无线通信信号传输距离计算表
- 格式:xlsx
- 大小:10.69 KB
- 文档页数:2
无线传输距离和发射功率以及频率的关系(转)无线传输距离和发射功率以及频率的关系功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算无线路由器能传输多远的无线信号?无线路由器在空旷的地方传输能到100米左右;在家里能覆盖十几米,砖墙能穿透3-4堵墙,混凝土能穿透1-2堵墙。
无线路由器发射功率10mW左右,换算下来约10dBm,天线增益一般在3-5dB,Wlan设备的接收灵敏度在-70~-85dBm左右。
因此允许的路径损耗约10+5-(-70~-85)=85~100dB。
2.4G频段的电磁波有近似的路径传播损耗公式为: PathLoss(dB) = 46 +10* n*Log D(m)其中,D为传播路径,n为衰减因子。
对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。
根据以上公式计算,在全开放环境下,传播距离在80-150米左右;较封闭环境下,传播距离在13-50米左右。
这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8) +20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHzLos 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。
无线通信距离的计算功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km) x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。
下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
无线电波在自由空间传播时的距离计算方法无线电波在自由空间传播时的距离计算方法所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los 是传播损耗,单位为dBd是距离,单位是Kmf是工作频率,单位是MHz下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为:d =1.7公里结论: 无线传输损耗每增加6dB, 传送距离减小一倍。
无线传输路径分析是无线传输网络设计的重要步骤,通过对传输路径的分析便于网络设计者根据无线链路的裕量大小选择合适类型的天线(方向,极化,增益等指标),安装天线高度,选择合适的馈缆和长度等。
下面将简单介绍一下无线传输路径分析中的自由空间损耗的计算,信号接收强度的计算,链路系统裕量的计算几个主要方面的内容。
1.自由空间损耗的计算自由空间损耗是指电磁波在传输路径中的衰落,计算公式如下:Lbf=32.5+20lgF+20lgDLbf=自由空间损耗(dB)D=距离(km)F=频率(MHz)2400MHz:Lbf=100+20lgD通过查找上表和通过公式计算我们可以得到从发射站到接收站电磁波传输的理论衰落.2.信号接收强度的计算:信号接收强度是指接收站设备接收到的无线信号的强度。
信号强度与距离的关系表
信号强度与距离的关系表通常是根据具体的无线通信技术和信号传输环境而定,不同的通信技术和环境下的信号强度与距离的关系可能会有所不同。
以下是常见的无线通信技术和信号强度与距离的大致关系:
- 2.4GHz WiFi网络:在室内环境下,信号强度与距离间大约呈现倒数平方的关系,即距离增加一倍,信号强度降低约4倍。
在室外环境下,由于受到建筑物和地形等因素的干扰,距离与信号强度的关系更加复杂。
- 蓝牙设备:在室内环境下,蓝牙信号强度与距离大约呈现1/m的关系,其中m为距离。
即距离增加一倍,信号强度降低约一半。
- GPS定位:GPS信号强度与距离的关系相对简单,通常呈现一次函数关系。
在信号良好的情况下,距离与信号强度成正比,即距离增加一倍,信号强度也增加一倍。
信号传输距离公式信号传输距离公式是计算电信号在传输过程中所能达到的最大距离的数学公式。
其依赖于多种因素,包括信号强度、传输介质、传输速率、干扰等。
在无线通信中,信号传输距离公式常用的形式是弗里斯公式(Friis formula),它描述了无线电磁波在自由空间中的传输距离和信号功率之间的关系。
弗里斯公式可以表示为:Pr = Pt * (Gt * Gr * λ^2 / (4π * R)^2)其中,Pr是接收功率,Pt是发送功率,Gt和Gr分别是发送和接收天线的增益,λ是信号的波长,R是传输距离。
这个公式说明,信号的功率随着传输距离的增加而衰减。
增大发送功率、使用高增益的天线、减小传输距离和使用较小波长的信号,都可以提高接收功率,从而延长传输距离。
然而,在现实应用中,大部分信号传输并不处于自由空间中,而是通过建筑物、树木等物体传播。
在这种情况下,信号传输距离公式需要考虑传输介质的衰减和多径效应。
传输介质的衰减是由于信号在传输过程中受到各种损耗导致的,如自由空间路径损耗、自由空间损耗、建筑物穿透损耗等。
传输介质的衰减可以使用路径损耗模型来计算,常用的模型包括Friis模型、Hata模型、COST模型等。
多径效应是由于信号在传输过程中经过多条不同路径抵达接收端,导致信号相位和幅度发生变化的现象。
多径效应对信号传输距离的影响较大,常见的解决方法包括使用均衡器和解调器,并采用合适的编码和调制方法。
除了信号强度、传输介质和多径效应,信号传输距离还受到干扰的影响。
干扰来自于其他信号源,在无线通信中常见的干扰包括噪声、多径干扰、同频干扰和邻频干扰等。
