应用油中溶解气体分析法判断变压器故障
- 格式:docx
- 大小:110.33 KB
- 文档页数:5
浅谈变压器油中溶解气体分析与故障诊断摘要:在电力系统的各种电气设备中,变压器是其重要的组成部分。
采用油中溶解气体分析(dga)技术对变压器故障进行早期故障诊断,可减少变压器不必要的事故停用,对保证电力系统安全可靠运行有较大的作用。
文章对变压器油中溶解气体的组分及故障诊断方法进行了分析讨论。
关键词:变压器油中溶解气体故障诊断变压器是电力系统中最重要的设备,用途非常广泛。
变压器内的绝缘油和有机绝缘材料随着运行时间的增加,在热和电的长期作用下会逐渐老化和分解,并产生极少量的气体,这些油中溶解气体包括氢气、甲烷、乙烯、乙烷、乙炔、一氧化碳和二氧化碳等。
但是,当变压器内部出现故障时,油中气体的含量就会发生很大的变化。
随着故障的发展,当产气量大于溶解量时,便有一部分气体以游离气体的形态释放出来。
实践证明,绝大多数的变压器初期缺陷都会出现早期迹象,因此,测量分析溶解于油中的气体含量就能尽早的发现变压器内部故障。
一、油中溶解气体的成分分析变压器绝缘材料热分解所产生的可燃和非可燃性气体达20种左右。
因此,为了有利于变压器内部故障判断,选定必要的气体作为分析对象是很重要的。
目前国内外所分析的气体对象是不统一的,我国按dl/722-2000要求一般分析9种或8种气体,最少必须分析七种气体。
变压器中的故障特征气体种类为:o2、n2、h2、ch4、c2h6、c2h4、c2h2、co、co2。
以这九种气体作为分析对象的原因见如下:o2主要了解脱气程度和密封好坏;n2主要了解氮气饱和程度;h2主要了解热源温度或有没有局部放电;co2主要了解固体绝缘老化或平均温度是否高;co主要了解固体绝缘有无热分解;ch4、c2h6、c2h4三种气体主要了解热源温度;c2h2主要了解有无放电或高温热源。
二、变压器内部常见故障与油中溶解气体的关系变压器内部常见故障可大致分为电性故障和热性故障两种。
油中溶解的气体可反映故障点引起的周围油、纸绝缘的电、热分解本质。
变压器油中溶解气体研究和故障判断作者:贺天宇来源:《科技与创新》2014年第17期摘要:变压器系统发生故障或出现异常时,变压器油液的分解变化更为明显。
以变压器油液中的溶解气体为研究对象,并以此作为变压器发生故障的判断依据,从而保障变压器运行的可靠性。
关键词:变压器;溶解气体;油液;故障中图分类号:TM406 文献标识码:A 文章编号:2095-6835(2014)17-0015-02变压器油箱中的油液可直观反映其异常情况或故障问题,比如油温异常、气味或颜色异常等,通过对变压器油液的分析、研究,可有效诊断变压器的故障问题。
变压器油液在环境湿度、空气氧气浓度等长期催化下会发生化学分解或变质作用,生成可溶性气体溶入油液中。
变压器在正常运行时,这种化学作用是比较缓慢的,然而,如果变压器存在异常或故障隐患时,则会加剧这种作用,分解出更多的气体。
因此,对变压器油液中所溶解的气体组成、含量等进行研究、分析,便可对变压器故障进行准确判断,以便得到及时解决。
1 油液中溶解气体的主要成分及来源通过采用特定的方式对变压器油液中的溶解气体进行检测、分析,归纳、总结出变压器油液中的可溶解气体成分及来源主要如下:①空气中的气体。
由于变压器油液在使用中与空气是直接接触的,因此空气中可溶性物质如N2、O2等成分便会溶于油液中。
②正常状态下因化学反应而生成的气体。
变压器油液主要是由烃类组成,这种物质在绝缘、可散热性能上发挥着较好的作用。
然而,烃类在电场、水、氧气等环境下,会发生缓慢的化学反应,生成物除包括有非气态的化合物外,还会分解释放出少量的氢气、低分子组态的烃类气体和较多的无机碳氧化合物,比如典型的一氧化碳(CO)、二氧化碳(CO2)。
③异常或故障情况下的气体生成物。
变压器发生故障或出现异常情况时,油箱中油液温度高于正常温度,而这种变化会使油液中的化学反应生成物向碳、氢化合物转变。
在油温上升幅度较小时,生成物主要为甲烷(CH4),随着温度的升高,生成物中碳的含量逐渐升高,比如生成乙烯(C2H4)、乙炔(C2H2)等。
