带越窄,电路的选择性越好。
电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。
2.了解欧姆档的使用方法。
3.了解校验电表的方法。
二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。
万用表的内部组成从原理上分为两部分:即表头和测量电路。
表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。
在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。
满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。
表头与各种测量电路连接就可以进行多种电量的测量。
通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。
本实验分别研究这些实验。
1.直流电流档多量程的分流器有两种电路。
图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。
这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。
最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。
因此多量程分流器都采用图1-2的电路,以避免上述缺点。
计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。
图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。
平山县职业教育中心教案首页编号:_10_号授课教师:___宋翠平_____授课时间:_5_月____步骤教学内容教学方法教学手段学生活动时间分配明确目标一、明确目标:教师解读学习目标二、引入任务1:在无线电技术中常应用串联谐振的选频特性来选择信号。
收音机通过接收天线,接收到各种频率的电磁波,每一种频率的电磁波都要在天线回路中产生相应的微弱的感应电流。
为了达到选择信号的目的,通常在收音机里采用如图1所示的谐振电路。
讲授(口述)演示启发提问讨论展示实物展示课件板书个别回答小组讨论代表发言7分钟操作示范一、教师讲解RLC串联电路谐振条件和谐振频率1、谐振条件——电阻、电感、电容串联电路发生谐振的条件是电路的电抗为零,即:0=-=CLXXX。
则电路的阻抗角为:。
φ=0说明电压与电流同相。
我们把RLC串联电路中出现的阻抗角φ=0,电流和电压同相的情况,称作串联谐振。
2、谐振频率——RLC串联电路发生谐振时,必须满足条件:教师示范课件演示教师提问课件板书演示学生抢答小组抢答10分钟分析上式,要满足谐振条件,一种方法是改变电路中的参数L或C,另一种方法是改变电源频率。
则,对于电感、电容为定值的电路,要产生谐振,电源角频率必须满足下式:谐振时的电压频率为:谐振频率f0仅由电路参数L和C决定,与电阻R的大小无关,它反映了电路本身的固有特性,f0叫做电路的固有频率。
合作学习任务2学生分析讨论试做下面习题:在电阻、电感、电容串联谐振电路中,L=0.05mH,C=200pF,品质因素Q=100,交流电压的有效值U=1mV,试求:(1)电路的谐振频率f0;(2)谐振时电路中的电流I0;(3)电容上的电压UC。
解:(1)电路的谐振频率为:f0=1/〔2π(LC)1/2〕= 1/〔2×3.14×(0.05×10-3×200×10-12)1/2〕≈1.59MHz(2)由于品质因素Q=(L/C)1/2/R 则R=(L/C)1/2/Q=(5×10-5/2×10-10)1/2/100=5Ω谐振时,电路中的电流为:I0=U/R=1×10-3/5=0.2mA(3)电容两端的电压是电源电压的Q倍:UC=QU=100×1×10-3=0.1V启发诱导重点讲解个别指导课件板书个人操作小组操作20分钟任务3学生分析讨论串联谐振电路的通频带实际应用中,既要考虑到回路选择性的优劣,又要考虑到一定范围内回路允许信号通过的能力,规定在谐振曲线上,所包含的频率范围叫做电路的通频带,用字BW表示,如图2所示。