干扰会降低信号的接收功率,影响信号传输距离。
因此,要准确计算信号传输距离,需要综合考虑信号强度、传输介质、多径效应和干扰等因素。
在实际应用中,可以使用射线跟踪(ray tracing)方法、仿真软件或进行实测来估算信号传输距离。
同时,优化天线设计、信号处理算法和通信协议,也可以提高信号传输的可靠性和距离。
wifi 信号强度单位dBm总结一下:简单的说dBm值肯定是负数的,越接近0信号就越好,但是不可能为0的ASU的值则相反,是正数,也是值越大越好按规定,只要城市里大于-90,农村里大于-94就是正常的,记住负数是-号后面的值越小就越大具体情况就是:-81dBm的信号比-90dBm的强,-67dBm的信号比-71dBm 的强低于-113那就是没信号了关于dBm和ASU换算的关系是dBm=-113+2乘以ASU比如我们看到信号为-67dBm 23ASU的时候,他们的关系就是-113+2*23ASU=-67dBm反之就是{-113-(-67dBm)}/2 =23ASU有错误大家及时更正啊第一篇:关于手机信号强度单位db和dBm最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。
dB,dBm 都是功率增益的单位,不同之处如下:dB是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。
[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。
也就是说,甲的功率比乙的功率大3 dB。
反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。
dBmdBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。
[例] 如果功率P为1mw,折算为dBm后为0dBm。
[例] 对于40W的功率,按dBm单位进行折算后的值应为:10log (40W/1mw)=10log(40000)=10log4+10log10000=46dBm。
总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。
无线传输距离计算Pr(dBm) = Pt(dBm) - Ct(dB) + Gt(dB) - FL(dB) + Gr(dB) - Cr(dB)Pr:接受端灵敏度Pt: 发送端功率Cr: 接收端接头与电缆损耗Ct: 发送端接头与电缆损耗Gr: 接受端天线增益Gt: 发送端天线增益FL: 自由空间损耗FL(dB)=20 lg R (km) +20 lg f (GHz) + 92、44R就是两点之间的距离f就是频率=2、4自由空间通信距离方程自由空间通信距离方程设发射功率为PT,发射天线增益为GT,工作频率为 f 、接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗L0 有以下表达式:L0 (dB) = 10 Lg( PT / PR ) = 32、45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB)[举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ; f = 1910MHz问:R = 500 m 时, PR = ?解答: (1) L0 (dB) 的计算L0 (dB) = 32、45 + 20 Lg 1910( MHz ) + 20 Lg 0、5 ( km ) - GR (dB) - GT (dB)= 32、45 + 65、62 - 6 - 7 - 7 = 78、07 (dB))(2) PR 的计算、、807 ) = 1 ( μW ) / 6 PR = PT / ( 10 7、807 ) = 10 ( W ) / ( 10 7、807 ) = 1 ( μW ) / ( 10 0412 = 0、156 ( μW) = 156 ( mμW ) # 顺便指出,1、9GHz电波在穿透一层砖墙时,大约损失(10~15) dB无线传输距离估算传输距离估算无线网络系统的传输距离或覆盖范围受多种因素的影响,除了信号源的发射功率、天线的增益、接收设备的灵敏度、频率、自由空间衰减、噪声干扰外,还有现场环境的影响,例如建筑物、树木与墙壁的遮挡,人体、气候等对电磁波的衰减,纯粹自由空间的传输环境在实际应用中就是不存在的。
72. 无线通信的传输距离如何计算?72、无线通信的传输距离如何计算?在当今高度互联的世界中,无线通信已经成为我们生活中不可或缺的一部分。
从手机与基站之间的信号传输,到智能家居设备之间的无线连接,再到飞机与地面控制中心的通信,无线通信无处不在。
然而,你是否曾经想过,这些无线信号能够传输多远?它们的传输距离又是如何计算的呢?要理解无线通信的传输距离计算,首先我们需要了解一些基本的概念和原理。
无线通信是通过电磁波来传递信息的。
电磁波在空间中传播时,会受到多种因素的影响,从而导致信号强度的衰减。
这些因素包括发射功率、接收灵敏度、工作频率、传播环境等等。
发射功率是指无线信号发射端所输出的功率。
一般来说,发射功率越大,信号能够传播的距离就越远。
但需要注意的是,发射功率并不是可以无限制增大的,它受到法规和设备性能的限制。
接收灵敏度则是指接收端能够检测到并正确解调的最小信号强度。
如果接收灵敏度越高,那么能够接收到的微弱信号就越多,从而在一定程度上增加了通信的距离。
工作频率也是影响传输距离的一个重要因素。
一般来说,较低频率的电磁波具有更好的绕射能力,能够绕过障碍物传播更远的距离。
