蒙脱土的改性研究进展
- 格式:pdf
- 大小:312.25 KB
- 文档页数:9
蒙脱土的改性及其在聚氨酯中的应用研究进展杨娟【摘要】蒙脱土是一种二维平面层状结构的硅酸盐类的天然矿物,其晶层间以范德华力结合,表面具有亲水疏油性不利于在有机相中分散,因此当蒙脱土在有机体系中应用时具有一定局限性.本文从无机、有机和有机-无机复合改性等方面综述了蒙脱土在聚氨酯泡沫、弹性体、涂料、皮革等领域的应用,针对蒙脱土在基体中的团聚、相容性等问题进行了详细分析,探索新的制备工艺及改性技术将是聚氨酯/蒙脱土复合材料今后的研究趋势.【期刊名称】《广州化工》【年(卷),期】2018(046)018【总页数】3页(P39-41)【关键词】蒙脱土;改性;聚氨酯;复合材料【作者】杨娟【作者单位】绵阳职业技术学院,四川绵阳621000【正文语种】中文【中图分类】TB332蒙脱土(MMT)是膨润土矿的主要成分,有独特的层状结构,因其良好的膨胀性、吸水性、吸附性、阻隔性、阻燃性及热稳定性等优点,且资源尤为丰富,价格低廉,可用于轻工、石油、涂料、建筑、沙漠治理、污水处理等多种领域[1-2] 。
尤其是在制备聚合物基纳米复合材料领域起着举足轻重的作用。
因而成为诸多学者研究和开发的热点之一。
聚氨酯是指高分子主链上含有重复结构单元氨基甲酸酯(-NHCOO-)的高分子化合物。
制品可广泛用作泡沫、橡胶、合成革、粘合剂及涂料等[3-4] 。
为进一步改善聚氨酯的综合性能,拓宽其应用领域,目前,主要在两个方面进行探索:一是合成原料及配方;二是稳定性和机械强度较好的填料,例如CaCO3、蒙脱土、TiO2、SiO2等。
经过试验发现,后者更容易达到改善聚氨酯应用性能的目的,并能有效降低材料的成本。
因而,研究聚氨酯/蒙脱土复合材料是当今的热点之一[5-6] 。
1 蒙脱土的结构蒙脱土的晶体结构为单斜晶系,一般呈不规则片状,是一种二维平面层状结构的硅酸盐类的天然矿物。
由氧原子连接的两层硅氧四面体中间夹着一层铝氧八面体构成的2:1型层状硅酸盐结构。
改性蒙脱土的研究与应用改性蒙脱土是一种重要的材料,它被广泛应用于各种领域,如纳米材料、药物传递、环境污染控制等等。
本文将介绍改性蒙脱土的研究进展和应用情况。
一、蒙脱土及其改性蒙脱土是一种属于粘土矿物的土壤颗粒,通常呈现灰色或白色。
蒙脱土的结构是由硅酸铝层和层间离子组成,层状结构使其可以吸附和储存水分和离子。
由于这些特性,蒙脱土被广泛用于土地改良和污染控制,以及食品、化妆品和药物的制造等方面。
不过,由于其本身存在的缺点,例如吸附力、分散性等欠佳,为了满足不同领域的需求,科学家们对其进行了改性。
改性蒙脱土是指通过改变蒙脱土的化学和物理性质,使其适应性更加广泛的一种材料。
常用的改性方法包括阳离子交换、酸化、碱化、溶胶-凝胶等。
二、改性蒙脱土在纳米材料中的应用蒙脱土因其层数较多、结晶度高、孔径小且均匀、比表面积大等特点几十年来引起了研究人员的广泛关注。
在改性蒙脱土中, Montmorillonite被认为是一种理想的纳米载体。
大量的研究表明,不同处理方法的改性蒙脱土具有良好的纳米材料载体性能,如高效的吸附性能、阻燃性能和致密性等。
当前,改性蒙脱土做为一种优秀的纳米载体材料,在纳米材料领域中的应用突破了传统材料在绿色荧光材料、催化剂和电化学能量存储材料等方面的应用。
