平方差公式与完全平方差公式综合运用
- 格式:doc
- 大小:186.50 KB
- 文档页数:6
平方差与完全平方公式专练一、平方差公式平方差公式是指一个差的平方可以展开为两个数的平方的差。
即对于任意实数a和b,有(a+b)(a-b)=a^2-b^2下面通过一些例题来让我们更好地理解和运用平方差公式。
例题1:计算下列各式的值:(1)(6+3)(6-3)(2)(5+2)(5-2)(3)(9+4)(9-4)解答:(1)(6+3)(6-3)=6^2-3^2=36-9=27(2)(5+2)(5-2)=5^2-2^2=25-4=21(3)(9+4)(9-4)=9^2-4^2=81-16=65例题2:已知两个数字的和为17,差为7,求这两个数字。
解答:设两个数字分别为x和y,根据题意可以得到两个方程:x+y=17x-y=7我们可以使用平方差公式对第二个方程进行变形:(x+y)(x-y)=(17)(7)可以得到:x^2-y^2=119将第一个方程代入上述方程中:17^2-y^2=119289-y^2=119y^2=289-119y^2=170y=±√170代入第一个方程中可以解得:x=17-y如果y=√170,则x=17-√170如果y=-√170,则x=17+√170所以。
通过以上例题的练习,我们可以发现平方差公式在解决方程和计算中的巧妙运用,可以简化计算过程,提高解题效率。
二、完全平方公式完全平方公式是指一个二次多项式可以写成一个二次项的平方。
即对于任意实数a和b,有a^2 + 2ab + b^2 = (a + b)^2下面通过一些例题来让我们更好地理解和运用完全平方公式。
例题1:计算下列各式的值:(1)2^2+2(2)(3)+3^2(2)(-5)^2+2(-5)(4)+4^2(3)12^2+2(12)(5)+5^2解答:(1)2^2+2(2)(3)+3^2=(2+3)^2=5^2=25(2)(-5)^2+2(-5)(4)+4^2=(-5+4)^2=(-1)^2=1(3)12^2+2(12)(5)+5^2=(12+5)^2=17^2=289例题2:已知一个二次多项式x^2+10x+k是一个完全平方,求k的值。
平方差公式与完全平方公式应用中易犯错误分析在初中数学中,学生易犯的错误很多,下面我就平方差公式与完全平方公式的计算来分析一下学生出现错误的原因,并且进一步总结反思。
许多学生由于对两个公式结构特点理解不清楚,计算时往往出现这样那样的错误。
一、我们将这些常出现的错误总结出来,进行分析。
1、平方差与完全平方公式混淆1)( x – 3y)2 = x2 - 9y22)( 2x + 3y)2 = 4x2 + 9y2错因:这两个式子都是完全平方公式,应等于它们的平方和,加上(或减去)它们的积的2倍。
正确解法:1、22222(x-3y)23(3)69x x y y x xy y=-+=-+2、22222(23)(2)223(3)4129x y x x y y x xy y+=++=-+2、平方差公式结构特点模糊( m + 3n ) ( -m - 3n ) = m2 - 9n2错因:平方差公式左边必须是两式中一项相同,一项互为相反数。
m+ 3n 与-m - 3n两项都互为相反数,此题不能用平方差公式。
应用完全平方公式。
正确解法:2 2222( m + 3n ) ( -m - 3n ) =(m+3n)[-(m+3n)]=-(m+3n) [23(3)]69m m n n m mn n=-++=---3、公式计算中项的概念不够明确,漏掉系数( 2x + y ) ( 2x – y ) = 2x2 - y2错因:式子在计算中都没有明确“项”的概念,包括字母前面的系数,因此在平方时漏掉了系数。
应是2x与y这两项的平方差。
正确解法:2222x y x y-=-( 2x + y ) ( 2x - y ) =(2)44、公式中的符号错误1)( -a + b )2 = a2 + 2ab + b22)( -a – b )2 = a2 - 2ab - b2错因:公式中各项的符号特点及公式右边各项与公式左边两项的的关系理解模糊,出现了符号错误。
完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
平方差、完全平方公式的灵活运用一教学三维目标1.知识与技能:灵活运用整式乘法公式进行运算,综合运用乘法公式的知识解决问题.2.过程与方法:在解决综合题目的过程中,让学生经历观察、探索、应用公式的过程,提高应用代数意识及方法解决问题的能力,进一步发展观察、归纳、类比、概括等能力,以及整体思想。
3.情感与态度:在数学教学中发展学生的计算能力和数学思维能力,感受数学式的千变万化,增强学生的数学的数感。
二、教学重、难点对乘法公式的灵活、综合运用三、教学方法启发式、讲练结合四、教学过程1、知识回顾①我们学过了两个乘法公式分别是:平方差公式,完全平方公式。
②抢答?4k?3?4k?3))(2)(= . -1()(2a+b)(2ab)=______________, (322)?5y(2x)2b(a?= .4)= . (3)(22.见多识广、题型拓展题型一利用乘法公式进行简便运算122)99)(2(例1.计算:1)(11920? 3322?2?999999 2) 2017 2 变式练习(1)2018 -2016×(方法总结:熟记平方差公式与完全平方公式的结构,观察转化成与公式结构一致是解题的关键。
题型二连续运用乘法公式248+1)+1(2+1)(2用乘法公式计算例2 +1)(2+1)(21变式练习????????42422+4)(x-2)(x+2)(x2)((1)bbaa?a?b?a?b方法总结:要注意观察式子的符号及每项的次数找出与乘法公式结构相同的项,再用公式计算题型三整体应用乘法公式例题3 用乘法公式计算????????22()(1)(12)ba?ba?b2?a?2?a?b1122,,则(3)已知?baa?b???ba?63变式练习??22)12aa?1?(2????)2((1)1y??x?y1?x22????8a?b???bb?aa?4a?b?已知,,则(3)方法总结:要懂得平方差公式和完全平方公式里的“a”“b”不仅可以表示一个数或一个字母,而且可以表示一个式子。
