高三文科数学上期中试卷及答案
- 格式:doc
- 大小:603.00 KB
- 文档页数:8
2022年秋期高中三年级期中质量评估数学试题(文)(答案在最后)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第I 卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合401x A x x ⎧⎫-=≤⎨⎬+⎩⎭,{}54B x x =-<<,则()R A B ⋂=ð()A.(](),14,-∞-+∞ B.()(),14,-∞-⋃+∞ C.()5,1-- D.(]5,1--【答案】D 【解析】【分析】解不等式得到集合A ,然后利用补集和交集的定义计算即可.【详解】由题意得集合{}14A x x =-<≤,{R 1A x x =≤-ð或}4x >,所以(){}R 51A B x x ⋂=-<≤-ð.故选:D.2.若2z i z i +=-=,则z =()A.1B.C.D.2【答案】C 【解析】【分析】设i z x y =+,,R x y ∈,由条件列方程求,x y ,再由复数的模的公式求z .【详解】设i z x y =+,,R x y ∈,因为2z i z i +=-=,2=2=,所以0y =,23x =,所以z ==,故选:C.3.已知()()()2lg5lg 10lg f x x x =⋅+,则()2f =()A.1B.2C.3D.4【答案】A 【解析】【分析】根据对数的运算性质及函数值的定义即可求解.【详解】因为()()()2lg5lg 10lg f x x x =⋅+,所以()()()()()()()22222lg5lg 20lg 2lg5lg 4lg 2l 5g5l g lg5lg g 2l 22f ⨯=⨯+++=⨯+=+⨯()()22lg 5lg 2lg101=+==.故选:A.4.已知数列{}n a 的前n 项和211n S n n =-.若710k a <<,则k =()A.9B.10C.11D.12【答案】B 【解析】【分析】先求得n a ,然后根据710k a <<求得k 的值.【详解】依题意211n S n n =-,当1n =时,110a =-;当2n ≥时,211n S n n =-,()()22111111312n S n n n n -=---=-+,两式相减得()2122n a n n =-≥,1a 也符合上式,所以212n a n =-,*N k ∈,由721210k <-<解得911k <<,所以10k =.故选:B5.若x ,y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩则2x y -的最小值是()A.3-B.5- C.8 D.7-【答案】D 【解析】【分析】根据题意画出可行域,令2z x y =-,即1122y x z =-,所以平移斜率为12的直线,12z -相当于在y 轴上的截距,找到使y 轴上的截距最值时的点代入即可.【详解】由题知,画出满足题意的可行域如下所示,令2z x y =-,即1122y x z =-,12z -相当于直线1122y x z =-在y 轴上的截距,平移直线12y x =,当直线过A 点时,截距最大,z 最小,联立203x y x -+=⎧⎨=⎩,可得()A 3,5,故在A 点时取得最优解,代入2z x y =-,可得7z =-.故选:D.6.已知:()1,2a =r,b = a b - 的最大值是()A.B. C.+ D.-【答案】B 【解析】【分析】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r 可得a =得a b -=.【详解】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r ,得a == 所以a b -== ,因为0πθ≤≤,所以1cos θ1-#,即52520cos 45θ≤-≤≤≤所以a b -的最大值为.故选:B.7.函数()f x 的部分图像如图所示,则()f x 的解析式可能为()A.()1cos f x x x=+ B.()1sin f x x x =+C.()1cos f x x x=- D.()1sin f x x x=-【答案】D 【解析】【分析】由函数的奇偶性排除A ,C ,由函数在0x =处的变化趋势排除B ,得正确选项.【详解】由函数图像可知,函数()f x 为奇函数,对于A:()()()11cos cos f x x x f x x x-=-+=+≠---,()f x 不是奇函数排除A 选项;()()()11cos cos f x x x f x x x-=--=+≠--,()f x 不是奇函数排除C 选项;对于B ,当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,但()10,sin 0x f x x x→=+>排除B ;故选:D.8.若π0,2α⎛⎫∈ ⎪⎝⎭,πcos 63α⎛⎫+= ⎪⎝⎭,则sin α=()A.6B.6- C.3D.36【答案】B 【解析】【分析】先由已知条件求出πsin 6α⎛⎫+⎪⎝⎭,然后由ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦化简计算可得答案.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为πcos 63α⎛⎫+= ⎪⎝⎭,所以πsin 63α⎛⎫+=== ⎪⎝⎭,所以ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππsin cos cos sin6666αα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭132326-=⨯-⨯=,故选:B9.在ABC 中,30C =︒,b =,c x =.若满足条件的ABC 有且只有一个,则x 的可能取值是()A.12B.32C.1D.【答案】D 【解析】【分析】利用正弦定理得到sin 2B x=,再分030B ︒<≤和30B ︒>两种情况讨论,结合正弦函数的性质求出x 的取值范围,即可判断.【详解】解:由正弦定理sin sin b c B C =,即sin sin 30x B ︒=,所以sin 2B x=,因为ABC 只有一解,若30B ︒>,则90B ︒=,若030B ︒<≤显然满足题意,所以10sin 2B <£或sin 1B =,所以1022x <≤或12x =,解得x ≥或2x =;故选:D10.若将函数()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭的图像向右平移14个周期后,与函数()()2cos 2g x x ϕ=+的图像重合,则ϕ的一个可能取值为()A.π3B.π3-C.2π3-D.4π3-【答案】C 【解析】【分析】根据三角函数图像平移规律得到平移后的解析式,再对()g x 的解析式变形处理,列出等式,即可判断.【详解】()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭,周期2πT ω=,函数()π2sin 3f x x ω⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,得函数πππ2sin 2sin 236y x x ωωω⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎝⎭⎝⎭⎣⎦的图像,而()()()ππ2cos 22sin 22sin 222g x x x x ϕϕϕ⎡⎤⎛⎫=+=++=++ ⎪⎢⎥⎣⎦⎝⎭,由题意π2,2π,Z π26k k ωϕ=+=-∈,Z 2,π32πk k ϕ∴=-∈,令32ππ2π3k ϕ=-=,得1Z 2k =∉,故A 错误;令32ππ23πk ϕ=-=-,得1Z 6=∉k ,故B 错误;令2π2π332πk ϕ=-=-,得0Z k =∈,故C 正确;令32π34π2πk ϕ=-=-,得1Z 3=-∉k ,故D 错误.故选:C.11.已知函数()πe (cos ),0,2π1,,02x x a x f x x x ⎧⎛⎫-∈ ⎪⎪⎪⎝⎭=⎨⎛⎤⎪--∈- ⎥⎪⎝⎦⎩在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是()A.1a ≥B.3a ≥ C.2a ≥ D.12a ≤≤【答案】C 【解析】【分析】利用导数求解π0,2x ⎛⎫∈ ⎪⎝⎭时()f x 单调递减满足的条件,即可结合分段函数的性质求解.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()e (cos )x f x x a =-,则()e (cos sin )0xf x x x a '=--≤所以πcos sin 4a x x x ⎛⎫≥-=+ ⎪⎝⎭恒成立,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ3π,444x ⎛⎫+∈ ⎪⎝⎭()π1,14x ⎛⎫+∈- ⎪⎝⎭,因此1a ≥,要使()f x 在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则需要()()01201e cos0a a f a ≥⎧⇒≥⎨=-≥-⎩,故选:C12.已知:22π1tan 8π1tan 8a -=+,2b =,4log 3c =,则()A.a b c <<B.a c b<< C.c<a<b D.c b a<<【答案】B 【解析】【分析】根据三角函数的公式求出22a =,然后借助指数函数的单调性得到2log 31.5232<=<=,即可得到a c <,构造函数()22xf x x =-,利用函数的单调性得到0>,整理后即可得到b c >.【详解】222222πππ1tan cos sin π888cos πππ421tan cos sin 888a --====++,2242log 3log 3log 3log 42c ===,∵2log 31.5232<=<=,2log 3<,则2log 322<,即a c <,设函数()22xf x x =-,则()2ln 22x f x '=-,∵()22412ln 22ln 4ln ln 0f '=-=-=<e e ,()21624ln 22ln 0f '=-=>e,且函数()f x '单调递增,∴()f x '只存在一个0x 使()00f x '=,且()01,2x ∈,当0x x <时,()0f x '<,()f x 在()0,x -∞单调递减,∴()102f f ⎛⎫>= ⎪ ⎪⎝⎭,即22log 30log 222>⇒>⇒>,即b c >,所以a c b <<.故选:B.【点睛】方法点睛:比较数值大小方法.(1)估值法:找出式子的取值区间,以此判断各个式子的大小关系;(2)构造函数法:当无法进行估值判断式子大小时,可通过构造函数,利用导数判断其单调性,从而判断式子大小.第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()sin ,sin cos cos ,sin cos ,x x xf x x x x ≤⎧=⎨>⎩,则2023π3f ⎛⎫= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】根据2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭可得解.【详解】2023ππsin πsin 674πsin 3332⎛⎫⎛⎫=+==⎪ ⎝⎭⎝⎭,2023ππ1cos πcos 674πcos 3332⎛⎫⎛⎫=+== ⎪ ⎝⎭⎝⎭,所以2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭,可得202320231πcos π332⎛⎫==⎪⎝⎭f .故答案为:12.14.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c)cos c b A a -=,b =ABC 的外接圆面积为__________.【答案】9π【解析】【分析】在ABC)cos c b A a -=)sin sin cos sin C B A A -=利用π--C B A =消角可得cos 2B =,则角B可求,又b =,可利用正弦定理求ABC 的外接圆直径,ABC 的外接圆面积可求.【详解】 在ABC)cos c b A a -=,∴)sin sin cos sin C B A A -=,又π--C B A =,())sin sin cos sin B A B A A +-=,)sin cos cos sin sin cos sin B A B A B A A +-=,sin sin B A A =,又在ABC 中sin 0A >,∴2cos 2B =.又 在ABC ,0πB <<,∴π4B =,∴ABC的外接圆直径=6sin 22b B ==,∴ABC 的外接圆的面积为9π.故答案为:9π.15.若()e e 1xx f x =+,则()2e 11ef x +-<的解集是______________.【答案】()0,2【解析】【分析】根据题意求得()f x 为偶函数,且在()0,∞+上单调递增,结合()2e 11(1)ef f +==,把不等式转化为()1(1)f x f -<,得到11x -<,即可求解.【详解】由函数()e e 1xx f x =+,可得()()11e e e ex xx xf x f x ---=+=+=,所以()f x 为偶函数,当0x ≥时,可得()e e0x xf x -'=+>,所以函数()f x 在()0,∞+上单调递增,又由()2e 11(1)e f f +==,所以不等式()2e 11ef x +-<等价于()1(1)f x f -<,则满足11x -<,解得02x <<,即不等式的解集为()0,2.故答案为:()0,2.16.不等式()()222e 1a b a b m m -+--≥-对任意实数a ,b 恒成立,则实数m 的取值范围是___________.【答案】[1,2]-【解析】【分析】设(,e ),(1,)a P a Q b b +,则可得22PQ m m ≥-,而,P Q 分别在曲线()x f x e =和直线1y x =-上,将直线1y x =-平移恰好与曲线()x f x e =相切时,可求出PQ 的最小值,从而可解关于m 的不等式可得答案.【详解】由题意设(,e ),(1,)aP a Q b b +,则()()222e 1aPQ b a b =-+--,所以22PQ m m ≥-,因为,P Q 分别在曲线()x f x e =和直线1y x =-上,所以将直线1y x =-平移恰好与曲线()x f x e =相切时,切点到直线1y x =-的距离最小,此时PQ 最小,设切线为y x m =+,切点为00(,)x y ,则()x f x e =,得()e x f x '=,所以0e 1x =,得00x =,则01y =,所以PQ 的最小值为点(0,1)到直线1y x =-的距离d ,d ==,即PQ ,所以22m m ≥-,即220m m --≤,解得12m -≤≤,所以实数m 的取值范围是[1,2]-,故答案为:[1,2]-【点睛】关键点点睛:此题考查不等式恒成立问题,考查导数的几何意义,解题的关键是将问题转化为(,e ),(1,)a P a Q b b +,22PQ m m ≥-,进一步转化为曲线()x f x e =上的点和直线1y x =-的点的距离最小问题,考查数学转化思想,属于较难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .AB AC ⋅=- ,ABC 的面积等于3.(1)求A ;(2)求222b c a +的最小值.【答案】(1)2π3A =(2)23【解析】【分析】(1)根据平面向量的数量积定义及三角形的面积公式可得tan A =,进而求解即可;(2)由(1)可得bc =,结合余弦定理可得222b c a +=-22221b c a a +=-,再根据基本不等式可得2222b c a bc +=-≥=2a ≥.【小问1详解】因为cos cos AB AC AB AC A bc A ⋅=⋅⋅=⋅=- 又1sin 32ABC S bc A ==△,两式相除得,tan A =又0πA <<,所以2π3A =.【小问2详解】由(1)知,cos bc A ⋅=-2π3A =,所以bc =,又2221cos 22b c a A bc +-==-,即222b c a +=-所以2222221b c a a a a+=--=,又因为2222b c a bc +=-=1423b c ==⨯时等号成立,所以2a ≥210a <≤,即214303a -≤-<,即2243113a≤-<,所以222b c a +的最小值为23.18.已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,)*N n b n =∈,且{}n b 是以2为公比的等比数列.(1)证明:24n n a a +=;(2)若2122n n n c a a -=+,求数列{}n c 的通项公式及其前n 项和n S .【答案】(1)证明见解析(2)154n n c -=⋅,()5413n n S =-【解析】【分析】(1)先求得n b ,然后根据递推关系证得24n n a a +=.(2)先求得n c ,然后结合等比数列前n 项和公式求得n S .【小问1详解】依题意,11a =,22a =,0n a >,)*N n b n =∈,1b ==,且{}n b 是以2为公比的等比数列,所以11222n n nb --==,所以1212122n n n n a a --+==,则21122n n n a a +++=,两式相除得224,4n n n na a a a ++==.【小问2详解】由(1)知数列{}2n a 和数列{}21n a -都是公比为4的等比数列,所以1211222221142,42n n n n n n a a a a -----=⋅==⋅=,22211212222254n n n n n n c a a ----=+=+⨯=⨯,1154,4n n n nc c c ++=⨯=,所以数列{}n c 是首项为5,公比为4的等比数列,所以()()514541143n n n S -==--.19.已知函数()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2)若函数()()02g x f x πϕϕ⎛⎫=+<<⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)11,24⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)利用二倍角公式及和差角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先表示出()g x ,根据对称性求出ϕ,即可得到()g x 的解析式,再根据x 的取值范围求出2x 的范围,最后根据正弦函数的性质计算可得;【小问1详解】解:()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭cos 211cos 23222x x π⎛⎫++ ⎪-⎝⎭=--22cos 2cos sin 2sin 11cos 233222x x x ππ-+-=--1cos 2211cos 222222x x x --+-=--13cos 2211cos 222222x x x --+-=--3cos 2sin 2144x x =++1cos 2sin 21222x x ⎛⎫=++ ⎪ ⎪⎝⎭sin 2123x π⎛⎫=++ ⎪⎝⎭,即()sin 2123f x x π⎛⎫=++ ⎪⎝⎭,令222,Z 232k x k k πππππ-≤+≤+∈,解得5,Z 1212k x k k ππππ-≤≤+∈,所以函数的单调递增区间为5,,Z 1212ππππ⎡⎤-+∈⎢⎥⎣⎦k k k .【小问2详解】解:因为()()()33sin 212212323g x f x x x ππϕϕϕ⎡⎤⎛⎫=+=+++=+++ ⎪⎢⎥⎣⎦⎝⎭,又()g x 的图像关于点,12π⎛⎫⎪⎝⎭中心对称,所以2,Z 3k k ππϕπ++=∈,解得21,Z 32k k πϕπ=-+∈,因为02πϕ<<,所以3πϕ=,所以()()sin 21sin 2122g x x x π=++=-+,当,63x ππ⎡⎤∈⎢⎥⎣⎦时22,33x ππ⎡⎤∈⎢⎥⎣⎦,所以sin 2,12x ⎤∈⎥⎣⎦,所以()11,24g x ⎡⎤∈-⎢⎥⎣⎦.20.已知函数()ln a f x x x x=+-,其中a ∈R .(1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)如果对于任意()1,x ∈+∞,都有()2f x >,求实数a 的取值范围.