双侧向测井原理3
- 格式:ppt
- 大小:2.92 MB
- 文档页数:39
第一章 双侧向测井双侧向测井是应用最广泛的一种电阻率测井方法,它测量地层电阻率。
自然界中不同岩石和矿物的导电能力是不相同的尤其地层中所含流体性质不同时,导电性能差别很大。
因此 ,电阻率是地层的重要的物理参数之一。
在油气井中进行电阻率测井是我们寻找和定量确定油气存在的基本方法。
根据所测得的电阻率,可以区分含导电流体(如盐水,泥浆滤液)的地层和含非导电流体(如油气)的地层,应用阿尔奇公式,可以计算出地层中油气水的比例:2WW S FR =ρ (1-1) 式中:ρ—地层电阻率;R W —地层水电阻率;S W —地层含水饱和度;F ——地层因素。
电阻率测井是发展最早并一直沿用至今的一种测井方法。
最早使用的电阻率测井方法称普通电阻率测井。
经改进后,发展成为目前广泛使用的聚焦式电阻率测井,或称侧向测井。
自1950年,首批侧向测井仪投入商业使用后,老式的普通电阻率测井方法就逐渐被淘汰。
1.1 普通电阻率测井原理为测量某一电阻的阻值R ,可应用一个电源给该电阻供电,测量流过该电阻的电流I 和电阻两端的电压降V 。
由欧姆定律即可求出该电阻的阻值。
IV R = (1-2) 普通电阻率测井原理也是采用与此类似的方法,测量地层电阻率。
在介质中设置一个供电电极A ,回流电极B 放在距电极A 无限远的地方,在距电极A 一定距离处放置一对测量电极M,N (见图1-1),进行电位差测量。
假定电极为点电极,介质是均匀无限的,介质电阻率为ρ。
则从电极A 流出的电流呈辐射状向四面八方均匀散开,等电位面是以A 为球心的球面,如果测量电极M,N 与供电电极的距离分别为AM ,AN (注意电阻ρ的量纲为m ⋅Ω长度量纲为m )则M 点的电位:AM I V M πρ4=(1-3) N 点的电位: ANI V N πρ4= (1-4) 式中I 为电极A 流出的电流强度(安培)。
由上式可得M,N 两点的电位差V :I ANAM MN V V V N M ρπ4=-=电阻率:I V MN AN AM ⋅=πρ4 (1-5) 式中,MN 为电极M,N 两点间的距离令 MNAN AM K π4= 则 IV K ⋅=ρ (1-6) 式中:K 称为电极系常数。
第一章、双侧向测井1、双侧向测井的基本原理双侧向测井是一种聚焦的电阻率测井。
为了使深浅侧向有足够的探测深度和浅侧向能较好地反映侵入带特性,这类仪除设计上使用了同时调整主电流与屏蔽电流的方法,用两对屏蔽电极实行双层屏蔽,增加电极长度和电极距。
主电流受到上、下屏蔽电极流出的电流的排斥作用,使得测量电流线垂直于电极系,成为水平方向的层状电流射入地层,这就大大降低了井和围岩影响。
可以同时进行深浅侧向的测量。
目前聚焦测井主要包括:双侧向、微侧向及微球聚焦、邻近侧向等。
是目前最流行的电阻率测井,与其它电阻率测井方法相比具有分层能力强、探测深度大等优点,适用于薄层发育地层、电阻率中、高的地层。
2、双侧向测井的作用a、判断岩性、划分储层;b、划分油气层,油气层深侧向电阻率是邻近水层的1.5 倍以上;c、深侧向电阻率一般认为是原状地层电阻率,所以它可以确定地层的真电阻率。
d、进行地层对比。
e、计算储层的含油饱和度。
f、用浅侧向确定侵入带电阻率,计算侵入带的含油饱和度。
第二章、微侧向测井1、微侧向测井基本原理微侧向测井采用极板贴井壁测量。