但较低频率的频谱资源有限,而且传输速率相对较低。
较高频率的电磁波虽然传输速率快,但绕射能力差,传播距离相对较短。
传播环境是影响无线通信传输距离的最复杂因素之一。
在理想的自由空间中,电磁波的传播遵循自由空间损耗公式。
但在实际环境中,存在着各种各样的障碍物,如建筑物、山脉、树木等,这些障碍物会对电磁波产生反射、折射、散射和吸收等作用,从而导致信号强度的大幅衰减。
在计算无线通信的传输距离时,我们通常会使用一些数学模型和经验公式。
其中,最简单的模型是自由空间传播模型。
自由空间传播模型假设电磁波在没有任何障碍物的理想空间中传播。
根据这个模型,信号强度的衰减与距离的平方成正比,与工作频率的平方成正比。
具体的计算公式为:\L = 3244 + 20\log_{10}(d) + 20\log_{10}(f)\其中,L 表示信号的损耗(单位为 dB),d 表示传输距离(单位为千米),f 表示工作频率(单位为 MHz)。
总增益和系统对称性系统总增益系统总增益=发射功率+发射天线增益+接收天线增益-接收灵敏度=15dBm -(-85dBm )=100dBm自由空间损耗为:L(dB) =100 +20Log 10 D(km)=100 +20log 10 ( 0.1Km )=100 +20 × (-1) =80dB比较系统总增益(100dBm)和自由空间损耗(80dBm)相差20dBm,这是因为在实际使用的环境中“完全”自由空间是不存在的。
因此,WiFi设备生产厂家往往是根据下列公式计算最大视距传输距离:最大路径损耗=系统总增益=40-30Log10D(m)由此得到:最大视距传输距离(m)=10(系统总增益-40)/30例如:上述例子中,系统总增益为100dBm,则最大视距传输距离=10(系统总增益-40)/30=100m系统对称性下行:总增益=AP 发射功率+功率放大器增益+发射天线增益+接收天线增益-接收灵敏度=15dBm +12dBm +15dBi -(-85dBm )=127dBm上行:总增益=CPE 发射功率+发射天线增益+接收天线增益-接收灵敏度=15dBm +15dBi -(-85dBm) =115dBm上下行相差12dBm ,严重不对称。
对于非对称无线网络系统,距离只能按照上行估算。
由于无线网络的双向通讯特性,无线信号上下行总增益必须对称,否则,系统总增益只能按照较小的估算。
传输距离估算无线网络系统的传输距离或覆盖范围受多种因素的影响,除了信号源的发射功率、天线的增益、接收设备的灵敏度、频率、自由空间衰减、噪声干扰外,还有现场环境的影响,例如建筑物、树木和墙壁的遮挡,人体、气候等对电磁波的衰减,纯粹自由空间的传输环境在实际应用中是不存在的。
由于无线网络系统是一个实际应用的工程,必须在实施前进行设计和预算,必须事前对无线网络系统的传输距离或覆盖范围进行估算,进而对系统部署规模有一个估计,下面的表格就是对一个“基站”的覆盖能力进行估算的办法。
无线传输距离计算Pr(dBm) = Pt(dBm) - Ct(dB) + Gt(dB) - FL(dB) + Gr(dB) - Cr(dB)Pr:接受端灵敏度Pt: 发送端功率Cr: 接收端接头和电缆损耗Ct: 发送端接头和电缆损耗Gr: 接受端天线增益Gt: 发送端天线增益FL: 自由空间损耗FL(dB)=20 lg R (km) +20 lg f (GHz) + 92.44R是两点之间的距离f是频率=2.4自由空间通信距离方程自由空间通信距离方程设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗L0 有以下表达式:L0 (dB) = 10 Lg(PT / PR )= 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB) [举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ;f = 1910MHz问:R = 500 m 时,PR = ?解答:(1) L0 (dB) 的计算L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)= 32.45 + 65.62 - 6 - 7 - 7 = 78.07 (dB))(2)PR 的计算PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 ) = 1 ( μW ) / ( 10 0.807 ) = 1 ( μW ) / 6.412 = 0.156 ( μW )= 156 ( mμW ) # 顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失(10~15) dB无线传输距离估算传输距离估算无线网络系统的传输距离或覆盖范围受多种因素的影响,除了信号源的发射功率、天线的增益、接收设备的灵敏度、频率、自由空间衰减、噪声干扰外,还有现场环境的影响,例如建筑物、树木和墙壁的遮挡,人体、气候等对电磁波的衰减,纯粹自由空间的传输环境在实际应用中是不存在的。
无线通信距离的计算功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km) x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。
下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