【答案】(1)450x y --=(2)1a ≤-【解析】【分析】(1)先将2a =代入得到()f x 解析式,对()f x 求导可得切线的斜率,由()1f 得切点的坐标,利用点斜式得到切线方程;(2)将()f x 代入得到2ln 2a x x x x <+-,所以将对于任意()1,x ∈+∞都有()2f x >转化成了()2min ln 2<+-a x x x x ,构造函数()2ln 2g x x x x x =+-,对()g x 求导判断函数()g x 单调递增,从而得()()1g x g >,即得证.【小问1详解】当2a =时,由已知得()2ln =+-f x x x x ,故()2121=++'f x x x ,所以()11214f '=++=,又因为()21ln1111=+-=-f ,所以函数()f x 的图象在点()1,1-处的切线方程为()141+=-y x ,即450x y --=;【小问2详解】由()2f x >,()1,x ∈+∞,得2ln 2<-+a x x x x ,设函数()2ln 2g x x x x x =+-,()1,x ∈+∞,则()1ln 22ln 21g x x x x x x x'=+⋅+-=+-,因为()1,x ∈+∞,所以ln 0x >,210x ->,所以当()1,x ∈+∞时,()ln 210g x x x '=+->,故函数()g x 在()1,x ∈+∞上单调递增,所以当()1,x ∈+∞时,()()11ln11211g x g >=⨯+-⨯=-,因为对于任意()1,x ∈+∞,都有()2f x >成立,所以对于任意()1,x ∈+∞,都有()a g x <成立.所以1a ≤-.【点睛】思路点睛:本题利用导数的运算、利用导数求曲线的切线、利用导数判断函数的单调区间、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.21.数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()*21n n S n a n +=∈N.(1)求证:数列{}n a 是等差数列,并求出其通项公式;(2)求证:数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和53n T <.【答案】(1)32n a n =-(2)证明见详解.【解析】【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到1(2)(1)1(2)n n n a n a n --=--≥,从而得到12(3)(2)1(3)n n n a n a n ---=--≥,即可得到122(3)n n n a a a n --=+≥,从而得证,再求出公差,即可求出通项公式;(2)由(1)可得()1231n S n n =-,适当放大再利用裂项相消法求和即可.【小问1详解】数列{}n a 中,n S 为{}n a 的前n 项和,24a =,*2(1)(N )n n S n a n =+∈①,当1n =时,1121a a =+,解得11a =;当2n ≥时,112(1)(1)n n S n a --=-+②,①-②得1(2)(1)1(2)n n n a n a n --=--≥③,所以12(3)(2)1(3)n n n a n a n ---=--≥④,由③④得122(3)n n n a a a n --=+≥,所以数列{}n a 为等差数列,所以公差21413d a a =-=-=,所以13(1)32n a n n =+-=-.【小问2详解】由(1)可得()3212n n n S -+=,所以,所以()1231n S n n =-,当1n =时,11513S =<,当2n ≥时,()122121211(13133(1)31()3n S n n n n n n n n ==⋅<⋅=----,12111n nT S S S =++⋯+211211211131232331n n ⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 525333n =-<,综上53n T <.22.已知()21e 12x f x x x =---.(1)讨论函数()f x 的单调性;(2)设()f x '是()f x 的导数.当[]1,1x ∈-时,记函数()f x 的最大值为M ,函数()f x '的最大值为N .求证:M N <.【答案】(1)()f x 在R 上单调递增(2)见解析【解析】【分析】(1)求导即可由导函数的正负求解原函数的单调性,(2)根据(1)的结论,分别求解M ,N ,即可作差求解大小.【小问1详解】函数()f x 的定义域为R ,()e 1xf x x '=--,令()()(),e 1xx f x x ϕϕ''==-,当()()0,0,x x x ϕϕ'>>单调递增,当()()0,0,x x x ϕϕ'<<单调递减,所以()(0)0x ϕϕ≥=,即()e 10x f x x ¢=--³故函数()f x 在R 上单调递增【小问2详解】由(1)知()f x 在[]1,1x ∈-时,单调递增,且()00f =,故()()[]()(],0,1,1,0f x x y f x f x x ⎧∈⎪==⎨-∈-⎪⎩,所以()(){}max 1,1M f f =-,由于()()115111e 3e 0e 22ef f --=---=--<,所以()()11f f -<,故()51e 2M f ==-,而()51e 2e 2N f M '≥=->-=,因此M N <。
2021-2022学年上学期期中考试高三数学(文科)试题考试时间:120分钟 分数:150分本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则U C A =( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2. 131ii +- = ( )A. 1+2iB. -1+2iC. 1-2iD. -1-2i3. 已知实数x , y 满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z=y-x 的最大值为 ( )A. 1B. 0C. -1D. -2 4. “p ⌝为假命题”是“p q ∧为真命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为( ) A. 32π B. 16π C. 12π D. 8π(5题图) (6题图)是否开始k=1,s=1k<5?输出s结束 k=k+1s=2s-k6. 执行如图所示的程序框图,输出的s 值为 ( ) A. -10 B. -3 C. 4 D. 57. 已知x 与y 之间的几组数据如表:x 0 1 2 3 y267则y 与x 的线性回归方程y b x a ∧∧∧=+必过点 ( )A. (1,2)B. (2,6)C. (315,24) D. (3,7)8. 下列函数中,在定义域内与函数3y x =的单调性与奇偶性都相同的是 ( )A. sin y x =B. 3y x x =-C. 2x y =D.2lg(1)y x x =++9. 对于使()f x N ≥成立的所有常数N 中,我们把N 的最大值叫作()f x 的下确界.若,a b ∈(0, +∞),且2a b +=,则133a b +的下确界为 ( ) A. 163 B. 83 C. 43 D. 2310.如图所示的数阵中,每行、每列的三个数均成等差数列.如果数阵中111213212223313233a a a a a a aa a ⎛⎫ ⎪ ⎪ ⎪⎝⎭所有数的和等于36,那么22a = ( )A. 8B. 4C. 2D. 111.三棱锥P-ABC 的侧棱PA 、PB 、PC 两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4B. 6C. 8D.1012.函数()f x 的定义域为R ,f(0)=2,对x R ∀∈,有()()1f x f x '+>,则不等式()1x xe f x e >+ 的解集为 ( ) A. {}|0x x > B. {}|0x x < C. {}|11x x x <->或 D. {}|10x x x <->>或1第Ⅱ卷(非选择题)二.填空题(本大题共4小题,每小题5分,共计20分)13.已知-向量a 与b 的夹角为60°,且a =(-2,-6),10b =,则ab =14.已知数列{}n a 是等比数列,且1344,8a a a ==,则5a 的值为15.抛物线2(0)y ax a =<的焦点坐标为 16.将边长为2的等边∆ABC 沿x 轴正方向滚动,某时刻A 与坐标原点重合(如图),设顶点(,)A x y 的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2]; ②f(x)是周期函数且周期为6 ; ③()(4)(2015)f f f π<<;④滚动后,当顶点A 第一次落在x 轴上时,f(x)的图象与x 轴所围成的面积为833π+.其中正确命题的序号为三.解答题(本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)在∆ABC 中,内角A,B,C 的对边分别为,,a b c .已知3cos 3cos c b C c B =+(I )求sin sin C A 的值 (II)若1cos ,233B b =-=,求∆ABC 的面积。
高三期中模拟试题 文科数学(满分150分,时间120分钟)一、选择题:本大题共12小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项的代号涂在答题卡上或填在答题纸相应空格里.1.设集合2{|0},{|||2},M x x x N x x =-<=<则A .M N φ=B .M N N =C .M N M =D .M N =R2.已知向量,m n 的夹角为6π,且|||2,==m n 在△ABC 中,,3,AB AC =+=-m n m n D为BC 边的中点,则||AD等于A .1B .2C .3D .4 3.设曲线2cos sin x y x -=在点(,2)2π处的切线与直线10x ay ++=垂直,则a 等于 A .2 B .-2 C .-1 D .1 4.不等式21log 1x x-≥的解集为 A .(,1]-∞- B .[1,)-+∞ C .[-1,0) D .(,1)(0,)-∞-+∞5.函数()sin f x x x =-的零点个数为A .1B .2C .3D .无数个 6.函数log (||1)(1)a y x a =+>的大致图像是7.已知函数1x y a -=(0a >,且1a ≠)的图象恒过定点A ,若点A 在一次函数y mx n=+的图象上,其中,0m n >,则11m n+的最小值为 A .1 B.2 D .4 8.函数()y f x =的导函数图象如图所示,则下面判断正确的是A .在(-3,1)上()f x 是增函数B .在1x =处()f x 有极大值C .在2x =处()f x 取极大值D .在(1,3)上()f x 为减函数9.已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c 且1,45,2ABC a B S ∆=∠=︒=,则b 等于A..3 C .5 D10.若函数()f x 满足:“对于区间(1,2)上的任意实数12122121,(),|()()|||x x x x f x f x x x ≠-<-恒成立”,则称()f x 为完美函数.在下列四个函数中,完美函数是A .1()f x x= B .()||f x x = C .()23f x x =- D .2()f x x =11.若0,0a b >>且4a b +=,则下列不等式恒成立的是A .112ab >B .111a b +≤ C2≥ D .22118a b ≤+12.函数()sin()f x A x b ωϕ=++的图象如下,则(0)(1)(2011)S f f f =+++ 等于A .0B .503C .1006D .2012二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在答题纸相应题目的横线上.13.已知,,a b c 分别是△ABC 的三个内角,,A B C 所对的边,若1,2,a b A C B ==+=则sin C =____________14.已知||2,||4==a b ,且(+a b )与a 垂直,则a 与b 的夹角是______________15.若20.30.30.3,2,log 2a b c ===,则,,a b c 由大到小的关系是______________16.设01a <≤,函数2(),()ln a f x x g x x x x =+=-,若对任意的12,[1,]x x e ∈,都有12()()f x g x ≥成立,则实数a 的取值范围为__________三、解答题:本大题共6小题,满分74分,解答时要求写出必要的文字说明或推演步骤.17.(本题满分12分)已知点(,)P x y 在由不等式组301010x y x y x +-≤⎧⎪--≤⎨⎪-≥⎩确定的平面区域内,O 为坐标原点,(1,2)A -,试求OP OA ⋅的最大值.18.(本题满分12分)已知函数()sin(2)sin(2)cos266f x x x x a ππ=++--+(,a R a ∈为常数).(1)求函数()f x 的单调增区间; (2)若函数()f x 的图像向左平移(0)m m >个单位后,得到函数()g x 的图像关于y 轴对称,求实数m 的最小值.19.(本题满分12分)已知(cos ,sin ),(cos ,sin )ααββ==a b ,其中0αβπ<<<. (1)求证:+a b 与-a b 互相垂直;(2)若k +a b 与(0)k k -≠a b 的长度相等,求βα-. 20.(本题满分12分) 奇函数()()1()m g x f x g x -=+的定义域为R ,其中()y g x =为指数函数且过点(2,9).(1)求函数()y f x =的解析式;(2)若对任意的[0,5]t ∈,不等式22(2)(225)0f t t k f t t +++-+->恒成立,求实数k 的取值范围.21.(本题满分12分)在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为1,23,x x x ,每个工作台上有若干名工人.现要在1x 与3x 之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.(1)若每个工作台上只有一名工人,试确定供应站的位置;(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.22.(本题满分14分)已知函数2()ln(1)().f x x ax a x a =---∈R (1)求函数()f x 的单调区间;(2)试判断是否存在实数(1)a a ≥,使()y f x =的图像与直线1y =+无公共点(其中自然对数的底数e 为无理数且e =2.71828…).高三期中模拟试题 文科数学 参考答案一、BADCA BDCCA DD二、13.1 14.23π 15.b a c >> 161a ≤18.解:(1)()sin(2)sin(2)cos266f x x x x a ππ=++--+2cos22sin(2).6x x a x a π=-+=-+…………………………………3分当222()262k x k k πππππ-≤-≤+∈Z ,即()63k x k k ππππ-≤≤+∈Z 时,函数()f x 单调递增,故所求区间为[,]().63k k k ππππ-+∈Z …………………………6分(2)函数()f x 的图像向左平移(0)m m >个单位后得()2sin[2()]6g x x m a π=+-+,要使()g x 的图像关于y 轴对称,只需2()62m k K Z πππ-=+∈…………………………9分即()23k m k Z ππ=+∈,所以m 的最小值为3π.………………………………12分 19.解:(1)22()()+⋅-=-a b a b a b 222222||||(cos sin )(cos sin )ααββ=-=+-+a b =1-1=0∴+a b 与-a b 互相垂直.……………………………………5分(2)+(cos cos ,sin sin ),k k k αβαβ=++a b -(cos cos ,sin sin ),k k k αβαβ=--ab |+||k k ∴=-=a b a b22|+|||,2cos()12cos()1,k k k k k k βαβα=-∴+-+=--+a b a b ……………9分2cos()2cos(),k k βαβα-=--0k ≠ ,故cos()0βα-=,又0,0,αβπβαπ<<<∴<-<.2πβα∴-=………………………12分20.解:(1)设()(0,1),x g x a a a =>≠则29,3a a =∴=或3a =-(舍),3()3,().13x xxm g x f x -∴==+……………………2分 又()f x 为奇函数,33()(),1313x xx x m m f x f x ----∴-=-∴=-++, 整理得(31)31x xm +=+ 1m ∴=13().13x xf x -∴=+ …………………………6分 (2)22.3ln3()0,()(13)x x f x y f x -'=<∴=+ 在R 上单调递减.……………………7分要使对任意的22[0,5],(2)(225)0t f t t k f t t ∈+++-+->恒成立, 即对任意的22[0,5],(2)(225)t f t t k f t t ∈++>--+-恒成立.()f x 为奇函数,22(2)(225)f t t k f t t ∴++>-+恒成立,…………………………9分又()y f x = 在R 上单调递减,222225t t k t t ∴++<-+当[0,5]t ∈时恒成立,2245(2)1k t t t ∴<-+=-+当[0,5]t ∈时恒成立,而当[0,5]t ∈时,21(2)110t ≤-+≤, 1.k ∴<………………………………12分21.解:设供应站坐标为x ,各工作台上的所有工人到供应站的距离之和为().d x(1)由题设知,13x x x ≤≤,所以123312()()||()||.d x x x x x x x x x x x =-+-+-=-+-………3分 故当2x x =时,()d x 取最小值,此时供应站的位置为2.x x =……………5分 (2)由题设知,13x x x ≤≤,所以各工作台上的所有工人到供应站的距离之和为132()2()3()||.d x x x x x x x =-+-+-……………………………………8分 ∴3211232123232,,()32,.x x x x x x x d x x x x x x x -++-≤<⎧=⎨--≤≤⎩…………………………10分 因此,函数()d x 在区间(12,x x )上是减函数,在区间[23,x x ]上是常数.故供应站位置位于区间[23,x x ]上任意一点时,均能使函数()d x 取得最小值,且最小值为32132.x x x --………………12分22.解:(1)函数2()ln(1)()f x x ax a x a =---∈R 的定义域是(1,).+∞………1分22()2()211a x x a f x x a x x +-'=--=--,…………………3分 ①若0a ≤,则22()221,()021a x x a f x x +-+'≤=>-在(1,)+∞上恒成立, 0a ∴≤时,()f x 的增区间为(1,)+∞…………………………5分②若0a >,则212a +>,故当2(1,]2a x +∈时,22()2()01a x x f x x +-'=≤-; 当时2[,)2a x +∈+∞时,22()2()01a x x f x x +-'=≥-,…………………………7分 0a ∴>时,()f x 的减区间为2(1,],()2a f x +的增区间为2[,).2a ++∞…………………8分(2)1a ≥时,由(1)可知,()f x 在(1,)+∞上的最小值为22()1ln .242a a af a +=-+-…………………10分设22()()1ln ([1,)),242a a a g a f a a +==-+-∈+∞则113()ln 1(1)ln 1ln 20,22222a a g a g ''=---≤=---=-+<2()1ln 42a ag a a ∴=-+-在[1,)+∞上单调递减,max 3()(1)ln 24g a g ∴==+,……………………………12分max 314()1ln 21ln 0,44eg a --+-->∴存在实数(1)a a ≥使()f x的最小值大于1+故存在实数(1)a a ≥,使()y f x =的图像与直线1y =+无公共点.……………14分。