现代国企研究 2016. 12(下)162案 例 AN LI摘要:变压器内部潜伏故障可以通过油中溶解气体分析法,来对变压器进行检查和诊断来实现的。
本文不仅呈现了在实际工作中正确消除缺陷的案例,而且系统的阐述了在变压器故障综合判断中是如何具体运用油中溶解气体分析法的。
关键词:变压器;油中溶解气体;判断故障油中溶解气体分析法是主要应用于检测变压器状态的一种较为有效的方法,具体做法是在电正常的工作状态下,利用气相色谱法对变压器内的油样进行一定量的采集,采用溶解气体的办法进行分析和诊断。
一、油中溶解气体分析法判断变压器故障的原理一般来说,油中溶解气体分析法大大优于电气试验法,究其原因是,电气试验法需要较为充足的电气量来反映出变压器当时的现状,才能对变压器内部的故障作出准确的判断。
而电气的特性只有在变压器内部的故障发展到一定的程度才会发生质的改变,也只有这样的电气量才适合用电气试验法。
与此相反,油中溶解气体分析法可以通过油中溶解气体的具体含量完全有效的诊断出变压器内部潜伏性的一些故障,这样就可以做到用最低的成本把一些事故防范于未然,把损失降到最低,以实现利润的最大化。
二、油中溶解气体分析法判断变压器故障方法在诊断充油电气设备故障时可以充分的运用油中溶解气体分析法并配合其他的试验手段来完成,但在此之前要准确的判断油中溶解气体形成的具体原因是什么,例如,是来源于变压器内部故障的因素还是来源于变压器本体非故障因素。
油中溶解气体的产生,究其原因来自于以下几种情况,一是变压器内部存在的放电性和过热性故障,二是变压器内部的受潮,三是非变压器故障的一些因素。
下面对油中溶解气体分析法判断变压器故障进行具体的说明:(1)检测变压器箱体进行带油补焊时发生的故障。
一般情况下,在对变压器箱体进行焊接过程中会产生大量H 2和烃类气体,这是由于油在焊接的高温下分解而形成的,这样就很容易产生误导,把它当做是一种高温兼放电故障来进行处理。
dlt722-2016变压器油中溶解气体分
析和判断导则
变压器油中溶解气体分析和判断导则
变压器就像一个可以调节电力输出的设备,它是电力系统的重要组成部分,为此,变压器的安全和正常运行是必不可少的。
变压器的主要工作介质是变压器油,变压器油是变压器正常运行和长期使用保障的前提条件,所以变压器油要定期检查和更换,以保证变压器正常工作。
在检查更换变压器油时,除了查看油的外观、温度等,需要对变压器油中的溶解气体进行分析和判断。
变压器油中的溶解气体主要有甲烷、乙烷、碳酸氢根等几种,它们不仅表现为
变压器的故障的警告信号,并且通过检测可以推断出变压器的运行状态。
因此,为了安全和可靠地检测变压器油中的溶解气体,《DLT722-2016变压器油中溶解气体
分析和判断导则》提出了一系列精细化的技术要求,保证了检测变压器油中溶解气体的准确性、稳定性和可靠性。
《DLT722-2016变压器油中溶解气体分析和判断导则》提出,电力元件现场变
压器油应按照GB/T11099-2005的规定进行油品抽样,然后在500ml大型瓶中进行
油量控制,即抽样好的油原样保存,确保所抽取的油与原油处理一致。
在实际使用之前,应将油样过滤,去除r237、r250及其他金属及杂质。
然后进行精滤,去除
油样中各类污染物,而后,把油样加入检测设备中。
检测时使用排气法,对油样中的溶解气体的含量进行检测,检测结束后按照规定进行数据计算和处理。
进行变压器油检测时,必须遵循《DLT722-2016变压器油中溶解气体分析和判
断导则》的要求,确保检测结果的准确性,以便进行及时有效的保护与维护变压器,使变压器能够正常安全使用。
变压器油中溶解气体分析和故障诊断实用技术发布时间:2022-08-16T02:39:04.855Z 来源:《中国科技信息》2022年4月第7期作者:孙杰[导读] 乙炔是放电性故障的特征气体,存在放电现象或存在极高的过热故障。
正常运行的变压器,油中不孙杰大秦铁路股份有限公司大同西供电段山西大同 037005摘要:乙炔是放电性故障的特征气体,存在放电现象或存在极高的过热故障。
正常运行的变压器,油中不应产生乙炔,油中有电弧放电时,分解气体大部分为H2和C2H2,并有一定量的CH4、 C2H4。