在极板上镶入一个主电极,三个监督电极与屏蔽电极与主电极呈环状分布,这样的设计使得主电流被聚焦成束状流入地层,增加了探测深度,减小了泥饼的影响。
测出监督电极与无穷远电极之间的电位差,经过适当转换,就可以得到微侧向视电阻率曲线。
2、微侧向测井的应用、a、确定冲洗带电阻率进而进行可动油、气分析和定量计算。
b、划分薄层c、地层对比。
3、微球测井基本原理微球型聚焦测井原理类似于微侧向测量原理,只是微球型聚焦的电极排列像球型聚焦。
4、微球测井的应用、a、可探测过渡带电阻率,比微侧向探测深度大;b、划分薄层能力强于微侧向第三章、电极电阻率测量基本原理电极电阻率测井也称普通电阻率测井。
在井内进行电阻率测井时,都设有供电线路,通过供电电极A供给电流I,通过供给电B供给电流-I,在井内建立电场,然后用测量电极进行电位测量。
侧向测井之三侧向、七侧向、双侧向测井基本原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!侧向测井之三侧向、七侧向、双侧向测井基本原理概述侧向测井技术是石油勘探与开发中的重要工具,它通过测量钻井孔壁周围地层的物理性质,为岩石类型、孔隙度、渗透率等参数提供了关键信息。
测井方法1.1 双侧向测井用于导电性泥浆(盐水基泥浆)的钻孔中确定地层电阻率。
这个测量系统由两个不同探测深度的侧向测井系统所组成,它向地层发出水平聚焦的电流。
测量时,两条曲线使用同一个电极系。
测量深侧向时使用较长的屏蔽电极,测量浅侧向时只使用深测向屏蔽电极的一部分作为屏蔽电极,而另一部分作为回路电极。
如果岩石的电阻率非常高(104-105Ω-m),则测量电流不能有效地聚焦,因此不能够确定岩石的真实电阻率。
在结晶岩地区,双侧向测井可用于划分钻孔周围的岩性、裂隙带和估计裂隙孔隙度。
1.2 视电阻率测井电阻率法测井通常测得的是视电阻率ρs,故过去常称它为视电阻率测井。
由于电阻率法测井的电极系种类越来越多,所以把使用普通电极系的电阻率测井专称为视电阻率测井。
工作时,电极系的A、B电极供电,M、N电极测量电位差,最后根据计算结果绘出与岩层电阻率有关的曲线ρs。
计算公式为ρs =K*ΔU MN/I。
式中K为电极系系数,由电极系排列方式和距离决定。
视电阻率测井主要用来划分钻孔的岩性剖面和进行剖面对比。
有时可用于探测井中金属落物的深度或摸“鱼顶”(探测落井钻具的顶部深度),指导钻具打捞。
1.3 微电阻率测井是电阻法测井的一种,它的特点是电极距只有几厘米。
它包括微电位电极系和微梯级电极系。
为避免钻井液影响,用弹簧片将镶在绝缘板上的电极紧贴井壁。
微梯度电极系比微电位电极系的探测深度小。
在渗透性地层上,微梯度电极系受泥饼的影响较大。
因泥饼的电阻率较低,测得的微电位曲线幅度高于微梯度曲线幅度,称为“正幅度差”。
在非渗透性地层上幅度差不明显。
根据微电阻率测井曲线的“正幅度差”,可以划分出渗透性岩层。
同时,微电阻率测井划分薄岩层的效果很好。
微球形聚焦测井是微电阻率测井的一种,它对贴井壁极板电极系统的特殊设计可获得特殊的电场,从而克服泥饼的影响,获得紧靠井壁的泥浆滤液冲洗带的电阻率。
通常与双侧向测井同时记录。
在石油测井中,渗透性地层被钻井液滤液饱和的井壁冲洗带的电阻率是计算可动油气的重要参数。