在纳米材料领域,改性蒙脱土可以被用作催化剂的载体,可以显著提高催化剂的活性和稳定性。
同时,改性蒙脱土对气体和液体具有比较强的吸附性能,并且可以通过改变其表面活性,达到不同的吸附效果。
三、改性蒙脱土在药物传递中的应用改性蒙脱土在药物传递中也有广泛的应用。
由于人体肠道吸收能力差、易发生血液循环失调等问题,许多药物在口服后很难达到理想的药效。
因此,将药物包裹在蒙脱土纳米粒子中,通过粘性或分散来调节药物的释放,可以大大提高药物的生物利用度和药效。
近年来,改性蒙脱土作为一种药物传递载体广泛被研究。
改性蒙脱土不仅可以用于口服药物的传递,还可以用于眼、鼻、口腔、皮肤等其他传递方式。
第 50 卷 第 1 期2021 年 1月Vol.50 No.1Jan.2021化工技术与开发Technology & Development of Chemical Industry蒙脱土改性及应用的研究进展李璟睿1,尹陈霜1,马海燕1,夏 芬1,程国君1,2(1.安徽理工大学材料科学与工程学院,安徽 淮南 232001;2.安徽理工大学环境友好材料与职业健康研究院(芜湖),安徽 芜湖 241003)摘 要:蒙脱土是一种硅酸盐的天然矿物,具有良好的吸附性、阳离子交换性能和气液阻隔性。
吸附性使得蒙脱土具有良好的阻燃性和抗菌性,可以广泛应用于日常生活、工业及医用等方面。
为了进一步拓展蒙脱土的应用范围,通常需要对其进行有机化改性。
本文对近5年来蒙脱土的有机化改性及应用的研究进行了综述,以期为进一步开展蒙脱土的研究及应用提供参考。
关键词:蒙脱土;有机化改性;离子交换性;应用中图分类号:TB 332 文献标识码:A 文章编号:1671-9905(2021)01/02-0025-05基金项目:省级大学生创新创业训练项目(S201910361143);安徽省高等学校自然科学研究项目(KJ2019A0118);安徽理工大学芜湖研究院研发专项(ALW2020YF14);安徽理工大学引进人才项目(ZY017)通信联系人:程国君,硕士生导师,从事粉体改性及纳米复合材料的制备。
E-mail :***********************收稿日期:2020-10-29综述与进展蒙脱土(montmorillonite)别名微晶高岭石、胶岭石,结构式为(Al,Mg)2[SiO 10](OH)2·nH 2O,其中Al 2O 3含量为16.54%,MgO 4 含量为65%,SiO 2含量为50.95%,颜色多为白色微带浅灰色,含杂质时呈浅黄、浅绿、浅蓝色,土状光泽或无光泽,有滑感。
蒙脱土不仅是一种硅酸盐的天然矿物,还是膨润土矿的主要矿物组分。
超支化有机插层剂对蒙脱土的结构及性能影响研究041206107 高雅琴摘要:目前,蒙脱土(MMT)由于其独特的结构优势、来源广、价格低而成为制备聚合物/粘土纳米复合材料最重要的粘土矿物之一。
为增加蒙脱土与有机相的相容性,制备有机蒙脱土,并观察蒙脱土的层状结构及性能在有机化前后的变化,以无机蒙脱土为原料,用超支化季铵盐作为有机插层剂对蒙脱土进行改性,制备出一系列有机蒙脱土。
通过红外、热失重等测试结果对其结构及性能进行表征,并论述了不同实验情况下改性的蒙脱土结构及性能上的差异。
关键词:蒙脱土超支化季铵盐插层结构性能前言蒙脱土是一种由纳米厚度的硅酸盐片层构成的粘土,因其来源广泛,价格低廉且具有独特的层状结构和良好的力学性能,已成为制备新型高性能聚合物/粘土纳米复合材料的重要无机原料。