第7章 电路的频响特性研究与综合本章提要:交流电路的另外一个特征是频率特性,包含幅频特性和相频特性。
本章通过串联谐振实验和RC 选频实验的训练,加深频率特性的认识,掌握相关频率特性实验技能的基本过程。
另外通过对实验综合研究的叙述,初步掌握设计综合实验的基本要领。
本章要求独立完成串联谐振实验和RC 选频实验的操作;熟练训练毫伏表的使用;启发和引导对电路课程整体知识的宏观认识和理解,提倡和鼓励学生参与设计与开发电路综合实验。
7.1 谐 振 电 路一、实验目的和技能要求本实验目的是:学习测定RLC 串联电路的谐振曲线,加深对串联谐振电路特点的了解;用实验方法测定电路谐振的品质因数;学习多用信号发生器和毫伏表的使用方法。
1、设计实际采用的测量线路及相关仪器仪表的接线图;2、阐述采用线路图的实验原理和必要的计算公式;3、拟定实验步骤,制作记录实验数据的表格或实验曲线的坐标;4、总结RLC 串联电路的测量方法,结合串联谐振的方案,能否再设计一个测量并联谐振的电路及相关的实验步骤,并制作记录实验数据的表格或实验曲线的坐标等。
二、实验设计的参考方案——谐 振 电 路 1、实验原理与方法设计1).串联谐振的条件串联谐振的条件为X=X L +X C =0,即CL ωω1=式中,f πω2=。
因此,要实现串联谐振,可以通过调整L 、C 和ω来达到目的。
本实验中,我们把L 、C 固定,利用调整ω的方法使电路发生谐振。
串联谐振的实现,理论上只要L 、C 串联即可,本实验中另串联电阻R ,一方面是为了限制谐振时电流不要太大,另一方面也可测量其端电压,判断电路的谐振状态,同时可以方便地计算出电路的电流。
2).判断电路的谐振状态当电源电压的频率改变时,I (或U R )、U L 、U C 都是频率的函数,其曲线如图7-1-1所示。
随着电源频率的改变,在X L =X C ,即CL ωω1=时电路呈谐振状态,谐振频率为f 0(0f =LCπ21 )。
电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。
2.了解欧姆档的使用方法。
3.了解校验电表的方法。
二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。
万用表的内部组成从原理上分为两部分:即表头和测量电路。
表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。
在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。
满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。
表头与各种测量电路连接就可以进行多种电量的测量。
通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。
本实验分别研究这些实验。
1.直流电流档多量程的分流器有两种电路。
图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。
这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。
最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。
因此多量程分流器都采用图1-2的电路,以避免上述缺点。
计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。
图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。
实验五 RC 频率特性和RLC 谐振综合实验一、实验目的1、研究RC 串、并联电路及RC 双T电路的频率特性。
2、学会用交流毫伏表和示波器测定RC 网络的幅频特性和相频特性。
3、熟悉文氏电桥电路的结构特点及选频特性。
4、加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)、通频带的物理意义及其测定方法。