临川一中2022-2023学年度上学期期中考试高三年级文科数学试卷卷面满分:150分考试时间:120分钟1.若集合{}21|<<-=x x A ,一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目}21|x y x B -==,则=B A ()A .[]1,1-B .(]1,1-C .()2,1-D .[)2,1-2.已知复数iiz +=1(i 是虚数单位),则=+i z 2()A B C .D .3.已知函数mx x f 3)(=的图象经过点()3,2,则=)2log 2(3f ()A .2B .3C .4D .94.=-110cos 40cos 20cos 40sin ()A .12B .12-C D .5.在长方体1111D C B A ABCD -中,1==BC AB ,异面直线1AC 与1BB 所成的角为30,则=1AA ()A .3B .3C .5D .66.设命题3ln )2ln(0:≤-<x p ,命题0)3)((:≤---m x m x q ,若q 是p 的必要不充分条件,则实数m 的取值范围是()A .[)2,3B .(]2,3C .[]2,3D .()2,37.在等差数列{}n a 中,20221-=a ,其前n 项和为n S ,若2810810=-S S ,则=2022S ()A .2021B .2021-C .2022-D .20228.如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且MN=2B C ,点E 为DC 的中点,则=⋅EN EM ()A .21-B .23-C .2-D .3-9.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,且在区间[]2,1上是减函数,令2ln =a ,2141-⎪⎭⎫⎝⎛=b ,2log 21=c ,则)(a f ,)(b f ,)(c f 的大小关系为()A .)()()(a f c f b f <<B .)()()(a f b f c f <<C .)()()(b f c f a f <<D .)()()(b f a f c f <<10.已知函数⎪⎭⎫⎝⎛<>>+=2||,0,0)sin()(πϕωϕωA x A x f 部分图象如图所示,且QAB △的面积是P AB △面积的2倍,则函数)(x f 的单调递减区间为()A .⎥⎦⎤⎢⎣⎡++344,34ππππk k ,Z k ∈B .⎦⎤⎢⎣⎡++384,324ππππk k ,Z k ∈C .⎦⎤⎢⎣⎡+-34,324ππππk k ,Z k ∈D .⎥⎦⎤⎢⎣⎡+-324,344ππππk k ,Z k ∈11.已知()21,1ln ,1x x f x x x ⎧-≤=⎨>⎩,则方程()()()()2e e 0f x x f x x -++=的解的个数为()A .2B .3C .4D .512.已知双曲线)0,0(12222>>=-b a by a x 左,右焦点分别为)0,(1c F -,)0,(2c F ,若双曲线右支上存在点P使得1221sin sin F PF c F PF a ∠=∠,则离心率的取值范围为()A .[)+∞+,12B .(]12,1+C .()12,1+D .()+∞+,12二、填空题:本题共4小题,每小题5分,共20分.132=1=,且()32=⋅+b b a ,则向量a 与b 的夹角等于.14.拉格朗日中值定理是微分学中的基本定理之一,定理内容是:如果函数()f x 在闭区间[],a b 上的图象连续不间断,在开区间(),a b 内的导数为()f x ',那么在区间(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-成立,其中c 叫做()f x 在[],a b 上的“拉格朗日中值点”.根据这个定理,可得函数()32f x x x =-在[]22-,上的“拉格朗日中值点”的个数为.15.设O 为坐标原点,直线2=x 与抛物线)0(2:2>=p px y C 交于E D ,两点,若OE OD ⊥,则C 的焦点坐标为.16.在锐角ABC △中,角C B A ,,所对的边分别为c b a ,,,S 为ABC △的面积,且22)(2c b a S --=,则cb的取值范围.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.17.已知等比数列{}n a 的公比与等差数列{}n b 的公差相等,且5511==a b ,122375+=+b b b ,.(1)求{}n a ,{}n b 的通项公式;(2)若n n n c b a =+,求数列{}n c 的前n 项和.18.如图,在四棱锥ACED B -中,CE AD ∥,且CE AD 32=,F 是棱BE 上一点,且满足FE BF 2=.(1)证明:∥DF 平面ABC ;(2)若三棱锥ADF B -的体积是4,ABC △的面积是22,求点F 到平面ABC 的距离.19.2022年6月5日是世界环境日,十三届全国人大常委会第三十二次会议表决通过的《中华人民共和国噪声污染防治法》今起施行.噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2-⋅cm W )之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:(1)根据散点图判断,I b a D 11+=与I b a D lg 22+=哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程(请使用题后参考数据作答);(3)假定当声音强度大于45dB 时,会产生噪声污染,城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101091=+ba I I .已知点P 处的声音能量p I 等于a I 与b I 之和,请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.参考数据:111.0410I -⨯=,36.7D =,令lg i i W I =,有101110i i W W ==∑,11.4W =-,221101() 1.3810i i I I =--=⨯∑,1021()1.48ii W W =-=∑,()()1017.4i i i W W D D =-⋅-=∑,()()101116.910i i i I I D D -=--=⨯∑,()()()121ˆniii nii x y x x y bx ==--=-∑∑,ˆˆay bx =-,lg 20.3≈.20.已知椭圆)0(1:2222>>=+b a by a x E 的左,右焦点分别为1F ,2F ,且焦距长为2,过1F 且斜率为42的直线与椭圆E 的一个交点在x 轴上的射影恰好为2F .(1)求椭圆E 的方程;(2)如图,下顶点为A ,过点)2,0(B 作一条与y 轴不重合的直线,该直线交椭圆E 于D C ,两点,直线AD ,AC 分别交x 轴于H ,G 两点,O 为坐标原点.求证:ABG △与AOH △的面积之积为定值,并求出该定值.21.已知函数x e x f x-=)(,412sin )(2-+=x x m x g .(1)若)(x g 在区间⎪⎭⎫⎝⎛-3,3ππ上存在极值点,求实数m 的取值范围;(2)求证:当2=m 时,对任意()+∞-∈,2x ,)()(x g x f >.参考数据:414.12≈,518.0226≈-,19.24≈πe ,85.23≈πe (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 541531(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为012sin 3222=-+θρρ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,点M 的直角坐标为()1,1--,求||||MQ MP -.23.已知函数1)(+++=x a x x f .(1)当1-=a 时,求x x f 3)(<的解集;(2)2222)(a x x x g ++-=,若对R x ∈∃1,[)+∞∈∀,02x 使得)()(21x g x f ≤成立,求实数a 的取值范围.临川一中2022-2023学年度上学期第二次月考文科数学试题答案13. 6014.215.⎪⎭⎫ ⎝⎛0,2116.⎪⎭⎫ ⎝⎛35,5317.解:(1)设{}n a 的公比为q ,{}n b 的公差为d ,因573212b b b +=+,则112102412b d b d +=++,解得2d =,…………………………………2分而15b =,则()1123n b b n d n =+-=+,又11a =,2q d ==,有1112n n n a a q --==,所以{}n a ,{}n b 的通项公式分别为12n n a -=,23n b n =+.……………………………………6分(2)由(1)可知,1223n n n n c a b n -=+=++,令数列{}n c 的前n 项和为n S ,则212(523)214122n n n n nS n n -++=+=-++-.………………………………………………12分18.解:(1)如图,在棱BC 上取一点G ,使2BG GC =,连接,AG FG .2,2,2BF BG BF FE BG GC FE GC ==∴== ,FG CE ∴∥且23FG CE =,………2分又2,,3AD CE AD CE FG AD =∴=∥,且AD FG ∥.∴四边形ADFG 是平行四边形,DF AG ∴∥.又DF ⊄平面,ABC AG ⊂平面ABC ,DF ∴ 平面ABC .………………………………………………6分(2)设点F 到平面ABC 的距离为h ,三棱锥B ADF -的体积是4,ABC 的面积是22,2BG GC=因为221224333B ADF B AGF F ABG F ABC V V V V h ----=⨯===⨯⨯=,解得922h =.…………12分19.解:(1)散点图近似在一条曲线上,故22lg D a b I =+更适合.………………2分(2)令lg i i W I =,lg =W I ,则22=+D a b W , 10121021()()7.45()1.48iii ii W W D D b W W ==--===-∑∑,………………4分2236.75(11.4)93.7a D b W =-=-⨯-=,……………………6分即D 关于W 的回归方程是93.75D W =+,则D 关于I 的非线性经验回归方程是93.75lg D I =+.………………………7分(3)设点P 处的声音能量为1I ,则1a b I I I =+,题号123456789101112答案BAACDCCDBBCC因为0a I >,0b I >,101910a bI I +=,所以()10101010191910101010101610b a a b a b a b a b I I I I I I I I I I I ----⎛⎫⎛⎫ ⎪ ⎭⎛=+=++=++≥+⎝=⨯ ⎝⎝⎪⎭,…………9分当且仅当3b a I I =,即10041a I =,101210bI =时等号成立,……………………………………10分所以()10193.75lg 93.75lg 161020lg 243.749.745D I -=+≥+⨯=+≈>,所以点P 处会受到噪声污染.……………………………………………12分20.解:(1)由题意,()11,0F -,()21,0F ,故过1F4的直线的方程为1)y x +,令1x =,得y =,由题意可得222211112a b ab ⎧-=⎪⎨+=⎪⎩,解得22a =,21b =.∴椭圆E 的方程为2212x y +=;………………………………………4分(2)证明:由题意知,直线BC 的斜率存在,设直线:2BC y kx =+,1(D x ,1)y ,2(C x ,2)y ,联立22212y kx x y =+⎧⎪⎨+=⎪⎩,得22(12)860k x kx +++=.∴122812k x x k -+=+,122612x x k =+,由216240k ∆=->,得232k >,………………………………………………6分121224()412y y k x x k∴+=++=+,2212121212242(2)(2)2()412k y y kx kx k x x k x x k -=++=+++=+,直线AD 的方程为1111y y x x +=-,令0y =,解得111xx y =+,则11(1x H y +,0),同理可得22(1x G y +,0),…………………………………………8分∴121212121131||3||||21214(1)(1)ABG AOH x x x x S S y y y y ⋅=⨯⨯⨯⨯⨯=++++ 2122221212226333636112|||||44241441244249211212x x k k y y y y k k k k +====⨯=-++++++-++++.∴△ABG 与△AOH 的面积之积为定值21.………………………………12分21.(1)由题意,()cos 0g x m x x '=+=在ππ,33x ⎛⎫∈- ⎪⎝⎭上有变号零点,cos x m x∴-=,令()cos xh x x =,则2cos sin ()0cos x x x h x x +'=>,所以函数()h x 单调递增,∴()()ππ2π2πh h x h h x ⎛⎫⎛⎫-<<⇒-<< ⎪ ⎪,∴2233ππm -<-<2233ππm ⇒-<<,∴m 的取值范围为2π2π,33⎛⎫- ⎪⎝⎭.…………………5分(2)m ()()21e ()24xx x F x f x g x x -+=-=-,()e 1x x x F x -'-=,令()e 1x T x x x --=,则()e 1x T x x '=+-,当20x -<≤时,()0T x '<,()F x '单调递减;此时2(2)122F e -'-=-+21210e =-+>,(0)0F '=<,存在唯一的()02,0x ∈-使()0F x '=且当02x x -<<时,()0F x '>,()F x 单调递增;当00x x <≤时,()0F x '<,()F x 单调递减;且()221111222220e 4e 4F -=+-+=+>,15(0)1044F =+=>,∴当20x -<≤时,()0F x >,…………………………7分当0πx <≤时,()0T x '>,()F x '单调递增,且当πx >时,()πe 10T x '>>,∴0x >时,()0T x '>,()F x '单调递增,且注意到441120444ππF e πππe ⎛⎫'=---=--< ⎪⎝⎭,π3ππe 1033F '⎛⎫=--> ⎪⎝⎭,∴存在唯一的1ππ,43x ⎛⎫∈ ⎪⎝⎭使()10F x '=,即1111x e x x -=+,且()F x 在()10,x 上单调递减,()1,x +∞上单调递增,∴()()1211111e 24x x F x F x x x ≥=--+2111524x x x =--+,……………………9分令()25ππ,,2443x G x x x x ⎛⎫=-+∈ ⎪⎝⎭,()0G x x x x =--<',()G x ∴在ππ,43⎛⎫⎪⎝⎭上单调递减,∴()2π16π50322184G x G ⎛⎫>=-+> ⎪⎝⎭∴()0F x >,综上:对()2,x ∀∈-+∞有()()f x g x >.……………………………12分22.解:(1)因为直线l 的参数方程为315415x t y t⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),所以直线l 的普通方程为4310x y -+=,……………………………………2分由2223sin 120ρρθ+-=,得222234sin 120cos ρρθθ+-=,因为cos sin x y ρθρθ=⎧⎨=⎩,所以曲线C 的直角坐标方程为223412x y +=,即22143x y +=;……………………………5分(2)将直线l 的参数方程315415x t y t⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入22143x y+=,得2912501250t t --=,则1212250125,9191t t t t +==-,………………………8分所以1225091MP MQ t t -=+=.……………………………10分23.解:(1)当1a =-时,()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩,………………………2分当1x <-时,23x x -<,解得0x >,无解,当11x -≤≤时,23x <,解得23x >,则213x <≤,当1x >时,23x x <,解得0x >,则1x >,所以原不等式的解集为23x x ⎧⎫>⎨⎬⎩⎭.………………………………………5分(2)当R x ∈时,()1|1|1f x x a x x a x a =+++≥+--=-,当且仅当()()10x a x ++≤时取“=”,即()min1f x a =-, (6)分而当0x ≥时,()222222(1)1g x x x a x a =-++=-++,因此()()2min 11g x g a ==+,………………7分因为对1R x ∃∈,[)20,x ∀∈+∞使得()()12f x g x ≤成立,从而得211a a -≤+,因为210a +>,则有22111a a a --≤-≤+,解得1a ≤-或0a ≥,……………………9分所以实数a 的取值范围为(][),10,-∞-⋃+∞.……………………10分。
2019届第一学期期中考试高三文科数学参考答案一.选择题(共12小题,每题5分)答案1.D 2.A 3C 4C 5 D 6D 7 B 8B 9B 10C 11B 12A 二. 填空题13. 答 14.答915.答-2 16.答104b 27≤<三、解答题17(12分)解:(1)在△ABC 中,A B C π++=所以coscos 22A C Bπ+-= sin 2B ==.所以2cos 12sin 2B B =- 13=. 322cos 1sin 2=-=B B 所以22cosBsinBtan ==B(2)因为3a =,b =,1cos 3B =,由余弦定理2222cos b a c ac B =+-, 得2210c c -+=. 解得1c =. 所以△ABC 的面积23221321sin 21s =⨯⨯⨯==B ac 18、(12分)2222)242()24(1062n n n n T n =-+=-++++= 19、(12分)试题解析:(1)证明:∵,∴,∵,∴.又∵底面,∴.∵,∴平面.平面∴⊂,平面PBC BC ⊥PBC 平面(2)三棱锥的体积与三棱锥的体积相等,而 .所以三棱锥的体积.20、(12分)试题解析:(1)设抽到不相邻两组数据为事件A ,因为从第5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况有4种,所以()431105P A =-=故选取的2组数据恰好是不相邻的2天数据的概率是35,(2)由数据,求得()()1111131212,2530262733x y =++==++=22213972,112513*********,111312434ni i i x y x y =⋅==⨯+⨯+⨯=++=∑23432x =,由公式得97797254344322b -==-,3a y bx =-=-,所以y 关于x 的线性回归方程这ˆ532y x =-(3)当10x =时, 5322,2222ˆ32yx =-=-<同样地,当8x =时, 58317,1712ˆ62y=⨯-=-<所以,该研究所得到的线性回归方程是可靠21、(12分)解:(1)因为()313f x x ax =-,()221g x bx b =+-,所以()2f x x a '=-,()2g x bx '=.因为曲线()x f y =与()x g y =在它们的交点()c ,1处有相同切线,所以()()11g f =,且()()11g f '='。