(1) 103 X 97(2) 118X 122(3) 19- 203 3(a+b ) ( a — b ) =a 2 — b 2应用1、平方差公式的应用: 例1、利用平方差公式进行计算:(1) ( 5+6x )( 5 — 6x )( 2)(x + 2y ) (x — 2y )(3) (— mi + n ) (— m- n ) 解:21) ( 2x — 3)1(3 ) (— x y )21(5 ) ( — x+ y )22 ) ( 4x+5y 4 ) ( — x — 2y例2、计算:1 1(1) ( x y ) ( x y )4 4(2) ( — m — n ) ( m — n )2(3) ( m + n ) ( n — m ) +3m2 2(4) ( x+y ) ( x — y ) ( x — y ) 解:例5、利用完全平方公式计算: 2 2 2(1) 102(2 ) 197 (3) 19999 — 19998 X 20002解:a+b ) a- b )2+2ab+b 2=a 2— 2ab+b 解:应用2、 完全平方公式的应用:例4、计算:平方差公式与完全平方公式例3、计算:试一试:计算:9 X 7—82= _____________应用3、乘法公式的综合应用:例6、计算:2(1)(x+5) —( x+2) (x —2)(2)(a+b+3) (a+b—3)(3)(a —b+1) (b—a+1)2(4)(a+b—c)解:1111、(1) (1-2)(1 2 )(1 2 )(1 —2)23410(2) (21)(221)(241)(281) (232 1)解:例10、证明:x2+y2+2x —2y+3的值总是正的。
1 2例7、( 1)若一x ax 4是完全平方式,则:4a= _______________(2 )若4X2+1加上一个单项式M使它成为一个完全平方式,则M= _______________例18、( 1 ) 已知:a 3 , 则:a21a 2 -a_(2) 已知:a15,则:a 2a a(3) 已知:a+b=5, ab=6,则:a2+b2=(4 ) 已知 : 2 2(a+b ) =7 , ( a —b ) =3 , 则:2 2a +b=,ab=例9、计算:【模拟试题】一、耐心填一填1、计算:(2+3x) (—2+3x) = _____________ ; (—a —b) 2= _____________ .*2、一个多项式除以a2—6b2得5a2+b2,那么这个多项式是 __________________ .23、若ax +bx+c= ( 2x—1) (x —2),则a= _______ , b= ______ , c= ________ .2 24、已知(x—ay) (x + ay ) = x —16y ,那么a = _____________ .5、多项式9x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是 .(填上一个你认为正确的即可)6、计算:(a—1) (a+1) (a2—1) = _________ .7、已知x —y=3, x —y =6,贝U x+y= _____ .8、若x+y=5, xy=6,贝V x +y = ________ .9、利用乘法公式计算:1012= __________ ; 1232—124X 122= __________ .10、若A= (2—1) (2+ 1) (22+ 1) (24+ 1 )……(232+ 1) +1,贝U A的个位数字是二、精心选一选(每小题3分,共30分)1、计算结果是2x2—x —3的是( )A. (2x —3) (x+1)B. (2x —1)(x —3)C. (2x+3) (x—1)D. (2x—1) (x+3)2、下列各式的计算中,正确的是( )2 2A. (a+5) (a—5) =a —5B. (3x+2) (3x —2) =3x —42 2 2C. ( a+2) (a—3) =a —6D. (3xy+1) ( 3xy —1) =9x y—13、计算(—a+2b) 2,结果是, ( )2 2 2 2A. —a +4ab+bB. a—4ab+4b2 2C. —a —4ab+bD. a 2 2—2ab+2b4、设x+y=6, x —y=5,则x2—y2等于( )A. 11B. 15C. 30D. 605、如果(y+a) 2=y2—8y+b,那么a、b的值分别为()A. a=4 , b=16B. a= —4, b=—16C. a=4 , b= —16D. a= —4, b=166、若(x —2y) 2= (x+2y) 2+m,则m等于( )A. 4xyB. —4xyC. 8xyD.—8xy7、下列式子中,可用平方差公式计算的式子是()a b2、对于任意有理数a、b、c、d,我们规定=adc d(x y) 2x—be,求的值。
平方差和完全平方公式应用举例一、平方差公式平方差公式描述了两个数(或代数式)的乘积与它们的差之间的关系:(a+b)(a-b)=a²-b²这个公式的应用在代数运算中非常常见,下面我们通过几个具体的例子来说明它的应用。
例子1:计算(7+2)(7-2)根据平方差公式,我们有:(7+2)(7-2)=7²-2²=49-4=45所以,(7+2)(7-2)=45例子2:计算(x+1)(x-1)根据平方差公式,我们有:(x+1)(x-1)=x²-1²=x²-1所以,(x+1)(x-1)=x²-1二、完全平方公式完全平方公式描述了一个一次多项式的平方的表达式:(a + b)² = a² + 2ab + b²这个公式的应用也非常广泛,下面我们通过几个具体的例子来说明它的应用。
例子3:展开(x+2)²根据完全平方公式,我们有:(x+2)²=x²+2(x)(2)+2²=x²+4x+4所以,(x+2)²=x²+4x+4例子4:展开(3+2x)²根据完全平方公式,我们有:(3+2x)²=3²+2(3)(2x)+(2x)²=9+12x+4x²所以,(3+2x)²=4x²+12x+9这些例子展示了平方差和完全平方公式在解题中的应用。
它们可以用来简化计算过程,化简表达式和方程。
例如,当我们需要计算两个数的乘积或平方时,我们可以利用平方差公式,将计算过程转化为相加或相减的操作,从而简化计算。
另外,完全平方公式可用于展开一个一次多项式的平方,从而获取更多的信息。
这在求解方程和证明等问题中经常会遇到。
总结起来,平方差和完全平方公式是代数中常用的公式,它们的应用在代数运算、化简表达式、求解方程和证明等问题中都具有重要的作用。