蒙脱土的基本结构单元是由一片铝氧八面体夹在两片硅氧四面体之间,靠共用氧原子而形成的层状结构。
在这些片层表面有过剩的负电荷,致使蒙脱土片层通常吸附有Na+,K+,Ca2+,Mg2+等水合阳离子,这种亲水的微环境不利于亲油的单体和聚合物插入。
所以制备聚合物/粘土纳米复合材料时必须对蒙脱土表面进行改性。
对于表面改性,国内外报道较多的是利用有机季胺盐阳离子与蒙脱土层间的阳离子进行离子交换后,阳离子部分附着在硅酸盐片层上,有机部分留在层间,从而使层间距增大,同时改善了层间微环境,使蒙脱土层间由亲水疏油性变为亲油疏水性,提高复合材料中有机相与无机相的相容性,利于单体或聚合物插入蒙脱土层间形成复合材料[1]。
近年来人们对蒙脱土的有机改性进行了大量的研究[2],蒙脱土的有机化处理一般采用插层剂。
大量实验表明:在制备层复合纳米材料过程中,插层剂的选择和使用是关键,因此必须加强插层剂的合成、筛选及插层工艺的研究。
常用的插层剂是烷基季铵盐,本文就采用了双羟乙基十二烷基三甲基氯化铵,试图对其进行超支化改性,并研究其不同质量配比对插层蒙脱土的结构及性能的影响,从而找出性能最好的有机蒙脱土插层剂。
聚合物/蒙脱土阻燃纳米复合材料的研究进展综述了蒙脱土的阻燃机理、聚合物/蒙脱土阻燃复合材料研究现状,包括蒙脱土的种类、有机改性、聚合物基体及与其他阻燃剂协同阻燃对聚合物/蒙脱土复合材料阻燃性能的影响。
标签:聚合物;纳米复合材料;蒙脱土;阻燃1 前言聚合物因其性能优异、价格低廉而被广泛应用于各个领域,但是大多数的聚合物材料属于易燃、可燃材料,燃烧时热释放速率大、热值高、火焰传播速度快,不易熄灭,还产生浓烟和有毒气体,因此对聚合物进行阻燃设计十分重要。
按阻燃元素种类,阻燃剂常分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、膨胀型阻燃剂、硅系阻燃剂、无机阻燃剂等。
由于卤系阻燃剂阻燃的材料在燃烧时会产生大量有毒、有腐蚀性的烟雾,对环境、模具有污染、腐蚀作用。
基于环境保护和可持续发展的要求,无卤阻燃体系具有非常广阔的发展前景[1]。
纳米蒙脱土属于无机纳米阻燃剂,具有优良的力学性能、气体阻隔及阻燃效应、不影响材料的透明度以及低成本、加工方便等优点,不仅提高了聚合物的机械性能,也为聚合物阻燃开辟了新途径。
2 蒙脱土阻燃机理蒙脱土(MMT)阻燃机理主要表现在MMT促进材料燃烧时成碳并起到阻隔作用[2,3]。
MMT具有Lewis酸的特征,起到催化成碳作用。
MMT的Lewis 酸特征是由于在MMT层边缘部分配位的金属离子(如Al3+),或硅氧烷表面多价质点(如Fe2+和Fe3+)的同晶取代,或MMT层状结构内部的结晶缺陷导致的。
MMT作为成碳促进剂,可以抑制熔滴、降低材料的热释放速率、降低聚合物的降解速率以及提供聚合物/MMT纳米复合材料(PMN)抗燃烧的保护屏障。
MMT层有优良的绝缘性,可作为传质屏障,不仅使位于燃烧表面的层状MMT 可阻隔聚合物分解产生的可燃气体向燃烧界面扩散,而且可延缓外界氧气进一步进入材料内部的速度,从而起到延缓燃烧的作用。
Lewin[3]提出了一种PMN中MMT迁移和富集机理,该理论认为,由于MMT的表面自由能低,所以MMT 能迁移至PMN表面起到阻隔作用。