高温下产气速率最大的气体依次是CH4、C2H6、C2H4、C2H2。
本文典型故障是螺母搭接铁芯磁路回路过热引发故障,引起的局部过热油裂解产生乙炔类气体。
因此普遍认为,当发现乙炔从无到有时,就应引起重视,进行跟踪。
关键词:变压器油油中溶解气体色谱分析 CH4、C2H2、C2H4、C2H6 铁芯漏磁第一章变压器绝缘结构 1.1绝缘材料 1.1.1变压器油功能:绝缘;散热。
成分:碳氢化合物。
(烷烃、环烷烃、芳香烃、烯烃等) 1.1.2绝缘纸、绝缘纸板成分:纤维素。
聚合度(DPv):纤维素分子长链内串接的重复单元的个数(n)。
反映绝缘纸的机械强度,其机械强度的下降可判断纸的老化程度以推断设备的剩余寿命。
第二章变压器中的气体 2.1绝缘结构:变压器电气设备选用油纸或油和纸板组成的绝缘结构。
当设备内部发生热故障、放电性故障或者油、纸老化时,均会产生各种气体,并溶解于油中。
2.2不同故障类型产生的气体组合第三章油中溶解气体的分析故障诊断方法通过变压器油中溶解气体分析即色谱分析技术,能够分析诊断运行中变压器内部是否正常,及时发现变压器内部存在的潜伏性故障,掌握充油设备的健康状况。
3.1三比值法诊断方法 CH4/H2:区分是热故障还是放电故障; C2H4/C2H6:区分热故障温度的高低; C2H2/C2H4:区分放电故障的类型编码规则第四章故障诊断实例应用分别从变压器的中部和底部进行取油进行色谱分析 4.1平鲁西2# 中部油样分析报告取样日期:20201112 设备名称:主变取样地点:平鲁西分析日期:20201113谱图文件:平鲁西变电所平鲁西2#变中部.hw总烃浓度:780.55三比值编码:022故障类型判断:高温过热(高于700℃)故障实例:分接开关接触不良,引线夹件螺丝松动或接头焊接不良,涡流引起铜过热,铁心漏磁,局部短路,层间绝缘不良,铁心多点接地等分析意见:不合格4.2平鲁西2# 底部油样分析报告取样日期:20201112设备名称:主变取样地点:平鲁西分析日期:20201113谱图文件:平鲁西变电所2#变底部.hw总烃浓度:942.73三比值编码:022故障类型判断:高温过热(高于700℃)故障实例:分接开关接触不良,引线夹件螺丝松动或接头焊接不良,涡流引起铜过热,铁心漏磁,局部短路,层间绝缘不良,铁心多点接地等分析意见:不合格4.3故障处理情况及原因分析4.3.1故障处理变压器生产厂家:中铁电气工业有限公司保定铁道变压器分公司出于对变压器故障严谨分析的考虑,油样送第三方检测机构进行化验,结果与我段所测结果一致。
变压器油中溶解气体监测方法及故障分析摘要:通过分析变压器油中气体稀释的原因发生,必须测试变压器油中的稀释气体,并进行适当的气体分析,以了解到变压器内部缺陷发生的原因。
变压器油溶解气体后需要在不会损坏电源的情况下准确快速的检测早期错误,并且及时的故障原因进行分析,确定适当的预防措施。
本文分析了变压器油中气体的主要特征成分并对变压器油中溶解气体在线监测技术的研究现状和故障原因。
关键词:变压器油;溶解气体;监测方法;故障分析随着我国经济的快速发展,人民生活水平的提高和能源需求的增加,这些都是主要的社会问题,发电厂也在承受着巨大的供电压力。
这个问题必须通过科学和技术的进步尽快解决,优化发电,提高管理能力,满足人们的能源需求。
在正常操作条件下,设备发生故障的问题也经常发生。
然而,就会给人们的正常生活产生一定的影响,变压器的运行也会带来负面影响。
电力变压器是发电厂运行中最重要的工具之一。
变压器通常是故障主要是由变压器油引起的,如果变压器油有问题,操作人员必须尽快发现并解决这个问题,以确保变压器能在不影响正常供电的情况下尽快工作。
因此,对变压器油的状态进行监测和分析产生故障原因都具有重要价值。
一、变压器油中溶解气体的监测方法原理(一)油变压器中气体分析的定义。
监测变压器绝缘的方法是在变压器油中稀释气体分析常用的方法,这在变压器试验程序中是广泛而有效的。
用色谱法对变压器油中的气体成分进行分析,通过变压器油中溶解气体的含量,找出引起内部误差的相应原因;是的为了评估变压器油误差的来源。
这个测试是分析气体的组成和含量,并保持评估功能障碍。