无线电波在自由空间传播时的距离计算方法无线电波在自由空间传播时的距离计算方法所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los 是传播损耗,单位为dBd是距离,单位是Kmf是工作频率,单位是MHz下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为:d =1.7公里结论: 无线传输损耗每增加6dB, 传送距离减小一倍。
无线传输路径分析是无线传输网络设计的重要步骤,通过对传输路径的分析便于网络设计者根据无线链路的裕量大小选择合适类型的天线(方向,极化,增益等指标),安装天线高度,选择合适的馈缆和长度等。
下面将简单介绍一下无线传输路径分析中的自由空间损耗的计算,信号接收强度的计算,链路系统裕量的计算几个主要方面的内容。
1.自由空间损耗的计算自由空间损耗是指电磁波在传输路径中的衰落,计算公式如下:Lbf=32.5+20lgF+20lgDLbf=自由空间损耗(dB)D=距离(km)F=频率(MHz)2400MHz:Lbf=100+20lgD通过查找上表和通过公式计算我们可以得到从发射站到接收站电磁波传输的理论衰落.2.信号接收强度的计算:信号接收强度是指接收站设备接收到的无线信号的强度。
一、dBmdBmVdBuV换算关系dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout/1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout/1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV传输距离其实是个传输损耗的问题。
——来自《移动通信》和《卫星通信》教科书。
假设现在电磁波在自由空间传输(可以理解为真空,标准概念是具有各向同性、电导率为0、相对介电系数和相对磁导率均恒为1的特点的理想空间)。
所以们可以看到发射功率Pt与传输距离的平方成正比,与波长的平方成反比,即假设要保证相同的接受功率(即说明书上常见的接收灵敏度,低于这个值设备就检测不到信号了)情况下,距离越远,需要的发射功率越大。
(/question/27868458/answer/38434613)二、无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lf s]传播损耗将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los=32.44+20lgd(Km)+20lgf(MHz)Los是传播损耗,单位为dBd是距离,单位是Km,f是工作频率,单位是MHz下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1.由发射功率+10dBm,接收灵敏度为-105dBmLos=115dB2.由Los、f计算得出d=30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
无线传输距离计算Pr(dBm) = Pt(dBm) - Ct(dB) + Gt(dB) - FL(dB) + Gr(dB) - Cr(dB)Pr:接受端灵敏度Pt: 发送端功率Cr: 接收端接头和电缆损耗Ct: 发送端接头和电缆损耗Gr: 接受端天线增益Gt: 发送端天线增益FL: 自由空间损耗FL(dB)=20 lg R (km) +20 lg f (GHz) + 92.44R是两点之间的距离f是频率=2.4自由空间通信距离方程自由空间通信距离方程设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗L0 有以下表达式:L0 (dB) = 10 Lg(PT / PR )= 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB) [举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ;f = 1910MHz问:R = 500 m 时,PR = ?解答:(1) L0 (dB) 的计算L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)= 32.45 + 65.62 - 6 - 7 - 7 = 78.07 (dB))(2)PR 的计算PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 ) = 1 ( μW ) / ( 10 0.807 ) = 1 ( μW ) / 6.412 = 0.156 ( μW )= 156 ( mμW ) # 顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失(10~15) dB无线传输距离估算传输距离估算无线网络系统的传输距离或覆盖范围受多种因素的影响,除了信号源的发射功率、天线的增益、接收设备的灵敏度、频率、自由空间衰减、噪声干扰外,还有现场环境的影响,例如建筑物、树木和墙壁的遮挡,人体、气候等对电磁波的衰减,纯粹自由空间的传输环境在实际应用中是不存在的。
ZigBee传输距离900-MHz 和2.4-GHz 频段短距离无线设备的设计人员需要了解,公式中的参数对传输距离的影响以及这些参数如何影响传输距离,同时还要能将这些参数应用到公式中,用于统计计算出室内和户外环境下的路径损耗及传输距离。
随着家庭、建筑及工业自动化应用中无线技术的应用,短距离无线设备正倍受关注。
通常,这些应用使用专用频段或以标准协议为基础的频段,例如:900-MHz 和 2.4-GHz 的ISM(工业/科学/医学)频段ZigBee。