电阻率测井方法基本原理1、双感应测井 Dual Induction Log1、双感应测井原理示意图图1 感应原理示意图2、双感应测井原理① 发射线圈形成的电磁场在地层中产生环井眼感应电流(涡流),涡流形成二次电磁场,在接收线圈中产生感应信号,其大小与地层电导率成正比。
具体表述为:把地层看成是一个环绕井轴的大线圈,把装有发射线圈T 和接收线圈R 的井下仪器放入井中,对发射线圈通以交变电流I ,在发射线圈周围地层中产生了交变磁场Φ1,这个交变磁场通过地层,在地层中感应出电流I1,此电流环绕井轴流动,叫涡流。
涡流在地层中流动又产生交变磁场,这个磁场是地层中的感应电流产生的,叫二次磁场Φ2,二次磁场Φ2穿过接收线圈R ,并在R 中感应出电流I2,从而被记录仪记录。
很明显,接收线圈R 中感应产生的电动势大小与地层中产生的涡流大小有关,而涡流大小又与岩石的导电性有关,地层电导率大,则涡流大,电导率小,则涡流小,涡流与电导率成正比,因而接收线圈中的电动势也与电导率成正比。
根据记录仪记录到的感应电动势的大小,就可知道地层的电导率。
中可以看出,接收线圈R 不仅被二次磁场Φ2穿过,而且被一次磁场Φ1穿过。
因而接收线圈R 中产生的信号有两种:一是由地层产生的,与地层导电性有关的信号,称为有用信号,用VR 表示。
另一种是由仪器的发射线圈直接感应产生的,这是一种干扰因素,称为无用信号,用VX 表示,二者在相位上相差90°。
感应测井是径向(沿半径方向)近似并联的电导测井仪器。
根据几何因子理论:tt invasioninvasion mmud tt mud mud t R G R G R G G G G 111invasion invasion ⨯+⨯+⨯=⋅+⋅+⋅=σσσσ其中:mud G 、invasion G 、t G 分别为泥浆、侵入带、地层的几何因子;mud σ、invasion σ、t σ分别为泥浆、侵入带、地层的电导率。
双侧向测井影响因素与应对措施分析摘要:双侧向测井仪作为测量电阻率的特殊仪器,地层电阻率正是我们发现油气层,确定含油饱和程度计算的重要参数。
在高电阻率地层和盐水泥浆的井中,双侧向测井是确定地层真电阻率的主要手段。
在碳酸盐岩裂缝性地层中,它可以提供裂缝孔隙度的信息。
本文结合双侧向测井工作原理,从现场问题出发,对自然电位、深井回路、深驱性动板、滤波器等影响因素与解决方法进行了简要的探究和阐述。
关键字:双侧向;测井;影响因素;应对措施双侧向测井技术利用两个屏蔽电极对主电流进行聚焦,具有很多优点,比如具有较大的径向探测深度和很高的垂向分辨率,同时能够利用同一电极系进行深部和浅部的探测。
因而双侧向测井已成为一种广泛应用的电阻率测井方法。
影响双侧向测井质量的因素很多,遇到不明情况出现时,一定要祥加分析,找出影响因素,才能有针对性地采取相应措施,以便获得满意的测井效果。
一、双侧向测井工作原理从双侧向电极工作情况来看,它有9个电极构成,主电极位于中央,并且在主电极的上下还有4对对称的电极,分别用短路性线进行连接。
另外还有两对监督性电极和两对聚焦性电极(又称屏蔽性电极),而参考电极测量与回流电极都在无限远处。
在进行较深的探测时,两对屏蔽性电极始终保持着电位,并且主电流与屏流是同极。
由于屏蔽性电极相对较长,所以它无形中也增加了屏流对于主电流的集聚功能,所以主电流层一旦进入人地层,就会分散。
另外,受探测深度影响,探测的视电阻率会和真电阻率比较接近。