Word 文档平差公式与完全平公式(a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平差公式的应用:例1、利用平差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:试一试:计算:123456789×123456787-1234567882=_______________Word 文档应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2)(2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解: 例7、(1)若4ax x 412++是完全平式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平式,则M=_______________ 例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222----ΛΛ (2))12()12)(12)(12)(12(32842+++++ΛΛ解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。
完全平方公式和平方差公式的应用完全平方公式和平方差公式的应用 公式:语言叙述:两数的 ______________________________________________________________ 。
公式结构特点:左边: __________________________________ 右边:熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
(5+6x)(5-6x) 中 ______ 是公式中的a , ______是公式中的b (5+6x)(-5+6x) 中 _____ 是公式中的a , ______是公式中的b (x-2y)(x+2y) 填空: 1、 (2x-1)( )=4x 2-12、 (-4x+ )(-4x)=16x2-49y 2第一种情况:直接运用公式 1. ( a+3) (a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)第二种情况:运用公式使计算简便 1、1998X 2002 2 、 498X 502 3、 999X 1001 4、 1.01 X 0.995、 30.8 X 29.26、1(100-) X 2 (99- -33187(20-) X (19- -)99第三种情况:两次运用平方差公式 1、( a+b )(a-b)(a 2+b 2)第四种情况:需要先变形再用平方差公式5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五种情况:每个多项式含三项2、(a+2)(a-2)(a2+4) 3(x- - )(x 2+ - )(x+ -)2 4 21、( -2x-y ) (2x-y) 2 、(y-x)(-x-y) 3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)1. (a+2b+c) (a+2b-c)2.(a+b-3)(a-b+3)3. x-y+z)(x+y-z)4.(m_n+p)(m_n_p)完全平方公式公式:语言叙述:两数的___________ . __________________________________________________ 。
平方差公式与完全平方差公式综合运用平方差公式专项1、热身练习一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示() A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b) C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.培优讲解:例1、添项拆项:(1)(2+1)(22+1)(24+1).(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)..(32008+1)-4016 32例2、运用平方差公式简算(1)2009×2007-20082.(2)22007200720082006-⨯.(3)22007200820061⨯+.过关练习:1.利用平方差公式计算:2023×2113. 2.计算:(a+2)(a2+4)(a4+16)(a-2).例3、解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).例4、阅读题型已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数)(2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______. (3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______. ③(a -b )(a 3+a 2b+ab 2+b 3)=______. 例5、实际运用1、广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?2、请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式专题完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++例题讲解:例1、直接运用变形公式1. 已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
例2、先配方再解题1、已知m 2+n 2-6m+10n+34=0,求m+n 值 2.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 值。
例3、变形后再用公式已知6,4a b ab +==,求22223a b a b ab ++的值。