成都七中2022~2023学年度(上)高三年级半期考试数学试卷(文科)(试卷总分:150分,考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,则()U A B = ð( )A. {}0,6 B. {}1,4 C. {}2,4 D. {}3,5【答案】C【解析】【分析】根据交集、补集的定义,即得解【详解】由题意,全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,故{0,2,4,6}U B =ð则(){2,4}U A B =∩ð故选:C2. 复数43i 2i z -=+(其中i 为虚数单位)的虚部为( )A. 2- B. 1- C. 1 D. 2【答案】A【解析】【分析】根据复数除法的运算法则,求出复数z ,然后由虚部的定义即可求解.【详解】解:因为复数()()()()2243i 2i 43i 510i 12i 2i 2i 2i 21z ----====-++-+,所以复数z 的虚部为2-,故选:A .3. 青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角12名青少年的视力测量值()1,2,3,,12i a i =⋅⋅⋅(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】依题意该程序框图是统计这12名青少年视力小于等于4.3人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于4.3的人数,由茎叶图可知视力小于等于4.3的有5人,故选:B4. 抛物线()220y px p =≠上的一点()9,12P -到其焦点F 的距离PF 等于( )A. 17B. 15C. 13D. 11【答案】C【解析】【分析】由点的坐标求得参数p ,再由焦半径公式得结论.【详解】由题意2122(9)p =⨯-,解得8p =-,所以4(9)132P p PF x =--=--=,故选:C .5. 奥运会跳水比赛中共有7名评委给出某选手原始评分,在评定该选手的成绩时,去掉其中一个最高分和一个最低分,得到5个有效评分,则与7个原始评分(不全相同)相比,一定会变小的数字特征是( )A. 众数B. 方差C. 中位数D. 平均数【答案】B【解析】的【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】对于A:众数可能不变,如8,7,7,7,4,4,1,故A错误;对于B:方差体现数据的偏离程度,因为数据不完全相同,当去掉一个最高分、一个最低分,一定使得数据偏离程度变小,即方差变小,故B正确;对于C:7个数据从小到大排列,第4个数为中位数,当首、末两端的数字去掉,中间的数字依然不变,故5个有效评分与7个原始评分相比,不变的中位数,故C错误;对于C:平均数可能变大、变小或不变,故D错误;故选:B6. 已知一个几何体的三视图如图,则它的表面积为()A. 3πB. 4πC. 5πD. 6π【答案】B【解析】【分析】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,根据题干三视图的数据,以及圆锥的侧面积和球的表面积公式,即得解【详解】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同底面圆的半径1r =,圆锥的母线长2l ==记该几何体的表面积为S 故211(2)4422S r l r πππ=+⨯=故选:B7. 设平面向量a ,b 的夹角为120︒,且1a = ,2b = ,则()2a a b ⋅+= ( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用向量数量积的运算律以及数量积的定义,计算即得解【详解】由题意,()22222112cos120211a ab a a b ⋅+=+⋅=⨯+⨯⨯=-= 则()21a a b ⋅+= 故选:A8. 设x ,y 满足240220330x y x y x y +-≤⎧⎪-+≤⎨⎪++≥⎩,则2z x y =+的最大值是( )A. 2- B. 1- C. 1 D. 2【答案】D【解析】【分析】画出不等式组表示的平面区域,如图中阴影部分所示, 转化2z x y =+为2y x z =-+,要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大,数形结合即得解【详解】画出不等式组表示的平面区域,如图中阴影部分所示转化2z x y =+为2y x z=-+要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大由图像可知,当经过图中B 点时,直线的截距最大240220x y x y +-=⎧⎨-+=⎩,解得(0,2)B 故2022z =⨯+=故2z x y =+的最大值是2故选:D9. “α为第二象限角”是“sin 1αα>”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据条件sin 1αα->求出α的范围,从而可判断出选项.【详解】因为1sin 2sin 2sin 23πααααα⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由sin 1αα>,得2sin 13πα⎛⎫-> ⎪⎝⎭,即1sin 32πα⎛⎫-> ⎪⎝⎭,所以522,636k k k Z ππππαπ+<-<+∈,即722,26k k k Z πππαπ+<<+∈,所以当α为第二象限角时,sin 1αα>;但当sin 1αα>时,α不一定为第二象限角,故“α为第二象限角”是“sin 1αα>”的充分不必要条件.故选:A .10. 已知直线()100,0ax by a b +-=>>与圆224x y +=相切,则22log log a b +的最大值为( )A. 3B. 2C. 2-D. 3-【答案】D【解析】【分析】由直线与圆相切可得2214a b +=,然后利用均值不等式可得18ab ≤,从而可求22log log a b +的最大值.【详解】解:因为直线()100,0ax by a b +-=>>与圆224x y +=相切,2=,即2214a b +=,因为222a b ab +≥,所以18ab ≤,所以22221log log log log 38a b ab +=≤=-,所以22log log a b +的最大值为3-,故选:D .11. 关于函数()sin cos 6x x f x π⎛⎫=-⎪⎝⎭的叙述中,正确的有( )①()f x 的最小正周期为2π;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦内单调递增;③3f x π⎛⎫+ ⎪⎝⎭是偶函数;④()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称.A. ①③B. ①④C. ②③D. ②④【答案】C【解析】【分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得()11sin(2)264f x x π=-+,再根据正弦型函数的性质,结合各项描述判断正误即可.【详解】()211sin cos sin sin )cos sin 622x f x x x x x x x x π⎛⎫=-=+=+= ⎪⎝⎭11112cos 2sin(2)44264x x x π-+=-+,∴最小正周期22T ππ==,①错误;令222262k x k πππππ-≤-≤+,则()f x 在[,63k k ππππ-+上递增,显然当0k =时,63ππ⎡⎤-⎢⎥⎣⎦,②正确;1111sin(2)cos 2322424f x x x ππ⎛⎫+=++=+ ⎪⎝⎭,易知3f x π⎛⎫+ ⎪⎝⎭为偶函数,③正确;令26x k ππ-=,则212k x ππ=+,Z k ∈,易知()f x 的图象关于1,124π⎛⎫ ⎪⎝⎭对称,④错误;故选:C12. 攒尖在中国古建筑(如宫殿、坛庙、园林等)中大量存在,攒尖式建筑的屋面在顶部交汇成宝顶,使整个屋顶呈棱锥或圆锥形状.始建于1752年的廓如亭(位于北京颐和园内,如图)是全国最大的攒尖亭宇,八角重檐,蔚为壮观.其檐平面呈正八边形,上檐边长为a ,宝顶到上檐平面的距离为h ,则攒尖的体积为( )A.B.C.D. 【答案】D【解析】【分析】攒尖是一个正八棱锥,由棱锥体积公式计算可得.【详解】如图底面正八边形ABCDEFGH 的外接圆圆心是O (正八边形对角线交点),设外接圆半径为R ,在OAB 中,4AOB π∠=,AB a =,由余弦定理得222222cos (24a R R R R π=+-=-,22R ==,正八边形的面积为218sin 24S R π=⨯22(1a =,所以攒尖体积13V Sh ==.故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13. 命题“x N ∃∈,22x x <”的否定是_______________________.【答案】2,2x x N x ∀∈≥【解析】【分析】根据命题的否定的定义求解.【详解】特称命题的否定是全称命题.命题“x N ∃∈,22x x <”的否定是:2,2x x N x ∀∈≥.故答案为:2,2x x N x ∀∈≥.14. 函数()ln f x x =-在1x =处的切线方程为_______________________.(要求写一般式方程)【答案】230x y +-=【解析】【分析】利用导函数求出斜率,即可写出切线方程.【详解】()ln f x x =-的导函数是()1f x x'=,所以()111122f '=-=-.又()11f =,所以函数()ln f x x =-在1x =处的切线方程为()1112y x -=--,即230x y +-=.故答案为:230x y +-=.15. 已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为1F 、2F ,且两条渐近线互相垂直,若C 上一点P 满足213PF PF =,则12F PF ∠的余弦值为_______________________.【答案】13【解析】【分析】由题意可得b a =,进而得到c =,再结合双曲线的定义可得123,PF a PF a ==,进而结合余弦定理即可求出结果.【详解】因为双曲线()2222:10,0x y C a b a b -=>>,所以渐近线方程为b y x a =±,又因为两条渐近线互相垂直,所以21b a ⎛⎫-=- ⎪⎝⎭,所以1b a =,即b a =,因此c =,因此213PF PF =,又由双曲线的定义可知122PF PF a -=,则123,PF a PF a ==,所以在12F PF △中由余弦定理可得222122112121cos 23PF PF F F F PF PF PF +-∠===⋅,故答案为:13.16. 已知向量(),a x m = ,()32,2b x x =-+ .(1)若当2x =时,a b ⊥ ,则实数m 的值为_______________________;(2)若存在正数x ,使得//a b r r,则实数m 取值范围是__________________.【答案】①. 2- ②. (),0[2,)-∞⋃+∞【解析】【分析】(1)由2x =时,得到()2,a m = ,()4,4b = ,然后根据a b ⊥ 求解;(2)根据存在正数x ,使得//a b r r,则()22320x m x m +-+=,()0,x ∈+∞有解,利用二次函数的根的分布求解.【详解】(1)当2x =时,()2,a m = ,()4,4b = ,因为a b ⊥ ,所以2440m ⨯+=,解得2m =-,所以实数m 的值为-2;(2)因为存在正数x ,使得//a b r r,所以()()232x x m x +=-,()0,x ∈+∞有解,即()22320x m x m +-+=,()0,x ∈+∞有解,所以()223022380m m m -⎧->⎪⎨⎪∆=--≥⎩或230220m m -⎧-≤⎪⎨⎪<⎩,解得2m ≥或0m <,所以实数m 的取值范围是(),0[2,)-∞⋃+∞.故答案为:-2,(),0[2,)-∞⋃+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个题目考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某企业有甲、乙两条生产线,其产量之比为4:1.现从两条生产线上按分层抽样的方法得到一个样本,其部分统计数据如表(单位:件),且每件产品都有各自生产线的标记.的产品件数一等品二等品总计甲生产线2乙生产线7总计50(1)请将22⨯列联表补充完整,并根据独立性检验估计;大约有多大把握认为产品的等级差异与生产线有关?()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(2)从样本的所有二等品中随机抽取2件,求至少有1件为甲生产线产品的概率.【答案】(1)列联表见解析,有97.5%的把握认为产品的等级差异与生产线有关; (2)710【解析】【分析】(1)完善列联表,计算出卡方,再与观测值比较即可判断;(2)记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ,用列举法列出所有可能结果,再根据古典概型的概率公式计算可得;小问1详解】解:依题意可得22⨯列联表如下:产品件数一等品二等品总计甲生产线38240乙生产线7310总计45550所以()225038327 5.5561040545K ⨯-⨯=≈⨯⨯⨯,因为5.024 5.556 6.635<<,所以有97.5%的把握认为产品的等【级差异与生产线有关;【小问2详解】解:依题意,记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ;则从中随机抽取2件,所有可能结果有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc 共10个,至少有1件为甲生产线产品的有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc 共7个,所以至少有1件为甲生产线产品的概率710P =;18. 如图,在正三棱柱111ABC A B C -中,D 是BC 的中点.(1)求证:平面1ADC ⊥平面11BCC B ;(2)已知1AA =,求异面直线1A B 与1DC 所成角的大小.【答案】(1)证明见解析; (2)6π【解析】【分析】(1)证得AD ⊥平面11BCC B ,结合面面垂直的判定定理即可证出结论;(2)建立空间直角坐标系,利用空间向量的夹角坐标公式即可求出结果.【小问1详解】因为正三棱柱111ABC A B C -,所以AB AC =,又因为D 是BC 的中点,所以AD BC ⊥,又因为平面ABC ⊥平面11BCC B ,且平面ABC ⋂平面11BCC B BC =,所以AD ⊥平面11BCC B ,又因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B ;【小问2详解】取11B C 的中点E ,连接DE ,由正三棱柱的几何特征可知,,DB DA DE 两两垂直,故以D 为坐标原点,分以,,DA DB DE 所在直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,设2AB =,则1AA =,所以()()(11,0,1,0,0,0,0,0,1,A B D C -,则((11,0,1,A B DC =-=-u u u r u u u r,所以111111cos ,A B DC A B DC A B DC ⋅===⋅u u u r u u u ru u u r u u u r u u u r u u u r 由于异面直线成角的范围是0,2π⎛⎤⎥⎝⎦,所以异面直线1A B 与1DC ,因此异面直线1A B 与1DC 所成角为6π.19. 已知n N *∈,数列{}n a 的首项11a =,且满足下列条件之一:①1122n n n a a +=+;②()121n n na n a +=+.(只能从①②中选择一个作为已知)(1)求{}n a 的通项公式;(2)若{}n a 的前n 项和n S m <,求正整数m 的最小值.【答案】(1)22n nn a = (2)4【解析】【分析】(1)若选①,则可得11222n n n n a a ++⋅-⋅=,从而可得数列{}2nn a ⋅是以2为公差,2为首项的等差数列,则可求出2nn a ⋅,进而可求出n a ,若选②,则1112n n a a n n +=⋅+,从而可得数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1为首项的等比数列,则可求出na n,进而可求出n a ,(2)利用错位相减法求出n S ,从而可求出正整数m 的最小值【小问1详解】若选①,则由1122n n n a a +=+可得11222n n n n a a ++⋅-⋅=,所以数列{}2n n a ⋅是以2为公差,1122a ⋅=为首项的等差数列,所以222(1)2nn a n n ⋅=+-=,所以22n nn a =,若选②,则由()121n n na n a +=+,得1112n n a a n n +=⋅+,所以数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1111a a ==为首项的等比数列,所以1112n n a n -⎛⎫=⨯ ⎪⎝⎭,所以1222n n nnn a -==【小问2详解】因为12312462(1)222222n n n n n S --=+++⋅⋅⋅++,所以234112462(1)2222222n n n n nS +-=+++⋅⋅⋅++,所以23112222122222n n n n S +=+++⋅⋅⋅+-2311112()2222n nn=+++⋅⋅⋅+-111[1]42121212n nn -⎛⎫- ⎪⎝⎭=+⨯--222n n +=-,所以2442n nn S +=-,所以4n S <,所以正整数m 的最小值为4,20. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为,左顶点A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)依题意可得b =、3a c +=,再根据222c a b =-,即可求出a 、c ,从而求出椭圆方程、离心率;(2)设直线l 为y kx m =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,依题意可得12AM AN k k ⋅=-,即可得到方程,整理得到225480m k km --=,即可得到m 、k 的关系,从而求出直线过定点;【小问1详解】解:依题意b =、3a c +=,又222c a b =-,解得2a =,1c =,所以椭圆方程为22143x y +=,离心率12c e a ==;【小问2详解】解:由(1)可知()2,0A -,当直线斜率存在时,设直线l 为y kx m =+,联立方程得22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得()2223484120k xkmx m +++-=,设()11,M x y ,()22,N x y ,所以122834km x x k +=-+,212241234m x x k-=+;因为直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,所以12AM AN k k ⋅=-;即()()22121212121212121212222242AM ANk x x km x x m y y kx m kx m k k x x x x x x x x +++++⋅=⋅=⋅==-+++++++所以2222222241281343441282243434m km k km m k k m km k k -⎛⎫+-+ ⎪++⎝⎭=--⎛⎫+-+ ⎪++⎝⎭,即22221231164162k m k m km -+=-+-,所以225480m k km --=,即()()2520m k m k -+=,所以2m k =或25m k =-,当2m k =时,直线l :2y kx k =+,恒过定点()2,0-,因为直线不过A 点,所以舍去;当25m k =-时,直线l :25y kx k =-,恒过定点2,05⎛⎫ ⎪⎝⎭;当直线斜率不存在时,设直线0:l x x =,()00,M x y ,()00,N x y -,则00001222AM AN y y k k x x -⋅=⋅=-++,且2200143x y +=,解得025x =或02x =-(舍去);综上可得直线l 恒过定点2,05⎛⎫⎪⎝⎭.21. 已知函数()sin xf x e k x =-,其中k 为常数.(1)当1k =时,判断()f x 在区间()0,∞+内的单调性;(2)若对任意()0,x π∈,都有()1f x >,求k 的取值范围.【答案】(1)判断见解析 (2)(,1]k ∈-∞【解析】【分析】小问1:当1k =时,求出导数,判断导数在()0,∞+上的正负,即可确定()f x 在()0,∞+上的单调性;小问2:由()1f x >得sin 10x e k x -->,令()sin 1x g x e k x =--,将参数k 区分为0k ≤,01k <≤,1k >三种情况,分别讨论()g x 的单调性,求出最值,即可得到k 的取值范围.【小问1详解】当1k =时,得()sin xf x e x =-,故()cos xf x e x '=-,当()0,∞+时,()0f x '>恒成立,故()f x 在区间()0,∞+为单调递增函数.【小问2详解】当()0,x π∈时,sin (0,1]x ∈,故()1f x >,即sin 1x e k x ->,即sin 10x e k x -->.