其特点在于,它可以根据变压器的大致位置、类型和误差焦点,在早期阶段对变压器内部的错误情况进行评估和诊断,并实时有效地识别出变压器油的潜在缺陷。
(二)变压器油中气体分析原理。
变压器油中稀释气体的多少是指变压器气体成分中溶解在变压器油中的气体。
其主要来源是变压器油在正常工作时排出的废物气体、自然界气体在油中的融入、变压器油的失效以及变压器因维护、材料不同而产生的各种气体。
变压器油中溶解气体的分析与故障判断随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。
变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。
当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。
1、变压器油中的气体类别气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。
矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2)、氧气(O2)、氮气(N2)、甲烷(CH4)、一氧化碳(CO)、乙烷(C2H6)、二氧化碳(CO2)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。
油在正常老化过程产生的气体主要是一氧化碳(CO)和二氧化碳(CO2),油绝缘中存在局部放电时(如油中气泡击穿),油裂解产生的气体主要是氢气(H2)和甲烷(CH4)。
在故障温度高于正常运行温度不多时,产生的气体主要是甲烷(CH4),随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000℃时(如在电弧弧道温度300℃以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳(CO)和二氧化碳(CO2)。
2、如何判断电气设备的故障性质运用五种特征气体的三对比值判断电气设备的故障性质:(1)C2H2/C2H4≤0.10.1<CH4/H2<1C2H4/C2H6<1时,属变压器已正常老化。
(2)C2H2/C2H4≤0.1CH4/H2<0.10.1<C2H4/C2H6<1时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。
应用油中溶解气体分析法判断变压器故障变压器是电能传递与转换的一种重要设备,它在电力系统中起着极其重要的作用。
但是,随着使用年限的增加,变压器也会出现各种故障。
其中液体绝缘材料的状态是变压器正常运行的重要指示器。
应用油中溶解气体分析法可以判断变压器的故障情况,为维护设备安全运行提供依据。
油中溶解气体分析法是目前判断变压器绝缘状态最常用的方法之一。
变压器运行过程中,由于内部异常绝缘断裂、局部放电、过负荷及局部热失控等原因,会产生一定的气体,这些气体被溶解在绝缘油中,这些气体被捕获并检测的技术被称为油中溶解气体分析法。
这些气体信息的分析可以揭示变压器绝缘状况及决定变压器是否存在故障。
在油中溶解气体分析法中,我们通常关注变压器油中的以下五种气体:1. 氢气(H2):当局部放电或气泡击破时,沿着油的阙气泡内的气体即替换而来,首先生成的气体就是氢气。
氢气信号大,发现氢气,则表示发生的故障比较严重。
2. 一氧化碳(CO):一氧化碳是由于铁芯有局部加热,有机物和绕组绝缘材料在接触到高热,或生成铁芯终末制造时操作错误等情况下产生的气体。
一氧化碳量超过60ppm就表明变压器存在故障。
3. 甲烷(CH4):甲烷是绝缘油中一种常见的气体,主要源于绝缘油中的有机材料的分解,也可以因为绝缘材料的老化,导致油中甲烷含量增加。
当甲烷含量超过400ppm时,表示变压器可能存在绝缘老化和变质的情况。
4. 乙烯(C2H4):乙烯产生于局部放电、油渍和热分解,是判断变压器是否存在放电和绝缘老化的一个重要指标。
当乙烯含量超过100ppm时,说明变压器中存在可能导致故障的问题。
5. 硫化氢(H2S):硫化氢的产生通常是由于环境污染物质进入变压器中,同样也可以是变压器油渍里小量的硫化氢分解产生。