对于浅探测,在双侧向测井中,电极具有回流电极的功能,也就是说其中两对电极具有反极性,这样也就会削弱屏流对双侧向测井主电流的集聚功能;当主电流接近地层时,就会产生发散,而在探测深度不够的情况下,视电阻率将会受到侵入带影响。
二、对双侧向测井构成影响的因素(一)测井回路从双侧向测井回路连接过程来看,不管是浅侧向回路,还是深侧向回路统一是10号的芯线,而深侧向的回路测量则是7号缆芯。
图2-19 七侧向电极系及电流线分布 图2-1-19 七侧向电极系及电流分布 3.1229双侧向测井仪3.1聚焦式电阻率测井法的测量原理普通电阻率测井法的主要缺点是测量电流的一部分沿井筒分流,即测量电流不能全部流进地层;另外它也不能深入地层很远,所以,测得的视电阻率与地层的真电阻率相差甚远。
聚焦式电阻率测井法是针对这一问题,对普通电阻率测井的电极系加以改进而发展的一种新方法。
聚焦式电阻率测井也叫侧向测井。
它包括三侧向、七侧向、双侧向、微侧向、邻近侧向、球形聚焦和微球形聚焦等方法。
这些方法中,电极系的结构、形状和尺寸不同,其探测特性也不同。
下面我们以七侧向为例,对聚焦式电阻率测井法的测量原理加以说明。
七侧向测井的电极系如图2-1-19所示,其中A 0是主电极,M 1、M 2与N 1、N 2是两对监督电极,A 1、A 2是一对聚焦电极(也叫屏蔽电极)。
这三对电极以主电极A 0为中心对称排列,每对电极用短路线连接,使其具有相同的电位。
回流电极B 和参考电极N 放在“无限远”处。
这种电极系结构相当于在梯度电极系的上下附加了一对供电电极。
在各向同性的均匀介质中,七侧向的电流线如图中的实线所示,虚线表示等电位面,斜影线表示主电流层。
在电阻率为 的均匀介质中,如果只有一个主电极A 0,所通电流为I 0,则从A 0电极流出的电流应均匀地分布,即电流线为辐射状,而等电位面是以A 0为球心的球面。
由于监督电极M 1、M 2离A 0较近,所以其电位比N 1、N 2处的电位高一些。
在主电极两侧加上聚焦电极A 1、A 2,并提供与A 0同极性的屏蔽电流,随着屏蔽电流强度的增加,监督电极N 1N 2和M 1M 2的电位都会升高。
由于N 1、N 2离A 1A 2较近,因此N 1N 2处的电位升得更快一些。
当屏蔽电流强度达到某一数值时,两对监督电极M 1M 2和N 1N 2可能出现相同的电位。
由于等电位面之间不可能有电流流过,因此,可以认为,主电极A 0流出的电流,不能穿过M 1N 1和M 2N 2,而只能从侧向流入地层,或者说,主电极A 0发出的电流线被压缩成“饼状”分布了,I 0的这种状态称为聚焦状态。
双侧向仪器工作原理仪器工作原理1、1229双侧向测井仪器1229双侧向测井仪是采用电流聚焦方式的测井仪,即采用电屏蔽方法,使主电流聚焦后水平流入地层,因而大大减小了井眼和围岩影响,因此,电流聚焦测井不仅是盐水泥浆和膏盐剖面井的必测项目,也是淡水泥浆测井的主要方法之一,1229双侧向仪器,一次下井可同时测得深、浅两条视电阻率曲线,为了实现深、浅同时并测,仪器采用频分供电,深、浅侧向供电频率分别为32Hz和128Hz,该仪器采用了先屏流后主流的设计,即由屏流源首先发送屏流,然后由监控回路产生主电流,相对于先主流后屏流,这种方式可以降低对监控回路增益的要求,1229双侧向的深、浅侧向屏流源均受深侧向电压的控制。