令()sin 1x g x e k x =--①当0k ≤时,因为()0,x π∈,故sin (0,1]x ∈,即sin 0k x -≥,又10x e ->,故()0f x >在()0,x π∈上恒成立,故0k ≤;②当01k <≤时,()cos x g x e k x '=-,()sin x g x e k x ''=+,故()0g x ''>在()0,x π∈上恒成立,()g x '在()0,x π∈上单调递增,故0()(0)0g x g e k ''>=->,即()g x 在()0,x π∈上单调递增,故0()(0)10g x g e >=-=,故01k <≤;③当1k >时,由②可知()g x '在()0,x π∈上单调递增,设()0g x '=时的根为0x ,则()g x 在0(0,)x x ∈时为单调递减;在0(,)x x π∈时为单调递增又0(0)10g e =-=,故0()0g x <,舍去;综上:(,1]k ∈-∞【点睛】本题考查了利用导数判断函数单调性,及利用恒成立问题,求参数的取值范围的问题,对参数做到不重不漏的讨论,是解题的关键.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 在平面直角坐标系xOy 中,伯努利双纽线1C (如图)的普通方程为()()222222x y x y +=-,曲线2C 的参数方程为cos sin x r y r θθ=⎧⎨=⎩(其中r ∈(,θ为参数).的(1)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,求1C 和2C 的极坐标方程;(2)设1C 与2C 的交于A ,B ,C ,D 四点,当r 变化时,求凸四边形ABCD 的最大面积.【答案】(1)1:C 2222cos 2sin ρθθ=-;2:C r ρ=(2)2【解析】【分析】(1)根据直角坐标方程,极坐标方程,参数方程之间的公式进行转化即可;(2)设点A 在第一象限,并且设点A 的极坐标,根据题意列出点A 的直角坐标,表示出四边形ABCD 的面积进行计算即可.小问1详解】1:C ()()222222x y x y +=-,由cos ,sin x y ρθρθ==,故222222()2(cos sin )ρρθρθ=-,即2222cos 2sin ρθθ=-2:C cos sin x r y r θθ=⎧⎨=⎩,即222x y r +=,即22r ρ=,rρ=【小问2详解】由1C 和2C 图象的对称性可知,四边形ABCD 为中心在原点处,且边与坐标轴平行的矩形,设点A 在第一象限,且坐标为(,)ρα(02πα<<,又r ρ=,则点A 的直角坐标为(cos ,sin )r r αα,又2222cos 2sin ραα=-,即2222cos 2sin 2cos 2r ααα=-=故S 四边形ABCD =22cos 2sin 2sin 2r r r ααα⋅==22cos 2sin 22sin 4ααα⋅⋅=又02πα<<,故042απ<<,因此当42πα=,即8πα=时,四边形ABCD 的面积最大为2.[选修4—5:不等式选讲](10分)【23. 设M 为不等式1431x x ++≥-的解集.(1)求集合M 的最大元素m ;(2)若a ,b M ∈且a b m +=,求1123a b +++的最小值.【答案】(1)3m = (2)12【解析】【分析】(1)分类讨论13x ≥,1x ≤-,113x -<<,打开绝对值求解,即得解;(2)由题意1,3,3a b a b -≤≤+=,构造11(2)(3)132([11]2328113823a b b a a b a b a b ++++++=+⨯=+++++++++,利用均值不等式即得解【小问1详解】由题意,1431x x ++≥-(1)当13x ≥时,1431x x ++≥-,解得3x ≤,即133x ≤≤;(2)当1x ≤-时,1413x x --+≥-,解得1x ≥-,即=1x -;(3)当113x -<<时,1413x x ++≥-,解得1x ≥-,即113x -<<综上:13x -≤≤故集合{|13}M x x =-££,3m =【小问2详解】由题意,1,3,3a b a b -≤≤+=,故(2)(3)8a b +++=故11(2)(3)132()[112328113823a b b a a b a b a b ++++++=+⨯=+++++++++由于1,3a b -≤≤,故20,30a b +>+>由均值不等式,113211[11[1123823821b a a b a b +++=+++≥++=++++当且仅当3223b a a b ++=++,即2,1a b ==时等号成立故求1123a b +++的最小值为12。
浙江省菱湖中学高三上学期期中考试(数学文)一、选择题(每小题5分,共50分)1、已知全集,则正确表示集合和关系的韦恩(Venn )图是 ( )2、已知,其中为虚数单位,则 ( ) A. B. 1 C. 2 D. 33、已知函数,若 = ( ) (A)0(B)1(C)2(D)34、若一个底面是正三角形的三棱柱的正视图如上图所示,则其侧面积...等于( )A. B.2 C. D.65、如图所示的程序框图中输出的S= ( ) A .B. C. D. 16、函数是 ( )A .最小正周期为的奇函数 B. 最小正周期为的偶函数 C. 最小正周期为的奇函数 D. 最小正周期为的偶函数7、公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 ( )A. 18B. 24C. 60D. 90 . 8、若向量,则“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分又不必要条件9、函数f (x )= ( ) (A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)U R ={1,0,1}M =-{}2|0N x x x =+=()2,a ib i a b R i+=+∈i a b +=1-)1(log )(2+=x x f ()1,f α=α3239998100991011001)4(cos 22--=πx y ππ2π2π{}n a n n S 4a 37a a 与832S =10S (x,3)(x )a R =∈x 4=5||=→a 2xe x +-的零点所在的一个区间是10、设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 ( ) A .B .C .D .3 二、填空题(每小题4分,共28分) 11、某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 .12、三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 。
2024-2025年第一学期高三年级期中试题参考答案及评分建议一.选择题:D B C A B C A B二.选择题:9.BC10.AC 11.BCD 三.填空题:12.14513.)1,21(14.33四.解答题:15.解:(1)由题意得}21|{≤<=x x A ,}0|{>=∴y y B ,]2,1(=∴B A ;………6分(2)由题意得xxax f 22)(+=的定义域为R ,且)(x f 是奇函数,01)0(=+=∴a f ,1-=∴a ,xx x f 212)(-=∴,………9分x x x f 212)(-= 在]2,1(上单调递增,23)1(=f ,415)2(=f ,∴当B A x ∈时,)(x f 的值域为]415,23(.………13分16.解(1)设}{n a 的公比为q ,则⎪⎩⎪⎨⎧===-=-,8,12)1(2132124q a a q q a a a 解得⎩⎨⎧==2,21q a 或⎪⎩⎪⎨⎧-==21,321q a (舍去),)(2*N n a n n ∈=∴;………6分(2)由(1)可得)N (2)4(*∈⨯-=n n b nn ,n n n n n S 2)4(2)5(2)2(2)3(12⨯-+⨯-++⨯-+⨯-=∴- ,①1322)4(2)5(2)2(2)3(2+⨯-+⨯-++⨯-+⨯-=∴n n n n n S ,②①-②,整理得102)5(1+⨯-=+n n n S ,………10分所以对于任意的*N ∈n ,不等式102)4(102)5(1+⨯-≤+⨯-+n n n n λ恒成立,即不等式0)410()2(≥-+-λλn 对于任意的*N ∈n 恒成立,………12分⎩⎨⎧≥-+-≥-∴,04102,02λλλ解得382≤≤λ,∴实数λ的取值范围是]38,2[.………15分17.解:(1)由题意得)62sin(2cos 212sin 23)(π-=-=x x x x f ,………3分1)62sin()(=-=∴πA A f ,20π<<A ,65626πππ<-<-∴A ,=∴A π3,C B sin 3sin 2= ,由正弦定理可得c b 32=,即c b 23=,………5分7=a ,由余弦定理得747cos 22222==-+=c A bc c b a ,2=∴c ,3=b ;………7分(2)由题意得x x x f x g 2cos )22sin()3()(=+=+=ππ,………9分02cos )(==∴B B g ,20π<<B ,π<<∴B 20,4π=∴B ,………10分n m ⋅∴C A C A sin sin cos cos +=)cos(C A -=432cos(π-=A ,………13分24ππ<<A,44324πππ<-<-∴A ,1)432cos(22≤-<∴πA ,n m ⋅∴的取值范围为]1,22(.………15分18.(1)证明:连接OA ,P A AB = ,︒=∠60P AB ,∴△P AB 是正三角形,P A AB PB ==∴,同理可得AB PC =,PC PB =∴,O 是BC 的中点,BC OP ⊥∴,………2分AC AB = ,BC OA ⊥∴,AC AB ⊥ ,BC OB OA 21==∴,BC OP ⊥ ,222OB OP PB +=∴,222222OA OP OB OP PB P A +=+==∴,OA OP ⊥∴,………4分O BC OA = ,⊥∴OP 平面ABC ;………6分(2)由(1)得OA OP ⊥,OB OP ⊥,OB OA ⊥,以O 为原点,OP OB OA ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设2=AB ,则)0,0,1(A ,)0,1,0(B ,)0,1,0(-C ,)1,0,0(P ,AP BQ = ,)1,1,1(-∴Q ,显然)1,0,0(=OP 是平面ABC 的一个法向量,………8分设),,(z y x m =是平面BCQ 的一个法向量,则⎪⎩⎪⎨⎧⊥⊥,,BQ m BC m ⎩⎨⎧=+-=-∴,0,02z x y 取1=z ,则0,1==y x ,)1,0,1(=∴m ,………10分2221||||,cos ==>=<∴OP m OP m OP m ,∴二面角Q BC A --的大小为︒135;……12分(3)假设存在点M ,设BM =λBQ (0≤λ≤1),则BM =λBQ =(-λ,0,λ),QPBCAzOyxM),1,1(λλ--=+=∴BM AB AM ,………13分直线AM 与平面BCQ 所成角的正弦值为77,71|1)1(21||||||||,cos |22=+++-==><∴λλAM m AM m AM m ,………15分21=∴λ或23-=λ(舍去),21=∴BQ BM .………17分19.(1)证明:由题意得曲线)(x f y =在点))(,(n n a f a 处的切线方程为))(()(n n n a x a f a f y -'=-,即)(n a a a x e e y n n -=-,令0=y ,解得1-=n a x ,则11-=+n n a a ,即11-=-+n n a a )(*N n ∈,所以数列}{n a 是以1a 为首项、1-为公差的等差数列;………5分(2)由(1)可得11-=-+n n a a )(*N n ∈,所以ee af a f n n a a n n 1)()(11==-++,所以数列)}({n a f 是以)(1a f 为首项、e1为公比的等比数列,其前4项的和为1)1(431---e e e a )1)(1(231++=-e e e a )1)(1(2++=e e ,所以实数31=a ;………10分(3)原不等式等价于23121xe x x m x-++≥在),0(+∞上恒成立,令23121)(x e x x x h x-++=,0>x ,则322)222)(2()(x e x x x x h x -++-=',令xe x x x t 222)(2-++=,0>x ,则0)1(2)(<-+='xe x x t ,所以)(x t 在),0(+∞上递减,所以0)0()(=<t x t ,令0)(<'x h ,则2>x ;令0)(>'x h ,则20<<x ,所以)(x h 在)2,0(上递增,在),2(+∞上递减,所以47)2()(2e h x h -=≤,所以实数m 的取值范围为),47[2+∞-e .………17分注:以上各题其它解法请酌情赋分.。
2020—2021学年度上学期期中考试高三数学(文科)试卷考试时间:120分钟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合||32M x x =-<<∣,1|42xN x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则( )A .(2,2)M N ⋂=-B .(3,2)M N ⋂=-C .[2,)M N ⋃=-+∞D .()3,M N ⋃=-+∞ 2. 设iiz +-=11,则z = ( ) A.2B.3C.2D.13. 某口罩生产工厂为了了解口罩的质量,现将生产的50个口罩编号为01,02,…,50,利用如下随机数表从中抽取10个进行检测.若从下表中第1行第7列的数字开始向右依次读取2个数据作为1个编号,则被抽取的第8个个体的编号为( )A .18B .17C .11D .504.函数sin 23y x π⎛⎫=+⎪⎝⎭的图象( ) A .关于点,03π⎛⎫⎪⎝⎭对称 B .关于直线4x π=对称C .关于点,04π⎛⎫⎪⎝⎭对称 D .关于直线3x π=对称5.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x =( ) A .35 B .911 C .2123 D .45476.已知实数,x y 满足不等式组2034802x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则目标函数2z x y =-的最大值为( ) (第5题图) A .2- B .2 C .4- D .4 7.已知某几何体的三视图如图所示,则该几何体的最长棱为( ) A .4 B .22C .7D .28.已知(),0,a b ∈+∞,且不等式226a b m m +≤-+对任意[]2,3m ∈恒成立,则11a b +++的最大值为( ) (第7题图)A .2B .22C .4D .429.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( ) (第9题图) A .75B .65C .55D .4510.函数||4x e y x=的图象可能是( )A B C D11.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为( )A . 7 B. 8C. 9D. 1012.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A . ()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭ B.)9(log )5.0()21(log 25.03f f f >>- C.)9(log )21(log )5.0(235.0f f f >>- D.)21(log )5.0()9(log 35.02f f f >>-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=14.设平面上向量(cos ,sin ),(0)a αααπ=≤<,1,22b ⎛=- ⎝⎭,若||3|b a b +=-,则角α的大小为15.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为16. 在四面体ABCD 中,若AB CD ==2==AC BD ,AD BC ==ABCD 的外接球的表面积为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,请考生在第22、23两题中任选一题作答.如果多做,则按所做第一个题目计分.)17. (本小题满分12分)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+. (1)求角C ;(2)若ABC 的面积为3S c =,求ab 的最小值.18. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a =. (1)求数列{}n a 的通项公式; (2)设()12n n n c a a =+,数列{}n c 的前n 项和为n T ,求n T .19.(本小题满分12分)2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率. 附:.))()()(()(22d b c a d c b a bc ad n K ++++-=20.(本小题满分12分) 如图,矩形ABCD 中,3AB =,1BC =,E 、F 是边DC 的三等分点.现将DAE ∆、CBF ∆分别沿AE 、BF 折起,使得平面DAE 、平面CBF 均与平面ABFE 垂直.(1)若G 为线段AB 上一点,且1AG =,求证://DG 平面CBF ; (2)求多面体CDABFE 的体积.21. (本小题满分12分)已知函数()()2122x t f x x e x x =---,()2x g x e t x=--. (1)求()g x 的单调区间;(2)已知()f x 有两个极值点1x ,()212x x x <且()15102f x e +-<,求证:12t e>+.22.(本小题满分10分)(选修4—4:极坐标与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线22:4cos 2sin 40C ρρθρθ+-+=. (1)写出曲线1C ,2C 的普通方程; (2)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于A ,B 两点,求AB . 23.(本小题满分10分)(选修4-5:不等式选讲) 已知函数()23f x x x a =-++. (1)当1a =时,解不等式()5f x ≥;(2)若存在0x 满足()00223f x x +-<,求实数a 的取值范围.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 2. 【答案】D 3. 【答案】B 4. 【答案】A 5. 【答案】C1i =时,21x x =-;2i =时,()221143x x x =--=-;3i =时,()243187x x x =--=-;4i =时,退出循环.此时,1873x x -=,解得2123x =.故选C6.【答案】D 【解析】如图由2z x y =-,令0z =,则目标函数的一条等值线为20x y -=当该等值线经过点()2,0A 时,目标函数有最大值 所以max 2204z =⨯-= 故选:D 7.【答案】B 【解析】由三视图可得,该几何体是如图所示的四棱锥11P DCC D -,底面11DCC D 是边长为2的正方形,侧面11PC D ∆是边长为2的正三角形,且侧面11PC D ⊥底面11DCC D .根据图形可得四棱锥中的最长棱为1PC 和1PD ,结合所给数据可得11PC PD ==,所以该四棱锥的最长棱为.故选B . 8.【答案】C 【解析】由题意不等式226a b m m +≤-+对任意[]2,3m ∈恒成立又()[]2226=156,9m m m -+-+∈∴a +b ≤6则292a b ab +⎛⎫≤≤ ⎪⎝⎭当且仅当3a b ==成立2=226+2+8=16a b a b +++=+++4≤故选:C 9.【答案】B【解析】依题意“5阶幻方”的幻和为12525122526555+⨯+++==,故选B. 10.【答案】C 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x -=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 11.【答案】C【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1aca c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+【解析】令()(1)332cos xxg x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln 3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数,将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭, ∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭.故选:A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.【答案】9【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==14.【答案】6π【解析】因为(cos ,sin )a αα=,1,22b ⎛=- ⎝⎭,所以||||1a b ==,因为|||3|b a b +=-,所以22||3|b a b +=-,所以2222323233a a b b a a b b +⋅+=-⋅+即311233b a b +⋅+=-⋅+,所以1cos 022a b αα⋅=-+=,所以tan 3α=,由0απ≤<可得6πα=.【解析】当10x -<时,则011x +<, 此时有()(1)1f x f x x =-+=--, ∵()()1f x f x +=-,∴()()21[()]()f x f x f x f x +=-+=--=,∴函数()y f x =是周期为2的周期函数. 令()()ln 0g x f x x =-=,则()ln f x x =,由题意得函数()()ln g x f x x =-的零点个数即为函数()y f x =的图象与函数y ln x =的图象交点的个数.在同一坐标系内画出函数()y f x =和函数y ln x =的图象(如图所示),结合图象可得两函数的图象有三个交点, ∴函数()()ln g x f x x =-的零点个数为3. 16.【答案】6π【解析】由题意可采用割补法,考虑到四面体ABCD 的四个面为全等的三角形,2x ,y ,z 长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为球的半径),得2R 2=3,所以球的表面积为S =4πR 2=6π. 故答案为6π.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】(1)2π3;(2) 12. 【解析】(1)由正弦定理及已知可得2sin cos 2sin sin ,C B A B =+ ……………… 2分()2sin cos 2sin sin C B B C B =++则有,2sin cos sin 0,B C B ∴+= (4)分1,sin 0,cos .2B BC ∴≠∴=-为三角形的内角2π,.3C C ∴=又为三角形的内角 ……………………… 6分(2)11sin ,.22S ab C c ab ==∴= ……………………… 8分 222222cos ,c a b ab C a b ab =+-=++又222234a b a b ab ab ∴=++≥, 12ab ∴≥,当且仅当a b =时等号成立.故ab 的最小值为12. ……………………… 12分 18.【答案】(1)21n a n =-;(2)21n nT n =+. 【解析】(1)14(21)1n n S n a +=-+①,当1n =时,1241S a =+,解得23a = ……………………… 1分 当2n 时,14(23)1n n S n a -=-+②,①减去②得14(21)(23)n n n a n a n a +=---, 整理得1(21)(21)n n n a n a ++=-,即12121n n a n a n ++=-, ……………………… 3分 ∴213a a =,3253a a =,⋯,12123n n a n a n --=-以上各式相乘得121na n a =-,又11a =,所以21n a n =- ……………… 6分 (2)由(1)得11111(2)(21)(21)22121n n n c a a n n n n ⎛⎫===- ⎪+-+-+⎝⎭,………… 8分1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫∴=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭111111123352121n n ⎛⎫=-+-+⋯+- ⎪-+⎝⎭111221n ⎛⎫=- ⎪+⎝⎭21n n =+21n n T n ∴=+ ……………… 12分 19.【答案】(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)35. 【解析】(1)22⨯列联表如下:……………… 3分又()2210030104515 3.03 2.70675254555K ⨯-⨯=≈>⨯⨯⨯, ……………… 5分 这说明有90%的把握认为“对线上教学是否满意与性别有关”. ……………… 6分 (2)由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生, 其中男生2名,设为A 、B ;女生3人设为,,a b c ,则从这5名学生中抽取2名学生的基本事件有:(),A B ,(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,(),a b ,(),a c ,(),b c ,共10个基本事件, ……………… 8分其中抽取一名男生与一名女生的事件有(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,共6个基本事件, ……………… 10分根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63105=. … 12分20.【答案】(1)见证明(2) 2【解析】(1)分别取AE ,BF 的中点M ,N ,连接DM ,CN ,MG ,MN ,因为1AD DE ==,90ADE ︒∠=,所以DM AE ⊥,且DM =.因为1BC CF ==,90BCF ∠=,所以CN BF ⊥,且CN =. 因为面DAE 、面CBF 均与面ABFE 垂直,所以DM ⊥面ABFE ,CN ⊥面ABFE ,所以DM CN ,且DM CN =. ……………… 2分 因为cos45AM AG ︒=,所以90AMG ︒∠=,所以AMG ∆是以AG 为斜边的等腰直角三角形,故45MGA ︒∠=,而45FBA ︒∠=,则MG FB , ……………… 4分 故面DMG 面CBF ,则DG 面CBF . ……………… 6分 (2)如图,连接BE ,DF ,由(1)可知,DM CN ,且DM CN =, 则四边形DMNC 为平行四边形,故22EF AB DC MN +===. 因为D ABE B EFCD V V V --=+ 33D ABE B DEF D ABE D BEF V V V V ----=+=+, …………… 8分所以1131322V ⎛⎫=⨯⨯⨯⨯+ ⎪⎝⎭ 113113222⎛⎫⨯⨯⨯⨯⨯= ⎪⎝⎭. ……………… 12分 (其他方法酌情给分)。
2020-2021学年济宁市曲阜一中高三上学期期中数学试卷(文科)一、单选题(本大题共12小题,共60.0分) 1.已知集合A ={x|ln(x −2)>0},B ={x|2x 2−9x −5<0},则A ∩B =( )A. (2,5)B. [2,5)C. [3,5)D. (3,5)2.下列说法正确的有①大庆实验中学所有优秀的学生可以构成集合;②0∈N ; ③集合{(x,y)|y =x 2}与集合{y|y =x 2}表示同一集合; ④空集是任何集合的真子集.( )A. 1个B. 2个C. 个D. 个3.4枝牡丹花与5枝月季花的价格之和小于22元,而6枝牡丹花与3枝月季花的价格之和大于24元.则2枝牡丹花和3枝月季花的价格比较,结果是( )A. 2枝牡丹花贵B. 3枝月季花贵C. 相同D. 不确定4.曲线y =x2x−1在x =1处的切线方程为( )A. x −y −2=0B. x +y −2=0C. x +4y −5=0D. x −4y −5=05.若变量x ,y 满足约束条件{x +2y ≤2x +y ≥0x ≤4,则z =2x +y 的最大值为( )A. 2B. 8C. 5D. 76.已知定义在R 上的函数f(x)是周期为3的奇函数,当x ∈(0,32)时,f(x)=sinπx ,则函数f(x)在区间[0,5]上零点个数为( )A. 0B. 8C. 7D. 67.(2007广州市水平测试)在△ABC 中,AD ⃗⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗⃗⃗ , E 为BC 边的中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,则DE ⃗⃗⃗⃗⃗⃗ =( ) A. 14a⃗ +12b ⃗ B. 34a⃗ +12b ⃗ C. 14a⃗ −12b ⃗ D. 34a⃗ −12b ⃗ 8.已知cosθ=−35(π2<θ<π),则cos(θ−π3)=( )A. 4√3+310B. 4√3−310C. −4√3+310D. 4−3√3109. 下列结论:①(cosx)′=sinx ;②′=cos ;③若y =,则y′|x=3=−;④(e 3)′=e 3.其中正确的个数为( ).A. 0个B. 1个C. 2个D. 3个10. 如图,E 、F 分别是正方形SD 1DD 2的边D 1D 、DD 2的中点,沿SE 、SF 、EF 将它折成一个几何体,使D 1、D 、D 2重合,记作D ,给出下列位置关系:①SD ⊥面EFD ; ②SE ⊥面EFD ;③DF ⊥SE ;④EF ⊥面SED.其中成立的有( )A. ①与②B. ①与③C. ②与③D. ③与④11. 在棱锥P −ABC 中,侧棱PA 、PB 、PC 两两垂直,Q 为底面△ABC 内一点,若点Q 到三个侧面的距离分别为3、4、5,则以线段PQ 为直径的球的体积为( )A.125π6B. 125√2π3C.50π3D.25π312. 已知函数f(x)={√x +a(x ≥0)2−x +a +2(x <0),若方程f(x)=4有且仅有一个解,则实数a 的取值范围为( )A. (0,3)B. [0,3]C. (1,4)D. [1,4]二、单空题(本大题共4小题,共20.0分)13. 在△ABC 中,BC =3,CA =5,AB =7,则AC ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ 的值为______ . 14. 已知多面体ABCA 1B 1C 1的直观图和三视图如图所示,则平面C 1A 1C 与平面A 1CA 夹角的余弦值是______.15. 下列命题:①函数y =sin(2x +π3)的单调减区间为[kπ+π12,kπ+7π12],k ∈Z ; ②函数y =√3cos2x −sin2x 图象的一个对称中心为(π6,0); ③函数y =sin(12x −π6)在区间[−π3,11π6]上的值域为[−√32,√22];④函数y =cosx 的图象可由函数y =sin(x +π4)的图象向右平移π4个单位得到;⑤若方程sin(2x +π3)−a =0在区间[0,π2]上有两个不同的实数解x 1,x 2,则x 1+x 2=π6. 其中正确命题的序号为______ .16. (1)函数y =sinx +√3cosx 在区间[0,π2]上的最小值为________.(2)四边形ABCD 中,AB =AD =2,∠BAD =900,∠ADC =600,∠ABC =1200,E 为BD 的中点,则EA ⃗⃗⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ =_________. (3)集合A ={x|2x2−4<22x−2a ,x ∈Z}={1},则a 的取值范围是________.(4)已知f (x )=sin (2x +φ),其中φ∈(0,π),若方程f (x )=a 在(0,π]上的所有解之和为4π3,则实数a 的取值范围为____________. 三、解答题(本大题共6小题,共70.0分)17. (1)设U =R ,集合A ={x|x 2+3x +2=0},B ={x|x 2+(m +1)x +m =0};若(∁U A)∩B =⌀,求m 的值.(2)设集合A ={x|−2≤x ≤5},B ={x|n +1≤x ≤2n −1},B ⊆A ,求n 的取值范围.18. 18.(本小题满分12分)如图,已知四边形ABCD 为正方形,平面,//,且(1)求证:平面; (2)求二面角的余弦值。
2021-2022学年山东省东营一中高三(上)期中数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域是( )A .B .C .D .2.要得到y=sin2x+cos2x的图象,只需将y=sin2x的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位3.若数列{a n}的通项公式是a n=(﹣1)n(3n﹣2),则a1+a2+…+a10=( )A.15 B.12 C.﹣12 D.﹣154.已知非零向量满足||=4||,且⊥()则的夹角为( )A .B .C .D .5.设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于( )A.6 B.7 C.8 D.96.已知α为第四象限角.sinα+cosα=,则cos2α=( )A .﹣B .﹣C .D .7.如图,在矩形ABCD 中,,点E为BC的中点,点F在边CD上,若,则的值是( )A .B.2 C.0 D.1 8.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=(b2+c2﹣a2),则∠B=( )A.90°B.60°C.45°D.30°9.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x•f′(x)的图象的一部分,则f(x)的极大值与微小值分别是( )A.f(1)与f(﹣1) B.f(﹣1)与f(1)C.f(﹣2)与f(2)D.f(2)与f(﹣2)10.设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)﹣g(x)|≤1,则称f(x)和g(x)在[a,b]上是“亲密函数”,[a,b]称为“亲密区间”,设f(x)=x2﹣3x+4与g(x)=2x﹣3在[a,b]上是“亲密函数”,则它的“亲密区间”可以是( )A.[1,4]B.[2,3]C.[3,4]D.[2,4]二.填空题:本大题共5小题,每小题5分,共25分.11.设单位向量满足,则=__________.12.已知f(x)=x2+2xf′(1),则f′(0)=__________.13.设函数f(x)=,则使得f(x)≤2成立的x的取值范围是__________.14.已知各项不为0的等差数列{a n}满足,数列{b n}是等比数列,且b7=a7,则b6b8=__________.15.给出下列命题:①函数y=cos是奇函数;②存在实数α,使得sinα+cosα=;③若α、β是第一象限角且α<β,则tanα<tanβ;④x=是函数y=sin的一条对称轴方程;⑤函数y=sin 的图象关于点成中心对称图形.其中命题正确的是__________(填序号).三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,a、b、c分别是角A 、B、C的对边,且.(1)求角B的大小;(2)若b=3,求△ABC面积的最大值.17.已知函数f(x)=,x∈R.(Ⅰ)求函数f(x)的最小值和最小正周期;(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量与共线,求a、b的值.18.已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a 7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:≤T n<.19.已知数列{a n }各项均为正数,其前n项和S n满足(n∈N+).(1)求数列{a n}的通项公式;(2)若数列{b n}满足:,求数列{b n}的前n项和T n.20.(13分)已知椭圆的左、右焦点分别是F1、F2,离心率为,过点F2的直线交椭圆C于A、B两点,且△AF1B的周长为.(1)求椭圆C的标准方程;(2)若过定点M(0,﹣2)的动直线l与椭圆C相交P,Q两点,求△OPQ的面积的最大值(O为坐标原点),并求此时直线l的方程.21.(14分)已知函数f(x)=(a﹣)x2+lnx.(a∈R)(1)当a=0时,求f(x)在x=1处的切线方程;(2)若在区间(1,+∞)上,函数f (x)的图象恒在直线y=2ax下方,求a的取值范围;(3)设g(x)=f(x)﹣2ax,h(x)=x2﹣2bx+.当a=时,若对于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求实数b的取值范围.2021-2022学年山东省东营一中高三(上)期中数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域是( )A .B .C .D .【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】由函数的及诶小时可得可得,解方程组求得x的范围,即为所求.【解答】解:由函数,可得.解得﹣<x<2,故选B.【点评】本题主要考查求函数的定义域的方法,属于基础题.2.要得到y=sin2x+cos2x的图象,只需将y=sin2x的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换;两角和与差的正弦函数.【专题】计算题.【分析】先利用两角和的正弦公式将函数y=sin2x+cos2x变形为y=Asin(ωx+φ)型函数,再与函数y=sin2x 的解析式进行对比即可得平移方向和平移量【解答】解:y=sin2x+cos2x=(sin2xcos +cos2xsin)=sin(2x+)=sin[2(x+)]∴只需将y=sin2x 的图象向左平移个单位,即可得函数y=sin[2(x+)],即y=sin2x+cos2x的图象故选B【点评】本题主要考查了函数图象的平移变换,三角变换公式的运用,y=Asin(ωx+φ)型函数的图象性质,精确将目标函数变形是解决本题的关键3.若数列{a n}的通项公式是a n=(﹣1)n(3n﹣2),则a1+a2+…+a10=( )A.15 B.12 C.﹣12 D.﹣15 【考点】数列的求和.【专题】计算题.【分析】通过观看数列的通项公式可知,数列的每相邻的两项的和为常数,进而可求解.【解答】解:依题意可知a1+a2=3,a3+a4=3…a9+a10=3∴a1+a2+…+a10=5×3=15故选A.【点评】本题主要考查了数列求和.对于摇摆数列,常用的方法就是隔项取值,找出规律.4.已知非零向量满足||=4||,且⊥()则的夹角为( )A .B .C .D .【考点】数量积表示两个向量的夹角.【专题】平面对量及应用.【分析】由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.【解答】解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.【点评】本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;娴熟运用公式是关键.5.设等差数列{a n}的前n项和为S n,若a1=﹣11,a4+a6=﹣6,则当S n取最小值时,n等于( )A.6 B.7 C.8 D.9【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】条件已供应了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,S n取最小值.故选A.【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算力量.6.已知α为第四象限角.sinα+cosα=,则cos2α=( )A .﹣B .﹣C .D .【考点】二倍角的余弦.【专题】计算题;三角函数的求值.【分析】利用二倍角的正弦与同角三角函数间的关系可求得cosα﹣sinα=,再利用二倍角的余弦即可求得cos2α.【解答】解:∵sinα+cosα=,①∴两边平方得:1+2sinαcosα=,∴2sinαcosα=﹣<0,∵α为第四象限角,∴sinα<0,cosα>0,cosα﹣sinα>0.∴cosα﹣sinα=,②∴①×②可解得:cos2α=.故选:D.【点评】本题考查二倍角的正弦、余弦与同角三角函数间的关系,属于中档题.7.如图,在矩形ABCD 中,,点E为BC的中点,点F在边CD上,若,则的值是( )A .B.2 C.0 D.1【考点】平面对量数量积的运算.【专题】平面对量及应用.【分析】建立直角坐标系,由已知条件可得F 的坐标,进而可得向量和的坐标,可得数量积.【解答】解:建立如图所示的坐标系,可得A(0,0),B (,0),E (,1),F(x,2)∴=(,0),=(x,2),∴=x=,解得x=1,∴F(1,2)∴=(,1),=(1﹣,2)∴=(1﹣)+1×2=故选:A 【点评】本题考查平面对量数量积的运算,建立直角坐标系是解决问题的关键,属基础题.8.