5、学习用实验方法绘制R 、L 、C 串联电路不同Q 值下的幅频特性曲线。
二、实验原理1、RC 串并联电路频率特性图5-1所示RC 串、并联电路的频率特性:)1j(31)j (ioRCRC UUN ωωω-+==其中幅频特性为:22io)1(31)(RCRC U U A ωωω-+==相频特性为:31arctg)(o RC RC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图5-2所示,幅频特性呈带通特性。
当角频率RC1=ω时,31)(=ωA ,︒=0)(ωϕu O 与u I 同相,即电路发生谐振,谐振频率RCf π210=。
也就是说,当信号频率为f 0时,RC 串、并联电路的输出电压uO 与输入电压u I 同相,其大小是输入电压的三分之一,这一特性称为RC 串、并联电路的选频特性,该电路又称为文氏电桥。
测量频率特性用…逐点描绘法‟,图5-3表明用交流毫伏表和双踪示波器测量RC 网络频率特性的测试图。
测量幅频特性:保持信号源输出电压(即RC 网络输入电压)U I 恒定,改变频率f ,用交流毫伏表监视U I ,并测量对应的RC 网络输出电压U O ,计算出它们的比值A =U O /U I ,图5-1图5-2然后逐点描绘出幅频特性;测量相频特性:保持信号源输出电压(即RC 网络输入电压)U I 恒定,改变频率f ,用交流毫伏表监视U I ,用双踪示波器观察u O 与u I 波形,如图5-4所示,若两个波形的延时为Δt ,周期为T ,则它们的相位差︒⨯∆=360Ttϕ,然后逐点描绘出相频特性。
RLC串联电路的幅频特性与谐振现象实验报告
RLC串联电路的幅频特性实验是在一定的RLC串联电路的构型,了解其特性的实验。
其中,RLC串联电路也可以理解为RC滤波器和L中反馈放大器的组合。
实验材料有示波器,可调电源,示波器探头,可调电容,可调变压器,电阻表等。
首先,实验者连接RLC串联电路,并根据实验要求调节电源和电容,调节变压器输出
或输出,调节电流。
然后,实验者根据实验要求检测RLC串联电路的输出波形,并分析其
特性,在幅频特性实验中,从谐振特性中可以看出。
当输出波形的最大值达到最大值时,
由于薛定谔方程的输出而产生谐振现象,在此情况下,调节电源和电容大小可以调节谐振
的最大值。
此外,RLC串联电路在一定的振荡或输入频率时,谐振波形的重整也可以检测到,它也可以调节谐振特性。
总之,RLC串联电路的幅频特性实验是通过调节电源大小和电容大小来检测其特性的
实验,并从谐振特性中检测出谐振现象,从而检测出精确的频率响应特性,调节和准确使
用RLC串联电路,可以应用在遥控、超声波、电动机和电子等多个领域。
电路谐振频率电路谐振频率是指在电路中产生共振现象时的频率。
共振是指当电路中的电感和电容满足一定条件时,电路中的电流和电压达到最大值的现象。
在谐振频率下,电路的阻抗最小,电流和电压的相位差为零。
电路谐振频率对于电子学和通信工程等领域具有重要的意义。
电路谐振频率的计算公式为:f = 1 / (2π√(LC)),其中f为谐振频率,L为电感,C为电容。
从公式可以看出,电感和电容的数值越大,谐振频率越小,反之亦然。
这是因为电感和电容分别控制了电路中的感性和容性元素,它们的数值决定了电路的振荡特性。
电路谐振频率的应用广泛,例如在无线通信中,天线的谐振频率需要与发射信号的频率匹配,以保证信号的传输效果。
此外,在电子滤波器中,通过调整电感和电容的数值,可以选择不同的谐振频率,实现对特定频率分量的滤波作用。
在实际电路中,谐振频率还受到电路的阻抗和频率特性的影响。
电路的阻抗是由电感、电容和电阻共同决定的,它们对电流和电压的相位关系产生影响。
在电路谐振频率附近,电路的阻抗呈现纯电感或纯电容的特性,阻抗最小,电流和电压相位差为零。
而在谐振频率两侧,阻抗会逐渐增大,电流和电压的相位差也会增大。
谐振频率的调节可以通过改变电感或电容的数值来实现。
在实际应用中,可以通过调整电感的线圈数目、截面积或电容的数值等来改变谐振频率。
此外,还可以通过串联或并联电感、电容来实现谐振频率的调节。
电路谐振频率是电路中产生共振现象时的频率。
它对于电子学和通信工程等领域具有重要的意义。