已知222450x y x y +--+=,求21(1)2x xy --的值。
例4、分式的运用 已知16x x -=,求221x x +的值。
0132=++x x ,求(1)221x x +(2)441xx +例5、整体思想的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N 试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.例6、实际运用试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?过关练习1、 已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
2、已知224,4a b a b +=+=求22a b 与2()a b -的值。
3、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值4、计算:-2100×0.5100×(-1)2005÷(-1)-5; [(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .5、解方程 x (9x -5)-(3x -1)(3x +1)=5.6、计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1). 根据上式的计算方法,请计算 (3+1)(32+1)(34+1)…(332+1)-2364的值.7、如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?当堂检测:一、耐心填一填(每小题3分,共30分)1、计算:(2+3x )(-2+3x )=__________;(-a -b )2=__________.2、一个多项式除以a 2-6b 2得5a 2+b 2,那么这个多项式是_______________.3、若ax 2+bx+c=(2x -1)(x -2),则a=_____,b=_____,c=______.4、已知 (x -ay) (x + ay ) = x 2-16y 2, 那么 a = __________.5、多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是____________.(填上一个你认为正确的即可)6、计算:(a -1)(a+1)(a 2-1)=________.7、已知x -y=3,x 2-y 2=6,则x+y=______.8、若x+y=5,xy=6,则x 2+y 2=__________. 9、利用乘法公式计算:1012=_________;1232-124×122=_________.10、若A=(2-1)(2+1)(22+1)(24+1)……(232+1)+1,则A 的个位数字是_______.二、精心选一选(每小题3分,共30分)1、计算结果是2x 2-x -3的是( )A.(2x -3)(x+1)B.(2x -1)(x -3)C.(2x+3)(x -1)D.(2x -1)(x+3)2、下列各式的计算中,正确的是( )A.(a+5)(a -5)=a 2-5B.(3x+2)(3x -2)=3x 2-4C.(a+2)(a -3)=a 2-6D.(3xy+1)(3xy -1)=9x 2y 2-13、计算(-a+2b )2结果是( )A.-a 2+4ab+b 2B. a 2-4ab+4b 2C.-a 2-4ab+b 2D. a 2-2ab+2b 24、设x+y=6,x -y=5,则x 2-y 2等于( ) A.11 B.15 C. 30 D. 605、如果(y+a )2=y 2-8y+b ,那么a 、b 的值分别为( )A. a=4,b=16B. a=-4,b=-16C. a=4,b=-16D. a=-4,b=166、若(x -2y )2=(x+2y )2+m,则m 等于( ) A.4xy B.-4xy C. 8xy D.-8xy7、下列式子可用平方差公式计算的式子是( )A.(a -b )(b -a )B.(-x+1)(x -1)C.(-a -b )(-a+b )D.(-x -1)(x+1)8、当a=-1时,代数式(a+1)2+a(a -3)的值等于( ) A.-4 B. 4 C.-2 D. 29、两个连续奇数的平方差是( ) A.6的倍数 B.8的倍数 C.12的倍数 D. 16的倍数10、将正方形的边长由acm 增加6cm ,则正方形的面积增加了( )A. 36cm 2B. 12acm 2C.(36+12a )cm 2D.以上都不对三、用心做一做1、化简求值(1) (x+4) (x -2) (x -4), 其中x=-1 (2)x(x+2y)-(x+1)2+2x ,其中x=251,y=-25. 2、对于任意有理数a 、b 、c 、d ,我们规定c a db =ad -bc ,求y y x 3)(- )(2y x x +的值。
3、(1)(2x-3y)2-(x-2y)(x-5y)-(2x+y)(2x-y),先化简,然后选择一个你喜欢的x、y值代入求值。
(2)已知2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值。
4、 a、b、c是三个连续的正整数,以b为边长作正方形,分别以a、c为长和宽作长方形,哪个图形的面积大?大多少?5、一个正方形的一边增加3cm,相邻一边减少3cm,所得矩形面积与这个正方形的每边减去1cm,所得正方形面积相等,求这矩形的长和宽.6、计算下列各式,然后回答问题。
(a+2)(a+3)=______;(a+2)(a-3)=______;(a-2)(a+3)=______;(a-2)(a-3)=______(1)从上面的计算中总结规律:(x+m)(x+n)=_____________(2)运用上面的规律,直接写出下式的结果(x+2008)(x-2000)=_____________7、观察下列各式:(x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1(1)根据上面各式的规律,得:(x-1)(x n+x n-1+……x+1)=__________.(其中n为正整数)(2)根据这一规律,计算1+2+22+23+…+263的值。