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=(b2+c2﹣a2),则∠B=( )A.90°B.60°C.45°D.30°【考点】余弦定理的应用.【专题】计算题.【分析】先利用正弦定理把题设等式中的边转化成角的正弦,化简整理求得sinC的值,进而求得C,然后利用三角形面积公式求得S的表达式,进而求得a=b,推断出三角形为等腰直角三角形,进而求得∠B.【解答】解:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC•sinC ∴sinC=1,C=.∴S=ab=(b2+c2﹣a2),解得a=b,因此∠B=45°.故选C【点评】本题主要考查了正弦定理的应用.作为解三角形常用的定理,我们应娴熟记忆和把握正弦定理公式及其变形公式.9.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x•f′(x)的图象的一部分,则f(x)的极大值与微小值分别是( )A.f(1)与f(﹣1) B.f(﹣1)与f(1)C.f(﹣2)与f(2)D.f(2)与f(﹣2)【考点】函数的单调性与导数的关系;函数最值的应用.【分析】当x<0时,f′(x)的符号与x•f′(x)的符号相反;当x>0时,f′(x)的符号与x•f′(x)的符号相同,由y=x•f′(x)的图象得f′(x)的符号;推断出函数的单调性得函数的极值.【解答】解:由y=x•f′(x)的图象知,x∈(﹣∞,﹣2)时,f′(x)>0;x∈(﹣2,2)时,f′(x)≤0;x∈(2,+∞)时,f′(x)>0∴当x=﹣2时,f(x)有极大值f(﹣2);当x=2时,f(x)有微小值f(2)故选项为C【点评】本题考查识图的力量;利用导数求函数的单调性和极值;.是高考常考内容,需重视.10.设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)﹣g(x)|≤1,则称f(x)和g(x)在[a,b]上是“亲密函数”,[a,b]称为“亲密区间”,设f(x)=x2﹣3x+4与g(x)=2x﹣3在[a,b]上是“亲密函数”,则它的“亲密区间”可以是( )A.[1,4]B.[2,3]C.[3,4]D.[2,4]【考点】函数的值域.【专题】计算题;压轴题;新定义.【分析】依据“亲密函数”的定义列出确定值不等式|x2﹣3x+4﹣(2x﹣3)|≤1,求出解集即可得到它的“亲密区间”.【解答】解:由于f(x)与g(x)在[a,b]上是“亲密函数”,则|f(x)﹣g(x)|≤1即|x2﹣3x+4﹣(2x﹣3)|≤1即|x2﹣5x+7|≤1,化简得﹣1≤x2﹣5x+7≤1,由于x2﹣5x+7的△<0即与x轴没有交点,由开口向上得到x2﹣5x+7>0>﹣1恒成立;所以由x2﹣5x+7≤1解得2≤x≤3,所以它的“亲密区间”是[2,3]故选B【点评】考查同学会依据题中新定义的概念列出不等式得到解集,要求同学会解确定值不等式.二.填空题:本大题共5小题,每小题5分,共25分.11.设单位向量满足,则=.【考点】向量的模.【专题】计算题.【分析】依据题意和数量积的运算法则先求出,再求出.【解答】解:∵,=1,=1∴==1﹣2+4=3,∴=,故答案为:.【点评】本题考查了利用向量数量积的运算求出向量模,属于基础题.12.已知f(x)=x2+2xf′(1),则f′(0)=﹣4.【考点】导数的运算.【专题】导数的概念及应用.【分析】把给出的函数求导得其导函数,在导函数解析式中取x=1可求f′(1)的值,再代入即可求出f′(0)的值.【解答】解:由f(x )=x2+2xf′(1),得:f′(x)=2x+2f′(1),取x=1得:f′(1)=2×1+2f ′(1),所以,f′(1)=﹣2.故f′(0)=2f′(1)=﹣4,故答案为:﹣4.【点评】本题考查了导数运算,解答此题的关键是理解原函数解析式中的f′(1),在这里f′(1)只是一个常数,此题是基础题.13.设函数f(x)=,则使得f(x)≤2成立的x的取值范围是x≤8.【考点】其他不等式的解法;分段函数的解析式求法及其图象的作法.【专题】计算题;函数的性质及应用.【分析】利用分段函数,结合f(x)≤2,解不等式,即可求出访得f(x)≤2成立的x的取值范围.【解答】解:x<1时,e x﹣1≤2,∴x≤ln2+1,∴x<1;x≥1时,≤2,∴x≤8,∴1≤x≤8,综上,使得f(x)≤2成立的x的取值范围是x≤8.故答案为:x≤8.【点评】本题考查不等式的解法,考查分段函数,考查同学的计算力量,属于基础题.14.已知各项不为0的等差数列{a n}满足,数列{b n}是等比数列,且b7=a7,则b6b8=16.【考点】等比数列的通项公式.【专题】方程思想;转化思想;数学模型法;等差数列与等比数列.【分析】各项不为0的等差数列{a n}满足,可得2×2a7﹣=0,解得a7.利用等比数列的性质可得b6b8=.【解答】解:∵各项不为0的等差数列{a n}满足,∴2×2a7﹣=0,解得a7=4.数列{b n}是等比数列,且b7=a7=4.则b6b8==16.故答案为:16.【点评】本题考查了等差数列与等比数列的通项公式及其性质,考查了推理力量与计算力量,属于中档题.15.给出下列命题:①函数y=cos是奇函数;②存在实数α,使得sinα+cosα=;③若α、β是第一象限角且α<β,则tanα<tanβ;④x=是函数y=sin的一条对称轴方程;⑤函数y=sin 的图象关于点成中心对称图形.其中命题正确的是①④(填序号).【考点】余弦函数的奇偶性;正弦函数的奇偶性;正弦函数的对称性;正切函数的单调性.【专题】综合题.【分析】①利用诱导公式化简函数y=cos,即可推断是奇函数;②通过函数的最值,推断是否存在实数α,使得sinα+cosα=即可得到正误;③利用正切函数的性质频道若α、β是第一象限角且α<β,则tan α<tanβ的正误;④把x=代入函数y=sin是否取得最值,即可推断它是否是一条对称轴方程;⑤函数y=sin的图象关于点成中心对称图形.利用x=,函数是否为0即可推断正误;【解答】解:①函数y=cos=﹣sin是奇函数,正确;②存在实数α,使得sinα+cosα≤<;所以不正确;③若α、β是第一象限角且α<β,则tanα<tanβ;明显不正确,如α=60°,β=390°时不等式不正确;④x=是函数y=sin的一条对称轴方程;把x=代入函数y=sin取得最小值,所以正确;⑤函数y=sin的图象关于点成中心对称图形.x=,函数y≠0,所以不正确;故答案为:①④【点评】本题是基础题,考查三角函数的基本学问的综合应用,函数的奇偶性、最值、单调性、对称性的应用,考查基本学问的机敏运应力量.三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b=3,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)依据正弦定理与两角和的正弦公式,化简已知等式得2cosBsinA+sin(B+C)=0,由三角函数的诱导公式可得sinA=sin(B+C),代入前面的等式并整理得sinA(2cosB+1)=0.由此解出cosB=﹣,即可得出角B的大小.(2)利用余弦定理得到b2=a2+c2﹣2accosB,将b及cosB的值代入,并利用基本不等式变形后得出ac的最大值,然后再利用三角形的面积公式表示出三角形ABC的面积,将ac 的最大值及sinB的值代入,即可求出三角形ABC面积的最大值.【解答】解:(1)∵在△ABC中,,∴依据正弦定理,得=﹣,去分母,得cosB(2sinA+sinC)=﹣sinBcosC,即2cosBsinA+(sinBcosC+cosBsinC)=0,可得2cosBsinA+sin(B+C)=0,∵△ABC中,sinA=sin(B+C),∴2cosBsinA+sinA=0,即sinA(2cosB+1)=0.又∵△ABC中,sinA>0,∴2cosB+1=0,可得cosB=﹣.∵B∈(0,π),∴B=π.(2)∵b=3,cosB=cosπ=﹣,∴由余弦定理b2=a2+c2﹣2accosB,即9=a2+c2+ac≥3ac,即ac ≤3,∴S△ABC=acsinB ≤×3×=(当且仅当ac时取等号),则△ABC面积最大值为.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,诱导公式,基本不等式,以及特殊角的三角函数值,娴熟把握定理及公式是解本题的关键.17.已知函数f(x)=,x∈R.(Ⅰ)求函数f(x)的最小值和最小正周期;(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量与共线,求a、b的值.【考点】三角函数的最值;三角函数的周期性及其求法.【专题】三角函数的求值.【分析】(Ⅰ)由三角函数公式化简可得f(x)=sin(2x﹣)﹣1,可得最小值和周期;(Ⅱ)由f(C)=sin(2C﹣)﹣1=0结合角的范围可得C=,再由向量共线和正弦定理可得b=2a,由余弦定理可得ab的方程,解方程组可得.【解答】解:(Ⅰ)化简可得f(x)=sin2x ﹣cos2x﹣1=sin(2x ﹣)﹣1,∴f(x)的最小值为﹣2,最小正周期为T=π(Ⅱ)∵f(C)=sin(2C ﹣)﹣1=0,∴sin(2C ﹣)=1,∵0<C<π,∴﹣<2C ﹣<,∴2C ﹣=,∴C=,∵与共线,∴sinB﹣2sinA=0,∴由正弦定理可得==,即b=2a,①∵c=3,∴由余弦定理可得9=a2+b2﹣2abcos,②联立①②解方程组可得【点评】本题考查三角函数的最值,涉及三角函数的周期性和余弦定理,属中档题.18.已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n ,求证:≤T n <.【考点】数列的求和;等比数列的性质.【专题】等差数列与等比数列.【分析】(1)由题意得,由此能求出a n=4n+2.(2)由a1=6,d=4,得S n=2n2+4n ,==,从而T n ==﹣<,由此能证明≤T n <.【解答】解:(1)由题意得,解得a1=6,d=4,∴a n=6+(n﹣1)×4=4n+2.(2)∵a1=6,d=4,∴S n =6n+=2n2+4n,==,∴T n ===﹣<,(T n)min=T1=﹣=.故≤T n <.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,留意裂项求和法的合理运用.19.已知数列{a n}各项均为正数,其前n项和S n 满足(n∈N+).(1)求数列{a n}的通项公式;(2)若数列{b n}满足:,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】(1)利用递推关系与等差数列的通项公式可得a n;(2)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵(n∈N+).∴当n=1时,4a1=,解得a1=1.当n≥2时,4a n=4(S n﹣S n﹣1)=﹣,化为(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵数列{a n}各项均为正数,∴a n﹣a n﹣1=2.∴数列{a n}是等差数列,首项为1,公差为2.∴a n=2n﹣1.(2)=(2n﹣1)•2n﹣1.∴数列{b n}的前n项和T n=1+3×2+5×22+…+(2n﹣1)•2n﹣1,∴2T n=2+3×22+…+(2n﹣3)•2n﹣1+(2n﹣1)•2n,∴﹣T n=1+2(2+22+…+2n﹣1)﹣(2n﹣1)•2n =﹣1﹣(2n﹣1)•2n=(3﹣2n)•2n﹣3,∴T n=(2n﹣3)•2n+3.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系的应用、“错位相减法”,考查了推理力量与计算力量,属于中档题.20.(13分)已知椭圆的左、右焦点分别是F1、F2,离心率为,过点F2的直线交椭圆C于A、B两点,且△AF1B 的周长为.(1)求椭圆C的标准方程;(2)若过定点M(0,﹣2)的动直线l与椭圆C相交P,Q两点,求△OPQ的面积的最大值(O为坐标原点),并求此时直线l的方程.【考点】椭圆的简洁性质.【专题】转化思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】(1)由题意可得:,解得即可得出;(2)由题意可知:直线l的斜率存在,设直线l的方程为y=kx﹣2,P(x1,y1),Q(x2,y2).与椭圆方程化为(2+3k2)x2﹣12kx+6=0,利用根与系数的关系可得:|PQ|=.原点O到直线l的距离d=.利用S△OPQ =即可得出.【解答】解:(1)由题意可得:,解得a=,c=1,b2=2.∴椭圆C 的标准方程为.(2)由题意可知:直线l的斜率存在,设直线l的方程为y=kx﹣2,P(x1,y1),Q(x2,y2).联立,化为(2+3k2)x2﹣12kx+6=0,∴x1+x2=,x1x2=.|PQ|===.原点O到直线l的距离d=.∴S△OPQ ==×=.令3k2﹣2=t2(t>0),∴S△OPQ ===,当且仅当t=2,即时取等号.∴,.【点评】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆相交弦长问题、一元二次根与系数的关系、点到直线的距离公式、基本不等式的性质、三角形的面积计算公式,考查了推理力量与计算力量,属于难题.21.(14分)已知函数f(x)=(a ﹣)x2+lnx.(a∈R)(1)当a=0时,求f(x)在x=1处的切线方程;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围;(3)设g(x)=f(x)﹣2ax,h(x)=x2﹣2bx+.当a=时,若对于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求实数b的取值范围.【考点】利用导数争辩曲线上某点切线方程;利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.【专题】分类争辩;分类法;导数的概念及应用;导数的综合应用.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,可得切线的方程;(2)令,由题意可得g(x)<0在区间(1,+∞)上恒成立.求出g(x)的导数,对a争辩,①若,②若,推断单调性,求出极值点,即可得到所求范围;(3)由题意可得任意x1∈(0,2),存在x2∈[1,2],只要g(x1)max≤h(x2)max,运用单调性分别求得g(x)和h(x)的最值,解不等式即可得到所求b的范围.【解答】解:(1)f(x)=﹣x2+lnx的导数为f′(x)=﹣x+,f(x)在x=1处的切线斜率为0,切点为(1,﹣),则f(x)在x=1处的切线方程为;(2)令,则g(x)的定义域为(0,+∞).在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0在区间(1,+∞)上恒成立.①①若,令g'(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(0,1)上有g'(x)>0,在(1,x2)上有g'(x)<0,在(x2,+∞)上有g'(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不合题意;当x2≤x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有g'(x)<0,从而g(x)在区间(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足,由此求得a的范围是[,].综合①②可知,当a∈[,]时,函数f(x)的图象恒在直线y=2ax下方.(3)当时,由(Ⅱ)中①知g(x)在(0,1)上是增函数,在(1,2)上是减函数,所以对任意x1∈(0,2),都有,又已知存在x2∈[1,2],使g(x1)≤h(x2),即存在x2∈[1,2],使,即存在x2∈[1,2],,即存在x2∈[1,2],使.由于,所以,解得,所以实数b的取值范围是.【点评】本题考查导数的运用:求切线的方程和单调性,考查不等式恒成立问题及任意性和存在性问题,留意转化为求最值问题,考查运算力量,属于中档题.。
俯视图福州三中2010—2011学年度高三上学期期中考试数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共4页.满分150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{11}A =-,,{|124}x B x =≤<,则A B I 等于( )A .{101}-,,B .{1}C .{11}-,D .{01}, 2.函数⎪⎭⎫⎝⎛-=x y 22sin π是( ) A .周期为π的奇函数 B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数3.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形4.已知点n A (n ,n a )(∈n N *)都在函数x y a =(01a a >≠,)的图象上,则37a a +与52a 的大小关系是( )A .37a a +>52aB .37a a +<52aC .37a a +=52aD .37a a +与52a 的大小与a 有关5.如图,一个简单空间几何体的三视图其主视图 与侧视图都是边长为2的正三角形,俯视图 轮廓为正方形,则此几何体的表面积是( )A .4+B .12C .D .86.已知平面向量(21,3),(2,),a m b m a b r r r r且与=+=夹角为锐角,则实数m 的范围( )A .2(,)7-+? B .233(,)(,)722U -+?C .2(,)7-? D .22(2,)(,)77U ---+? 7.函数()10<<=a xxa y x的图象的大致形状是( )A B C D8.设函数1)6()(23++++=x a ax x x f ,既有极大值又有极小值,则实数a 的取值范围是( )A .36-<>a a或B . 63<<-aC .36-≤≥a a 或D .63≤≤-a9.下列说法错误..的是( )A .如果命题“p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题;B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”;C .若命题p :∃x ∈R ,x 2-x +1<0,则p :∀x ∈R ,x 2-x +1≥0;D . “21sin =θ”是“ο30=θ”的充分不必要条件 10.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤≤22y x x y x ,则目标函数y x z +=2的最小值为( )A .3B .4C .6D .2 11.设25abm ==,且112a b+=,则m = ( )A .10B .10C ).20D .10012.给出定义:若2121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x = m .在此基础上给出下列关于函数{}x x x f -=)(的四个命题:①函数y=)(x f 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡21,0;②函数y=)(x f 的图像关于直线2kx =(Z k ∈)对称; ③函数y=)(x f 是周期函数,最小正周期为1;④函数y=)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数。
阳信一中高三上学期期中考试数学试题(文科)09.11时间:120分钟 总分:150分一、选择题(每题5分,共60分)D1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限( )C2.下列命题正确的是 ( ) A .若→a ∥→b ,且→b ∥→c ,则→a ∥→cB .两个有共同起点且相等的向量,其终点可能不同C .向量的长度与向量的长度相等D .若非零向量与是共线向量,则A 、B 、C 、D 四点共线C3.若函数()sin()f x x ωϕ=+的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-==C4.如果0,a b >>0c d >>,则下列不等式中不正确...的是 ( ) A .a d b c ->- B .a bd c> C . a d b c +>+ D . ac bd > B5.已知数列{a n }的通项公式是249n a n =-,则S n 达到最小值时,n 的值是( )A .23B .24C .25D .26A6. 等比数列{}n a 中,首项1a =8,公比q =21,那么它的前5项和5S 的值等于( ).A . 15.5B .20C .15D . 20.75A7. 已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B . 060C . 030D . 90oB8.已知tan(α+β)=25,tan(α+4π)=322, 那么tan(β-4π)的值是( )A .15B .14C .1318D .1322C9.一个首项为正数的等差数列中,前3项的和等于前11项的和,当这个数列的前n 项和最大时,n 等于 ( )A .5B .6C .7D .8D10. 已知25≥x ,则4254)(2-+-=x x x x f 有 ( )A .最大值45 B .最小值45C .最大值 1D .最小值1D11.设x ,y 满足约束条件:⎪⎩⎪⎨⎧≤-≥≥120y x y x x ,则z=3x+2y 的最大值是 ( )A. 9B. 6C. 4D. 5C12.从2005年到2008年期间,甲每年6月1日都到银行存入a 元的一年定期储蓄。