电路谐振频率的计算公式为f = 1 / (2π√(LC)),通过调整电感和电容的数值可以实现对谐振频率的调节。
谐振频率的应用广泛,例如在无线通信中的天线设计和电子滤波器中的频率选择等。
了解和掌握电路谐振频率的概念和计算方法,对于电子工程师和通信工程师来说是非常重要的。
电路的谐振知识点总结一、谐振的概念谐振是指当一个物体受到外部的周期性作用力时,产生的振动频率与外力频率相同的现象。
在电路中,谐振是指当电路中的电感和电容元件与外部的交流电源频率相同时,电路呈现出大幅度的振荡现象。
二、谐振的条件1. 电路中需要包含电感和电容元件。
在电路中,电感元件和电容元件是谐振的基础。
电感元件是由线圈等组成,具有储存能量的特性。
而电容元件是由两个导体之间的绝缘物质组成,具有储存电荷的特性。
通过电感和电容的组合,可以构建出能够产生谐振现象的电路。
2. 电路中需要有交流电源作为激励信号。
在谐振电路中,交流电源是谐振的激励信号。
只有当外部交流电源的频率与电路中的谐振频率一致时,电路才能呈现出谐振现象。
三、谐振的分类1. 串联谐振电路串联谐振电路是由电感元件、电容元件和交流电源串联而成的电路。
在串联谐振电路中,电感和电容元件的等效电阻为0,电路中的阻抗呈现出最小值,电压和电流呈现出峰值。
2. 并联谐振电路并联谐振电路是由电感元件、电容元件和交流电源并联而成的电路。
在并联谐振电路中,电感和电容元件的等效电阻为无穷大,电路中的电流呈现出最小值,阻抗呈现出最大值。
四、谐振的频率在谐振电路中,谐振的频率是指使电路呈现出谐振现象的特定频率。
谐振频率与电感和电容元件的参数有关,可以通过以下公式计算:f=1/2π√(LC)其中,f表示谐振频率,L表示电感元件的电感值,C表示电容元件的电容值,π表示圆周率。
五、谐振的特性1. 电路阻抗的变化在串联谐振电路中,当频率与谐振频率相同时,电路中的阻抗呈现出最小值。
而在并联谐振电路中,当频率与谐振频率相同时,电路中的阻抗呈现出最大值。
2. 电压和电流的特性在串联谐振电路中,当频率与谐振频率相同时,电压呈现出峰值,电流也呈现出峰值。
而在并联谐振电路中,当频率与谐振频率相同时,电压呈现出最小值,电流也呈现出最小值。
3. 能量的传递在谐振电路中,能量的传递是通过电感和电容元件之间的振荡来实现的。
高考电学实验教案:研究振荡电路中的谐振频率一、实验目的1、通过实验研究振荡电路中的谐振频率和振幅等特性,并应用本学期所学的电学原理予以解释。
2、通过实验掌握测量电路中电容、电感的方法和技巧。
二、实验原理1、LC振荡电路LC振荡电路是一种能够产生稳定的交流电压和交流电流的电路,它由电感L与电容C组成。
当电路中有电感和电容时,它可以形成一个谐振回路。
在谐振的情况下,电路中的电压和电流随时间变化呈正弦曲线,频率称为谐振频率。
2、谐振频率当LC谐振电路中电感L和电容C的参数满足以下公式时,电路会发生谐振:f=1/2π*√LC其中f为谐振频率,单位为赫兹。
当电路在谐振状态下,电流和电压幅值达到最大值,谐振电路的特性电阻为零,整个电路看作是无阻抗的,电流不受外界干扰,可以长时间保持稳定。
三、实验仪器和材料1、LC振荡电路实验装置;2、电容、电感、数值万用表、示波器等实验仪器;3、万用表测试线、电源线、插头线等实验材料。
四、实验步骤1、搭建实验电路接通电源,将LC振荡电路实验装置组成一个振荡电路,测试电容和电感的值。
接线如图所示。
(图片)其中R1、R2为可调电阻,可用于调节振荡电路的频率。
2、测量谐振频率将示波器的垂直偏移设为零,调节振荡频率,调节R1、R2,使电压波形最大,记录此时调节开关电阻的阻值。
重复以上步骤,记录不同频率下调节开关电阻的阻值,计算得到不同频率下的电感值和电容值,计算每个频率下的谐振频率。
3、观察谐振曲线并记录数据调节示波器扫描速度,观察波形和扫描线。
扫描到谐振频率时,记录最大电压值和最大电流值。
对于不同的电容、电位和频率,记录相应的谐振曲线上的最大电压值和最大电流值。
记录数据后,绘制出振荡电路的谐振曲线,而后进行分析。
4、分析实验结果根据实验数据,计算得到电路中电容和电感的数值,并计算得到每个频率下的谐振频率。
观察谐振曲线上的最大电压值和最大电流值变化,解释不同电容、电感和频率对谐振频率、振幅大小的影响。