随着短距离无线设备应用的不断普及,对于终端设备设计人员来说,充分了解无线通信距离比以往变得更为重要。
这篇文章讨论了无线传播,并开发了一些模型,用来估算室内环境下短距离无线设备的路径损耗和距离。
这些模型让系统设计人员可以对无线通信系统的性能进行一个初步的估算。
在探讨距离估算公式之前,设计人员需要了解无线信道及传播环境。
无线通信信道为发送器和目标接收机之间的传输通道。
不同于固定的且可预知的有线信道,无线信道具有随机性和时变性,以及建模的困难性的特点。
因此,设计人员需要对这些随机信道进行统计建模。
无线电波传播模型的重点一般是在给定发送器距离的路径下预测出接收信号的平均强度,以及接近一个方位点上的信号强度的变化。
对任意发送器-接收机间的平均信号强度进行预测的传播模型为大型传播模型,其在估算发送器距离方面极为有用。
相反地,在一些波长内接收信号强度的传播模型为小型模型,或为衰减模型,其具有快速波动的特点。
这篇文章重点讨论大型传播模型,该模型可对无线传输的距离进行估算。
当发送器和接收机之间具有一条畅通无阻的可视路径时,自由空间传播模型可对接收信号的强度进行预测。
自由空间传播模型会做出这样的预测,接收信号强度“衰减”为发送器-接收机间隔距离的函数,强度衰减升至N 次幂——“幂律函数”。
接收机天线所接收到的自由空间功率与发射天线隔开一段距离,Friis 自由空间方程式把此段距离定义为:(1)在这个方程式中,PT为发送器功率;PR(d) 为接收功率,并为发射-接收间隔距离d 的一个函数;GT为发送器天线增益;GR为接收机天线增益;d 为发送器和接收机之间的间隔距离,单位为米;λ 为波长,单位为米。
wifi 信号强度单位dBm总结一下:简单的说dBm值肯定是负数的,越接近0信号就越好,但是不可能为0的ASU的值则相反,是正数,也是值越大越好按规定,只要城市里大于-90,农村里大于-94就是正常的,记住负数是-号后面的值越小就越大具体情况就是:-81dBm的信号比-90dBm的强,-67dBm的信号比-71dBm的强低于-113那就是没信号了关于dBm和ASU换算的关系是 dBm=-113+2乘以ASU比如我们看到信号为 -67dBm 23ASU的时候,他们的关系就是 -113+2*23ASU=-67dBm反之就是 {-113-(-67dBm)}/2 =23ASU有错误大家及时更正啊第一篇:关于手机信号强度单位db和dBm最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。
dB,dBm 都是功率增益的单位,不同之处如下:dB是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。
[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。
也就是说,甲的功率比乙的功率大3 dB。
反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。
dBmdBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。
[例] 如果功率P为1mw,折算为dBm后为0dBm。
[例] 对于40W的功率,按dBm单位进行折算后的值应为: 10log(40W/1mw=10log(40000)=10log4+10log10000=46dBm。
总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。
无线传输距离和发射功率以及频率的关系功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。
电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。
通信距离与发射功率、接收灵敏度和工作频率有关。
[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。
由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km) x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。
下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。
信道长度计算
在通信系统中,信道长度的计算是一项非常重要的工作。
信道长
度通常指的是信号从发射端到接收端所经过的距离。
在传统的有线通
信中,信道长度往往直接由信号传输的电缆或光缆的长度所决定。
而
在无线通信中,信道长度则是由空气中信号传播的距离所决定。
传输速度是信道长度计算的一个非常重要的因素。
在信道长度计
算中,我们需要考虑通信信号的传输速度,以便确定信号从发射端到
接收端所需要的时间。
这个时间对于某些应用非常重要,尤其是对于
实时通信应用而言,例如VoIP、视频通话等等。
如果我们知道信道长度和传输速度,那么就可以计算出信号从发
射端到接收端所需要的时间。
公式如下:
信号传输时间 = 信道长度÷ 传输速度
此外,在信道长度计算中,我们还需要考虑信号传输的损耗。
在
信号传输过程中,信号会受到许多因素的干扰,例如信号衰减、噪声
等等。
这些因素都会对信号的质量产生影响,降低信号的可靠性。
信道长度计算实际上是一项非常复杂的工作。
在实际应用中,我
们需要考虑许多因素,例如信道型态、天线高度、传输信号频率等等。
通过对这些因素的综合考虑,我们可以得出相对准确的信道长度估值,以便为通信系统的设计和实施提供参考。