硫化氢含量超过10 ppm就表明变压器存在与液体有关联的故障的情况。
由此可见,油中溶解气体分析法是一种很有效的方法,可以判断变压器是否存在故障,可以及时解决问题,保障设备的正常运行。
编号:AQ-JS-03420
( 安全技术)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
应用油中溶解气体分析法判断
变压器故障
Application of dissolved gas analysis in oil to judge transformer fault
应用油中溶解气体分析法判断变压
器故障
使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
1根据油中溶解气体进行变压器故障诊断
变压器油是由具有不同键能的化学键键合在一起的碳氢化合物分子组成的。
它作为良好的介质材料在变压器中起绝缘、散热、灭弧等作用,并有其特殊的性能。
在正常运行条件下,变压器油和固体绝缘材料由于受到电场、热、水分、氧的作用,随时间而发生速度缓慢的老化现象,产生少量的氢、低分子烃类气体和碳的氧化物等。
当变压器在故障状态下运行时,故障点周围的变压器油温度升高,其化学键断裂,形成多种特征气体。
因不同键能的化学键在高温下有不同的稳定性,根据热力动力学原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大
值。
随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。
在温度高于1000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。
故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。
油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。
2采用色谱法分析变压器故障的注意事项
(1)发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材料、检修工艺等引起的,以缩小检修时的故障查找范围。
(2)由于取样阀中某些特殊的材料(如含镍不锈钢合金等)的催化作用,生成大量的氢气聚集在取样阀周围;取样阀在进行焊接后,大量在高温下产生的特征气体同样会聚集在取样阀的周围,此时取
样分析的结果往往会带来误判断。
因此,在取样时应先充分放油,才能取得准确反映变压器运行状况的代表性油样。
(3)放电性故障极易造成变压器事故,引起供电中断。
C2H2是放电性故障的特征气体,一旦出现,即使小于规定的5礚/L注意值,也应引起重视。
同时,应分清气体来源,防止造成误判断。
比如:变压器油箱带油补焊,焊接时的高温使油分解产生大量的特征气体;有载调压变压器中分接开关灭弧室的油向变压器本体渗漏;还有油冷却系统附属设备(如潜油泵)的故障都会反映到变压器本体的油中。
(4)当变压器内部存在过热和放电故障,总烃含量很高时,应考虑变压器油老化的问题,查对油的闪点是否有下降的迹象。
同时,因故障点附近的绝缘纸也会迅速裂解,使纤维素断链,产生大量的CO、CO2,因此,根据CO、CO2含量的变化,可判断故障是否涉及到固体绝缘材料。
(5)发现油中单一的氢气组分升高时,应测定油中微水含量,以便判断是否为设备进水受潮。
对于新投运的变压器,因制造和安装过程中脱气不彻底或使用绝缘材料的不同,有时也会使某些组分(如
H2等)超注意值,此时应加强检测,跟踪分析。
(6)故障变压器检修后,本体内的残油中往往残存着故障气体,另外在本体内滤油时会存在一些油循环流动的死区,这部分缺少流动的油中所含的特征气体比其它部分高,且这些气体在设备投运初期还会逐步扩散,因此在跟踪分析的初期,往往发现油中气体有明显增长的趋势。
通过多次检测,当各种特征气体的产气速率逐渐减小,并经一定时间其含量趋于稳定后,才能确定检修后投运的设备故障已消除。
这里填写您的公司名字
Fill In Your Business Name Here。