一、实验目的1. 理解电路谐振的概念和特性。
2. 学习并掌握RLC串联电路的谐振频率、品质因数等参数的测量方法。
3. 分析谐振电路在不同频率下的响应特性。
4. 通过实验验证理论分析的正确性。
二、实验原理电路谐振是指电路在特定频率下,电感、电容和电阻的相互作用达到平衡状态,此时电路的阻抗最小,电流达到最大值。
RLC串联谐振电路的谐振频率f0可由以下公式计算:f0 = 1 / (2π√(LC))其中,L为电感,C为电容。
谐振电路的品质因数Q反映了电路的能量存储和消耗效率,其计算公式为:Q = 1 / (ωR) = 1 / (√(LC)R)其中,ω为角频率,R为电阻。
三、实验仪器与设备1. RLC串联谐振电路实验板2. 信号发生器3. 数字万用表4. 示波器5. 数据采集器四、实验步骤1. 按照实验板说明书,搭建RLC串联谐振电路。
2. 使用信号发生器输出正弦波信号,频率从低到高逐渐变化。
3. 在谐振频率附近,使用数字万用表测量电路的电流和电压。
4. 使用示波器观察电路的电流和电压波形,记录波形特征。
5. 利用数据采集器记录不同频率下的电流和电压数据。
6. 分析数据,绘制幅频特性曲线。
五、实验结果与分析1. 频率与电流的关系:在谐振频率附近,电流达到最大值,且随着频率远离谐振频率,电流逐渐减小。
2. 频率与电压的关系:在谐振频率附近,电压达到最大值,且随着频率远离谐振频率,电压逐渐减小。
3. 谐振频率:通过实验数据,验证了RLC串联谐振电路的谐振频率与理论公式的一致性。
4. 品质因数:通过实验数据,计算出电路的品质因数Q,与理论公式计算结果相符。
六、实验结论1. 通过实验验证了RLC串联谐振电路的谐振频率、品质因数等参数与理论分析的一致性。
2. 掌握了RLC串联谐振电路的谐振特性,为实际电路设计提供了理论依据。
3. 熟悉了实验仪器的使用方法,提高了实验技能。
七、实验体会1. 在实验过程中,注意观察实验现象,分析实验数据,提高自己的实验能力。
实验2 LRC 电路谐振特性的研究【实验简介】在力学实验中介绍过弹簧的简谐振动、阻尼振动和强迫振动,阐述过共振现象的一些实际应用。
同样,在电学实验中,由正弦电源与电感、电容和电阻组成的串联电路,也会产生简谐振动、阻尼振动和强迫振动。
当正弦波电源输出频率达到某一频率时,电路的电流达到最大值,即产生谐振现象。
谐振现象有许多应用,如电子技术中电磁波接收器常常用串联谐振电路作为调谐电路,接收某一频率的电磁波信号,收音机就是其中一例。
利用谐振原理制成的传感器,可用于测量液体密度及飞机油箱内液位高度等。
当然在配电网络中,也要避免因电路谐振现象引起电容器或电感器的击穿。
本实验将一个纯电容、一个空心线圈和一个电阻串联接于一个正弦交流电源中,测量电路的谐振曲线,了解电路品质因素Q 的物理意义,掌握串联谐振电路的特性及测量方法。
同时,对收音机输入回路中的RLC 串联电路特性进行测量和研究,深入了解RLC 串联回路特性及应用。
【实验目的】1.研究和测量LRC 串,并联电路的幅频特性;2.掌握幅频特性的测量方法;3.进一步理解回路Q 值的物理意义。
【实验原理及设计】一.LRC 串联谐振电路1.回路中的电流与频率的关系(幅频特性)RLC 串联谐振电路是在无线电接收设备中用来选择接收信号和在电子技术中用来获取高频高压的一种常用电路。
本实验通过测试RLC 串联电路的谐振曲线,从实践中认识RLC 串联电路的谐振特性。
对于一个如图1所示的RLC 串联电路,当外加交流电压(又称激励电压)U的角频率为ω时,各元件上的复阻抗分别为,R Z R = ,L j Z Lω= Cj c Z ω1= 则整个串联电路的总阻抗为:1(R L CZ Z Z Z R j L Z Cωϕω=++=+-=∠(1)图1 RLC 串联电路图2 串联谐振回路中阻抗随频率变化的曲线上式中,Z 为电路阻抗,22)1(cL R Z ωω-+=。
f曲线f 图3I-ϕ为总电压超前电流的相位差角,RC L arctgωωϕ1-=于是串联电路中的复电流I 为:ϕωωj Ie CL j R U Z U I =-+==1( (2)上式中I 为复电流的幅值22)1(CL R U ZU I ωω-+==(3)ϕ为复电流的相角。