一次函数的图象和性质复习教案
- 格式:doc
- 大小:257.50 KB
- 文档页数:6
一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念解释一次函数的定义:形式为y = kx + b的函数,其中k是斜率,b是截距。
强调一次函数中x的最高次数为1。
1.2 理解斜率和截距的含义解释斜率k的意义:表示函数图象的倾斜程度。
解释截距b的意义:表示函数图象与y轴的交点。
1.3 学会写一次函数的表达式引导学生根据图象特征确定斜率和截距。
练习写一次函数的表达式,并解释其意义。
第二章:一次函数的图象特征2.1 绘制一次函数的图象利用描点法或直线方程绘制一次函数的图象。
观察图象的形状和位置,理解斜率和截距对图象的影响。
2.2 分析一次函数的图象特征解释直线平行和重合的判断条件。
探讨斜率和截距对直线位置和倾斜程度的影响。
2.3 练习绘制和分析一次函数的图象提供一些一次函数的表达式,让学生绘制其图象并分析其特征。
第三章:一次函数的性质3.1 探讨一次函数的增减性质解释斜率k的正负对函数图象的上升或下降趋势。
引导学生通过观察图象理解增减性质。
3.2 理解一次函数的截距性质解释截距b的正负对函数图象与y轴的交点位置。
探讨截距b对函数图象的影响。
3.3 练习应用一次函数的性质解决问题提供一些实际问题,让学生运用一次函数的性质解决问题。
第四章:一次函数的应用4.1 引入一次函数的实际应用场景举例说明一次函数在现实生活中的应用,如成本计算、收入与利润关系等。
4.2 学会建立一次函数模型引导学生根据实际问题特点确定自变量和因变量。
练习建立一次函数模型,并解释其实际意义。
4.3 练习解决实际问题提供一些实际问题,让学生运用一次函数模型解决问题,并解释答案的可行性。
第五章:总结与复习5.1 回顾一次函数的定义、表达式和图象特征总结一次函数的基本概念和性质。
强调一次函数的图象特征与斜率和截距的关系。
5.2 复习一次函数的性质和应用回顾一次函数的增减性质和截距性质。
举例说明一次函数在实际问题中的应用。
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。
2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。
3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。
二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。
2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。
四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 利用数形结合法,让学生直观地理解一次函数的图象特征。
3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。
五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。
2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。
3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。
4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。
2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。
七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。
2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。
一次函数的图象和性质4.3.2(教案)德雅中学黄维教学目标:1.知识与技能(1)、理解直线y=kx+b与y=kx之间的位置关系;(2)、会利用两个合适的点画出一次函数的图象;(3)、掌握一次函数的性质及k、b对图像的影响2.过程与方法(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合思想方法。
3.情感态度价值观通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
教学重点:会用两点法画出一次函数的图象,并由图象得出函数的性质。
及对函数性质的理解与应用。
教学难点:由函数图象得出函数的性质,及对函数性质的理解与应用。
教学过程:【复习引入】一、出示学习目标1.能画出正比例函数、一次函数的图象.2.能根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0或k<0时,图象的变化情况.3.通过对一次函数图象和性质的探究,体会数形结合思想,并能运用函数的性质、图象和数形结合法解决一些简单的问题.二、复习正比例函数、一次函数的概念:1、什么叫正比例函数、一次函数?它们之间有什么关系?2、正比例函数的图象是什么?3、正比例函数 y=k x(k是常数,k≠0)中,k的正负性质对函数图象有什么影响?4、既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?一次函数又有什么性质呢?【自学指导】阅读教材P124至P125议一议止,完成下面内容。
一、在平面直角坐标系中,先画出函数y = 2x 和y = 2x+3 的图象,猜测y = 2x+3的图象与y = 2x的图象有什么关系?(复习前面所学“三步法”)二、探讨规律:横坐标相同,y = 2x+3的点的纵坐标比y = 2x的点的纵坐标大3,于是将y = 2x的图象向上平移3 个单位,就得到y = 2x+3的图象。