在4#号电极和电缆外皮之间加进一个32Hz受控恒流源,而在4号和5号电极间加进一个128Hz的受控恒压源,由屏流信号电流在2号和3号电极间形成的电位差直接接到快速补偿放大器输入端,因此,把2、3电极间电位差放大,而快速补偿放大器输出端接1号电极,因为它的快速补偿作用使1号电极和4号电极等电位,因此使得1号电极发送的测井电流和屏蔽电流是同极性,同相位,根据同性相斥的原理,迫使主电流呈圆盘状进入地层。
这样的设计,扩展了测量的动态范围。
2、DLLT-B测井仪DLLT是一种测量地层电阻率的电极系仪器。
它可以获得LLD、LLS、MSFL 三条电阻率曲线以及SP和CALIPER两条辅助曲线。
DLLT 是通过测量电极系流入井眼周围地层的电流的情况来测量地层电阻率信息的。
深测向和浅侧向是通过相同的电极进行测量的,通过分时使用电极,使得LLD和LLS两种电阻率的测量相互之间的相互干扰降到最低。
深侧向的测量信号频率是131.25Hz,浅侧向的测量信号频率是1050Hz。
整个电极系由13个电极组成,其中 A4、A3、A*和M1、M2、M3为成对电极、A0为主发射电极。
测井过程中,A4、A3、A*和A0电极都和回流电极之间形成一个电位差,其中测量电压V0是在地面参考电极和一个监督电极之间获得,并通过一个电压测量电路进行测量。
图2-19 七侧向电极系及电流线分布 图2-1-19 七侧向电极系及电流分布 3.1229双侧向测井仪3.1聚焦式电阻率测井法的测量原理普通电阻率测井法的主要缺点是测量电流的一部分沿井筒分流,即测量电流不能全部流进地层;另外它也不能深入地层很远,所以,测得的视电阻率与地层的真电阻率相差甚远。
聚焦式电阻率测井法是针对这一问题,对普通电阻率测井的电极系加以改进而发展的一种新方法。
聚焦式电阻率测井也叫侧向测井。
它包括三侧向、七侧向、双侧向、微侧向、邻近侧向、球形聚焦和微球形聚焦等方法。
这些方法中,电极系的结构、形状和尺寸不同,其探测特性也不同。
下面我们以七侧向为例,对聚焦式电阻率测井法的测量原理加以说明。
七侧向测井的电极系如图2-1-19所示,其中A 0是主电极,M 1、M 2与N 1、N 2是两对监督电极,A 1、A 2是一对聚焦电极(也叫屏蔽电极)。
这三对电极以主电极A 0为中心对称排列,每对电极用短路线连接,使其具有相同的电位。
回流电极B 和参考电极N 放在“无限远”处。
这种电极系结构相当于在梯度电极系的上下附加了一对供电电极。
在各向同性的均匀介质中,七侧向的电流线如图中的实线所示,虚线表示等电位面,斜影线表示主电流层。
在电阻率为 的均匀介质中,如果只有一个主电极A 0,所通电流为I 0,则从A 0电极流出的电流应均匀地分布,即电流线为辐射状,而等电位面是以A 0为球心的球面。
由于监督电极M 1、M 2离A 0较近,所以其电位比N 1、N 2处的电位高一些。
在主电极两侧加上聚焦电极A 1、A 2,并提供与A 0同极性的屏蔽电流,随着屏蔽电流强度的增加,监督电极N 1N 2和M 1M 2的电位都会升高。
由于N 1、N 2离A 1A 2较近,因此N 1N 2处的电位升得更快一些。
当屏蔽电流强度达到某一数值时,两对监督电极M 1M 2和N 1N 2可能出现相同的电位。
由于等电位面之间不可能有电流流过,因此,可以认为,主电极A 0流出的电流,不能穿过M 1N 1和M 2N 2,而只能从侧向流入地层,或者说,主电极A 0发出的电流线被压缩成“饼状”分布了,I 0的这种状态称为聚焦状态。