刚体的平面运动1
- 格式:pdf
- 大小:83.52 KB
- 文档页数:2
刚体的平面运动习题答案刚体的平面运动习题答案刚体的平面运动是力学中的一个重要课题,它涉及到物体在平面上的运动规律和力的作用方式。
在学习这一课题时,我们常常会遇到一些习题,下面我将为大家提供一些关于刚体平面运动的习题答案,希望能够帮助大家更好地理解和掌握这一知识点。
1. 习题一:一个质量为m的刚体在水平地面上受到一个水平力F的作用,求刚体受力情况下的加速度。
解答:根据牛顿第二定律,刚体的加速度与作用在其上的合外力成正比,与刚体的质量成反比。
因此,刚体的加速度可以表示为a = F/m。
2. 习题二:一个质量为m的刚体以速度v沿x轴正方向运动,受到一个大小为F的力沿y轴正方向作用,求刚体的加速度和运动轨迹。
解答:由于刚体受到的力只有在y轴上的F,所以刚体在x轴方向上不受力,即不会有加速度。
而在y轴方向上,刚体受到的力F会引起加速度的产生。
根据牛顿第二定律,我们可以得到刚体在y轴方向上的加速度为a = F/m。
至于刚体的运动轨迹,由于在x轴方向上没有加速度,刚体将以匀速直线运动,而在y轴方向上有加速度,刚体将在y轴上做匀加速运动。
3. 习题三:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相同,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相同,所以刚体受到的力将会增加其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = F/m。
4. 习题四:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相反,求刚体在力作用下的加速度。
解答:由于力的方向与速度方向相反,所以刚体受到的力将会减小其速度。
根据牛顿第二定律,刚体的加速度可以表示为a = -F/m。
5. 习题五:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向成一定的夹角θ,求刚体在力作用下的加速度。
解答:对于这个习题,我们可以将力F分解为两个分力F1和F2,其中F1与刚体的速度方向相同,F2与刚体的速度方向垂直。
第十章刚体的平面运动一、内容提要1、基本概念(1)刚体的平面运动的定义刚体运动时,若其上任一点至某个固定平面的距离保持不变,则称该刚体作平面运动。
(2)刚体的平面运动的简化刚体的平面运动可以简化为平面图形在自身平面内的运动。
(3)刚体平面运动方程为x o'=f1(t) , y o'=f2(t) , ϕ=f3(t) ,(4)刚体平面运动的分解平面图形的运动可以分解为随基点的平动和绕基点的转动。
2、平面图形上各点的速度(1)基点法(速度合成法)V M= V O+V MO(2)速度投影法(V M)MO=(V O)MO(3)速度瞬心法V M=MC∙ω(C点为速度瞬心)3、平面图形上各点的加速度加速度分析主要用基点法(加速度合成法)a M= a O+aτMO+a n MOaτMO =MO∙ε方向垂直于MO,并与ε的转向一致。
a n MO =MO∙ω2 方向由点M指向基点O。
二、基本要求1、熟练掌握平面图形上各点的速度的求解。
2、熟练掌握平面图形上各点的加速度的求解。
三、典型例题例如图所示平面机构,由四杆依次铰接而成。
已知AB=BC=2R,C D=DE=R,AB杆和DE杆分别以匀角速度ω1与ω2绕A、E轴转动。
在图示瞬时,AB与CD铅直,BC与DE水平。
4142 试求该瞬时BC 杆转动的角速度和C 点加速度的大小。
解 AB 杆和DE 杆作定轴转动,BC 杆CD 杆均作平面运动。
(1)求BC 杆的角速度ωBC 因为V B =2R ω1 , V D =R ω2 分别以B 点和D 点为基点,分析C 点速度,有V C = V B + V CB (1)V C = V D + V CD (2) 所以 V B + V CB = V D + V CD (3) 沿BC 方向投影式(3)得V B = V CD则CD 杆的角速度ωCD = V CD /CD=V B /R=2ω1 (逆时针) 沿DC 方向投影式(3)得V CB = V D则BC 杆的角速度ωBC = V CB /BC=V D /2R=0.5ω2 (逆时针)(2)求C 点的加速度a C 因为a B =a B n =2R ω12 ,a D =a D n =R ω22分别以B 点和D 点为基点,分析C 点加速度,有 a C = a B + a CB τ + a CB n (4)a C =a D +a CD τ+a CD n (5)所以 a B + a CB τ + a CB n =a D +a CD τ+a CD n (6) 沿CD 方向投影式(6)得a B n - a CB τ = a CD na CB τ=a B n - a CD n =2R ω12-R(2ω1)2=-2R ω12又将式(4)分别沿x 、y 轴投影式得a Cx =-a CD n =-2R ωBC 2= -0.5R ω22a Cy =-a B n + a CB τ = -2R ω12-2R ω12= - 4R ω12故C 点加速度大小a C =22cy cx a a +=4241642ωω+R43。
刚 体 的 平 面 运 动
1 附图所示为一曲柄机构,曲柄OA可绕O轴转动,带动杆AC在套管B内滑动,套管B及与其刚连的BD杆又可绕通过B铰而与图示平面垂直的水平轴运动。
已知:OA=BD=300mm, OB=400mm,当OA转至铅直位置时,其角速度ω0=2rad/s,试求D点的速度。
解:BD 杆与AC 杆角速度一样(AC BD ωω=),确定ωAC,问题即可解决。
AC 杆作平面运动,确定其速度瞬心I 如图1示。
图中v B ´为AC杆上此瞬时与铰B重合的B ´的速度。
A
B
mm
32500
500
500300=⇒=
===AI AI
AI AB AB OA cos α
mm/s 600=⋅=O A OA v ω
BD A
AC .AI
v ωω===
rad/s 720 mm/s 216=⋅=∴BD v BD D ω
解毕。
2 附图为一机构的简图,已知轮的转速为一常量n=60r/min,在图示位置OA∥BC,AC⊥BC,求齿板最下一点D的速度和加速度。
解:第一问:求v D 。
由图1可知该瞬时AB 杆瞬时平动,则:
ω⋅==OA v v A B
πωω2===
∴BC
v B
CD
m/s 6124.CD v CD D ==⋅=πω
第二问:求a D 。
以A 为基点,分析B 点加速度如图示。
n BA BA A n
B
B B a a a a a a ++=+=τ
τ
(其中=0)
n
BA a
向x 轴上投影,得:
ααατsin a sin a cos a A n
B B =−
()CD A n
B A n B B B
C .tan a a cos sin a sin a a απαα
αατ
⋅=⋅=+=+=
21423
02
.CD πα=
⇒
C
C
CD D a ατ2=
则:2
2
2
m/s 103=+=n D
D D a a a τ
解毕。