由于平移把直线变成与它平行的直线,因此y = 2x+3的图象是与y = 2x平行的一条直线.三、学习用“两点法”画一次函数图像。
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
一次函数的图象和性质(教案)安岳县协和乡初级中学杨金强[教学目标]1.知识与技能(1)、理解直线y=kx+b与y=kx之间的位置关系;(2)、会利用两个合适的点画出一次函数的图象;(3)、掌握一次函数的性质及k、b对图像的影响2.过程与方法(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合思想方法。
3.情感态度价值观通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
[教学重点]会用两点法画出一次函数、正比例函数的图象,并由图象得出函数的性质。
[教学难点]由函数图象得出函数的性质,及对函数性质的理解与应用。
[教学用具]教具:粉笔,直尺,多媒体学具:练习本,笔[教学方法]1、复习引入一次函数、正比例函数的概念2、结合图象探索性质:包括正比例函数、一次函数的图象和性质3、解决问题、巩固提高:包括新课环节后的练习、新课后的巩固练习[学法]以学生自主探索为主,动手实践画出函数图象。
在归纳一次函数图象的性质时建议合作交流。
[教学过程]环节一:复习一次函数、正比例函数的概念;环节二:会用两点法画函数图象,并对“k”决定函数的增减性进行归纳;环节三:利用图象的平移,对“b”所决定的函数性质进行归纳;环节四:对“k、b”所决定的函数性质进行总结环节五:巩固练习,加以提高。
环节六:总结这节课的性质。
环节七:安排作业。
一次函数的图象和性质(学案)(一)学习目标1、会用两点法画出正比例函数、一次函数的图象,并由图象得出函数的性质2、会用正比例函数、一次函数的性质解决问题(二)学习过程:环节一:新课引入1、复习正比例函数、一次函数的概念:3、将直线 y=-4x向下平移2个单位可得直线环节六:总结正比例函数的性质1.正比例函数y=kx的图象是经过_________的一条直线;2. 1)当 k >0,y=kx经过______象限2)当 k <0,y=kx经过______象限.一次函数的性质1.在y=kx+b中:当k>0,y随x的增大而_ ,当k<0,y随x的增大而______.2.在直线y=k x+b与直线y=k x+b中,如果______________,那么这两条直线平行。
《一次函数的图象和性质》复习教案
双流中学实验学校李文勇
教学目标
知识与技能目标:①通过对知识点的串联,让学生进一步理解一次函数的意义;
②利用几何知识直观对一次函数图象进行观察,比较,加深对一次
函数图象和性质的理解,初步建立函数知识体系。
过程与方法目标: 经历自主探究、思考、操作、总结等过程,培养学生初步的数形结合意
识。
情感与态度目标: 结合情景领会一次函数作为一种数学模型的意义,领会用函数观点解
决问题的基本思路。
教学重点与难点
重点理解一次函数的图象、性质.
难点灵活运用一次函数的知识解决问题
教学设备
自制课件、投影仪
教学过程设计:
基础自测1、在下列函数中,y是x的一次函数的
是()。
①6-
=x
y②
x
y
2
=③
8
x
y=④x
y-
=7
2、直线2
3
2
-
=x
y与x轴的交点坐标是
,与y轴的交点坐标是
,与两坐标轴围成的三角形的面
积是。
3、将直线x
y2
=向上平移1个单位长度
后,得到的直线是。
4、点)
,1
(
1
1
y
P-、点)
,1(
2
2
y
P是一次函数
3
4+
-
=x
y图象上的两个点,则
1
y与
2
y
的大小关系是()。
A.
2
1
y
y>B.0
2
1
>
>y
y
C.
2
1
y
y<D.
2
1
y
y=
5、若实数a、b满足0
=
+
+c
b
a且
c
b
a<
<,则函数c
ax
y+
=的图象可能
是()。
6、如图,在同一平面直角坐标系内,直
线k
x
k
y
l+
-
=)2
(
:
1
和kx
y
l=
:
2
的位
置可能为()。
引导学生强
化一次函数
的相关知识
独立完成基
础训练
通过基础
训练,为探
究提升作
准备
方法探究与训练
探究一:点与直线
问题1(对称问题):在平面直角坐标
系中,已知点)
,
(b
a
P(b
a≠),设点P
关于第一、三象限角的平分线的对称点为
Q,点P关于原点的对称点为R,试判断
△PQR的形状并说明理由。
归纳与发现:
探究二:直线与直线
问题2(平移问题):如图所示,把直
线x
y2
-
=向上
平移后得到直线
AB,直线AB经
过点)2,0(,求直
线AB的解析式。
归纳与发现:
问题3(旋转问题):如图所示,
直线4
2+
-
=x
y与x轴、y轴分别
交于A,B两点,把△AOB绕点A顺
时针旋转90°后得到△AO´B´,求直
线AB´的解析式。
归纳与发现:
引导学生探
究,归纳与发
现
仔细读题,独
立思考.完整
地写出解题
过程,提高解
题能力。
体会数形
结合和分
类讨论的
数学思想
方法. 培
养学生的
探究能力。
探究三:直线与面
问题4(面积问题): 如图,已知直线2+-=x y 与x 轴、y 轴分别交于点A 和点B ,另一直线)0(≠+=k b kx y 经过C (1,0),且把△AOB 分成两部分。
(1)若△AOB 被分成的两部分面积相等,求k 和b 的值; (2)若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值
归纳与发现:
拓展探究:(存在性问题) (分小组讨论)
已知直线y=x 3-32-与x 轴和轴分别交于点A 和C ,在坐标平面xOy 内,是否存在点M ,使AC 为等腰ACM ∆的一边,且底角为︒30,如果存在,请直接写出符合条件的点M 的坐标,如果不存在,请说明理由;。