2021-2022学年黑龙江省齐齐哈尔市普高联谊校高三(上)期中数学试卷(文科)一、单选题(本大题共12小题,共60.0分)1.已知A={x|x+1>0},B={−2,−1,0,1},则A∩B=()A. {−2,−1}B. {−2}C. {−1,0,1}D. {0,1}2.若复数z满足(2+i)z=4,则复数z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列函数中为奇函数的是()A. y=cosxB. y=|x|+1C. y=x3D. y=log2x4.已知角α的始边与x轴的非负半轴重合,终边经过点P(5,12),则cosα=()A. −513B. −1213C. 513D. 12135.已知向量a⃗=(3,m),b⃗ =(2,−3),若a⃗⊥b⃗ ,则实数m的值为()A. 3B. −92C. 2D. −26.已知两条直线a,b和平面α,若b⊂α,则a//b是a//α的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件7.在△ABC中,角A,B,C的对边分别是a,b,c,已知a=1,b=√2,A=π6,则B=()A. π3B. π4C. π4或3π4D. π3或2π38.为了解学生在课外活动方面的支出情况,抽取了n个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[10,50]内,其中支出金额在[30,50]内的学生有234人,频率分布直方图如图所示,则n等于()A. 300B. 320C. 340D. 3609. 已知数列{a n }的前n 项和为S n ,且满足S n =n 2+n ,则a 8=( )A. 72B. 36C. 18D. 1610. 如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A. k ≤6?B. k ≤7?C. k ≤8?D. k ≤9?11. 直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =AC =AA 1,则直线A 1B 与AC 1所成角的大小为( )A. 30°B. 60°C. 90°D. 120°12. 设函数f(x)的定义域为R ,满足f(x +1)=2f(x),且当x ∈(0,1]时,f(x)=x(x −1).若对任意x ∈(−∞,m],都有f(x)≥−89,则m 的取值范围是( )A. (−∞,94]B. (−∞,73]C. (−∞,52]D. (−∞,83]二、单空题(本大题共4小题,共20.0分)13. 若单位向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 的夹角为120°,则|e 1⃗⃗⃗ −e 2⃗⃗⃗ |= ______ .14. 某校高一、高二、高三年级各有学生400人、400人、300人.某眼镜店为了解该校学生的视力情况,用分层抽样的方法从三个年级中共抽取110名学生进行调查,那么从高三年级抽取了______ 名学生.15. 已知f(x)是定义在R 上的奇函数,且当x <0时,f(x)=2x ,则f(log 827)的值为______.16. 某几何体的三视图如图所示,则该三视图的外接球表面积为______.三、解答题(本大题共7小题,共82.0分)17.已知函数f(x)=√3sin2x+1−2cos2x.(1)求函数f(x)的最小正周期和单调递增区间;(2)在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若f(A)=√3,a=3,B=π,求△ABC的面积.618.如图,四棱锥P−ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD=1,求三棱锥A−PBC的体积.19.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(n∈N∗),求数列{b n}的前n项和T n.(Ⅱ)令b n=1a n2−120. “金山银山不如绿水青山;绿水青山就是金山银山”.复兴村借力“乡村振兴”国策,依托得天独厚的自然资源开展乡村旅游.乡村旅游事业蓬勃发展.复兴村旅游协会记录了近八年的游客人数,见表. 年份 2013年 2014年 2015年 2016年 2017年 2018年 2019年 2020年 年份代码x 12345678游客人数y(百人)4 8 16 32 51 71 97 122为了分析复兴村未来的游客人数变化趋势,公司总监分别用两种模型对变量y 和x 进行拟合,得到了相应的回归方程,绘制了残差图.残差图如下(注:残差e ̂i =y i −y ̂i ):模型①y ̂=bx 2+a ;模型②y ̂=dx +c .(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数); (3)根据(2)问求出的回归方程来预测2021年的游客人数. 参考数据见下表:其中:z =x 2,z −=18∑z i 8i=1.附:回归直线的斜率和截距的最小二乘估计公式分别为:b =∑(n i=1x i −x −)⋅(y i −y −)∑(n i=1x i −x −)2,a ̂=y −−bx −.21. 已知函数f(x)=e x .(1)求曲线y =f(x)在点(0,f(0))处的切线方程; (2)当x >−2时,求证:f(x)>ln(x +2).22. 以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆C 1和圆C 2的极坐标方程分别是ρ=4cosθ和ρ=2sinθ.(1)求圆C 1和圆C 2的公共弦所在直线的直角坐标方程;(2)若射线OM :θ=π6与圆C 1的交点为O 、P ,与圆C 2的交点为O 、Q ,求|OP|⋅|OQ|的值.23.已知函数f(x)=|x+1|+|2x−1|.(Ⅰ)求不等式f(x)≤2x+1的解集;(Ⅱ)已知函数f(x)的最小值为t,正实数a,b,c满足a+b+2c=2t,证明:1a+c+1 b+c ≥43.答案和解析1.【答案】D【解析】解:由A中不等式解得:x>−1,∵B={−2,−1,0,1},∴A∩B={0,1}.故选:D.求出A中不等式的解集确定出A,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】D【解析】解:因为(2+i)z=4,所以z=42+i =4(2−i)(2+i)(2−i)=8−4i5=85−45i,故复数z在复平面内对应的点为(85,−45),位于第四象限.故选:D.先利用复数的运算求出z的代数形式,然后由复数的几何意义求解即可.本题考查了复数的几何意义的理解和应用,考查了复数的运算法则的运用,解题的关键是求出复数的代数形式,属于基础题.3.【答案】C【解析】解:y=cosx为偶函数,故A不符题意;y=|x|+1为偶函数,故B不符题意;y=x3为奇函数,故C符合题意;y=log2x的定义域为(0,+∞),不为奇函数,故D不符题意.故选:C.由常见函数的奇偶性,可得结论.本题考查函数的奇偶性的判断,考查推理能力,属于基础题.4.【答案】C【解析】解:∵角α的始边与x轴的非负半轴重合,终边经过点P(5,12),∴cosα=√52+122=513.故选:C.由题意利用任意角的三角函数的定义即可求解cosα的值.本题主要考查任意角的三角函数的定义在三角函数求值中的应用,属于基础题.5.【答案】C【解析】解:∵向量a⃗=(3,m),b⃗ =(2,−3),若a⃗⊥b⃗ ,则a⃗⋅b⃗ =6−3m=0,∴m=2,故选:C.由题意利用两个向量垂直的性质,两个向量的数量积公式,两个向量坐标形式的运算法则,计算求得m的值.本题主要考查两个向量垂直的性质,两个向量的数量积公式,两个向量坐标形式的运算法则,属于基础题.6.【答案】D【解析】解:当b⊂α是若a//b时,a与α的关系可能是a//α,也可能是a⊂α,即a//α不一定成立,故a//b⇒a//α为假命题;若a//α时,a与b的关系可能是a//b,也可能是a与b异面,即a//b不一定成立,故a//α⇒a//b也为假命题;故a//b是a//α的既不充分又不必要条件故选:D.我们先判断a//b⇒a//α与a//α⇒a//b的真假,然后利用充要条件的定义,我们易得到a//b是a//α的关系.本题考查的知识点是充要条件,直线与平面平行关系的判断,先判断a//b⇒a//α与a//α⇒a//b的真假,然后利用充要条件的定义得到结论是证明充要条件的常规方法,要求大家熟练掌握.7.【答案】C【解析】解:由正弦定理可得:asinA =bsinB,可得:sinB=bsinAa=√2×siinπ61=√22,由b>a,∴B>A,可得B为锐角或钝角,∴B=π4或3π4.故选:C.利用正弦定理即可得出.本题考查了正弦定理的应用,考查了推理能力与计算能力,属于基础题.8.【答案】D【解析】解:根据直方图:支出金额在[10,30]范围内的概率为0.01×10+0.025×10=0.35,所以支出金额在[30,50]内的概率为1−0.35=0.65,故234n=0.65,解得:n=360.故选:D.直接利用频率分布直方图的应用建立关系式,进一步求出n的值.本题考查的知识要点:频率分布直方图,主要考查学生的运算能力和数学思维能力,属于基础题.9.【答案】D【解析】解:由题意,可知a8=S8−S7=82+8−(72+7)=16.故选:D.本题根据题意并结合公式a n=S n−S n−1(n≥2),即可计算出a8的值.本题主要考查已知数列求和公式求某一项的值,考查转化与化归思想,公式法,以及逻辑推理能力和数学运算能力,属基础题.10.【答案】B【解析】解:根据程序框图,运行结构如下: S K 第一次循环 10 9 第二次循环 90 8 第三次循环 720 7 此时退出循环,故应填K ≤7? 故选:B .按照程序框图的流程写出前几次循环的结果,根据条件,即可得到结论.本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题11.【答案】B【解析】 【分析】以A 为坐标原点,建立空间直角坐标系,求出A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ 与AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标,利用数量积求夹角公式求解.本题考查异面直线所成角,训练了利用空间向量求解空间角,是基础题. 【解答】 解:如图,不妨设AB =AC =AA 1=1,则A(0,0,0),B(1,0,0),A 1(0,0,1),C 1(0,1,1), A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,−1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),cos <A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|AC1⃗⃗⃗⃗⃗⃗⃗⃗ |=√2×√2=−12,则直线A 1B 与AC 1所成角的大小为60°. 故选:B .12.【答案】B【解析】 【分析】本题考查了函数与方程的综合运用,属于基础题.由f(x +1)=2f(x),得f(x)=2f(x −1),分段求解析式,得值域,结合图象可得结论. 【解答】解:因为f(x +1)=2f(x),∴f(x)=2f(x −1). ∵x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],∴x ∈(1,2]时,x −1∈(0,1],f(x)=2f(x −1)=2(x −1)(x −2)∈[−12,0]; ∴x ∈(2,3]时,x −1∈(1,2],f(x)=2f(x −1)=4(x −2)(x −3)∈[−1,0], 当x ∈(2,3]时,由4(x −2)(x −3)=−89,解得x =73或x =83.若对任意x ∈(−∞,m],都有f(x)≥−89,则m ≤73. 故选B .13.【答案】√3【解析】解:根据题意,|e 1⃗⃗⃗ −e 2⃗⃗⃗ |2=1+1+2×1×1×12=3,故|e 1⃗⃗⃗ −e 2⃗⃗⃗ |=√3. 故答案为:√3.根据题意,由数量积的计算公式计算|e 1⃗⃗⃗ −e 2⃗⃗⃗ |2的值,变形即可得答案.本题考查向量数量积的计算,涉及向量模的计算,属于基础题.14.【答案】30【解析】解:根据分层抽样原理知,从高三年级抽取学生数为:110×300400+400+300=30.故答案为:30.根据分层抽样原理,计算从高三年级抽取的学生数即可.本题考查了分层抽样原理应用问题,是基础题.15.【答案】−13【解析】解:由f(x)是定义在R上的奇函数,可得f(−x)=−f(x),当x<0时,f(x)=2x,可得f(log827)=f(log23)=−f(−log23)=−2−log23=−13,故答案为:−13.由奇函数的定义和对数的运算性质,化简计算可得所求值.本题考查函数的奇偶性的定义和运用,以及对数的运算性质,考查转化思想和运算能力,属于中档题.16.【答案】34π【解析】解:由题意可知,几何体是长方体的一部分,如图,几何体的外接球与长方体的外接球相同,外接球的半径为:12√32+32+42=√342,所以外接球的表面积为:4πr2=34π.故答案为:34π.判断几何体的形状,求解几何体的外接球的半径,然后求解球的表面积.本题考查几何体的外接球的表面积的求法,判断几何体的形状是解题的关键,是中档题.17.【答案】解:(1)因为f(x)=√3sin2x+1−2cos2x,所以f(x)=√3sin2x−cos2x=2(√32sin2x−12cos2x)=2sin(2x−π6)所以T=2π2=π,−π2+2kπ≤2x−π6≤π2+2kπ,(k∈Z),所以−π3+2kπ≤2x≤2π3+2kπ,(k∈z),所以−π6+kπ≤x≤π3+kπ,(k∈z),所以f(x)最小正周期为π,单调递增区间为[−π6+kπ,π3+kπ],(k∈z).(2)因为f(A)=√3,所以2sin(2A−π6)=√3,所以sin(2A−π6)=√32,因为△ABC为锐角三角形,2A−π6=π3,或2π3,所以A=π4,或5π12,若A=π4,B=π6,可得C=7π12为钝角,不合题意,舍去,所以A=5π12,所以sinC=sin(A+B)=sin7π12=√6+√24,由正弦定理asinA =bsinB,可得b=a⋅sinBsinA=3×12 sin5π12=3(√6−√2)2,所以S△ABC=12absinC=12×3(√6−√2)2×3×√6+√24=94.【解析】(1)利用倍角公式降幂,可求得周期,利用正弦函数的单调性可求其单调递增区间;(2)由f(A)=√3求出A的值,结合正弦定理可求得a,b的值,利三角形的面积公式即可求得答案.本题主要考查了三角函数恒等变换的应用,正弦函数的图像和性质,以及正弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想和函数思想,属于中档题.18.【答案】(1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =√3AD .从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD . 所以BD ⊥平面PAD.故PA ⊥BD . (2)PD =AD =1,V A−PBC =V P−ABC =V P−ABD =13×12×1×2×√32×1=√36.【解析】(1)证明BD ⊥AD.BD ⊥PD.推出BD ⊥平面PAD.即可证明PA ⊥BD . (2)利用V A−PBC =V P−ABC =V P−ABD 求解即可.本题考查直线与平面垂直的判断定理的应用,几何体的体积的求法,考查计算能力,是中档题.19.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有{a 1+2d =72a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n −1)=2n +1; S n =3n +n(n−1)2×2=n 2+2n ;(Ⅱ)由(Ⅰ)知a n =2n +1, 所以b n =1a n2−1=1(2n+1)2−1=14⋅1n(n+1)=14(1n−1n+1),所以数列{b n }的前n 项和为:T n =14(1−12+12−13+⋯+1n −1n+1)=14(1−1n+1)=n4(n+1), 即数列{b n }的前n 项和T n =n4(n+1).【解析】本题主要考查等差数列的通项公式和前n 项和的计算,以及利用裂项法进行求和,属基础题.(Ⅰ)根据等差数列的通项公式求出首项和公差即可求a n 及S n ;(Ⅱ)求出b n 的通项公式,利用裂项法即可得到结论.20.【答案】解:(1)根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对比较大,故模型①的拟合效果相对较好. (2)由(1)可知y 关于x 的回归方程为y ̂=bx 2+a , 令z =x 2,则y =bz +a ,∵b ̂=68683570≈1.92,z −=18∑z i 8i=1=2048=25.5,y −=4008=50,∴a ̂=50−1.92×25.5=1.04,∴y 关于x 的回归方程为y ̂=1.92x 2+1.04.(3)将x =9代入回归方程中,可得y ̂=1.92×92+1.04≈157, 故2021年的游客人数大约为157百人.【解析】(1)根据残差图可得,模型②的残差相对模型①较大,即模型①的拟合效果相对较好.(2)由(1)可知y 关于x 的回归方程为y ̂=bx 2+a ,令z =x 2,则y =bz +a ,结合回归方程的公式,即可求解.(3)将x =9代入到回归方程中,即可求解.本题主要考查了回归方程公式和残差图的应用,属于基础题.21.【答案】(1)解:由题意,f(0)=1,f′(x)=e x ,故f′(1)=e ,∴所求切线方程为y −1=ex , 即y =ex +1.(2)证明:设g(x)=e x −ln(x +2),g(x)定义域为(−2,+∞), 则g′(x)=e x −1x+2, 设ℎ(x)=e x −1x+2, 则ℎ′(x)=e x +1(x+2)2>0,所以函数ℎ(x)=g′(x)=e x −1x+2单调递增, 因为g′(−1)=1e −1<0,g′(0)=12>0,所以g′(x)=e x −1x+2在(−2,+∞)上有唯一零点x 0,且x 0∈(−1,0), 因为g′(x 0)=0,所以e x 0=1x0+2,即−x 0=ln(x 0+2),当x ∈(−2,−1)时g′(x)<0,当x ∈(−1,+∞)时,g′(x)>0, 所以当x =x 0时,g(x)取得最小值g(x 0), 故g(x)≥g(x 0)=e x 0−ln(x 0+2)=1x0+2+x 0>0综上可知,当x >−2时,不等式f(x)>ln(x +2).【解析】(1)求函数的导数,根据导数的几何意义结合切线方程即可得到结论 (2)利用导数来求函数的最值,证明不等式成立.本题主要考查切线方程,证明导数的不等式问题,属于难题.22.【答案】解:(1)已知圆C 1和圆C 2的极坐标方程分别是ρ=4cosθ和ρ=2sinθ.根据{x =ρcosθy =ρsinθx 2+y 2=ρ2,转换为直角坐标方程为:(x −2)2+y 2=4和x 2+(y −1)2=1,两圆的方程相减得:2x −y =0.(2)射线OM :θ=π6与圆C 1的交点为O 、P ,与圆C 2的交点为O 、Q , 所以{ρ=4cosθθ=π6,整理得ρP =4×√32=2√3;同理:{ρ=2sinθθ=π6,整理得ρQ =2×12=1,所以:|OP||OQ|=ρP ⋅ρQ =2√3.【解析】(1)直接利用转换关系,在极坐标方程和直角坐标方程之间进行转换; (2)利用极径的应用求出结果.本题考查的知识要点:极坐标方程和直角坐标方程之间的转换,极径的应用,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】解:(I) f(x)=|x +1|+|2x −1|,当x ≤−1时,f(x)=−x −1+1−2x =−3x ≤2x +1,解得x ≥−15, 故解集为⌀,当−1<x <12时,f(x)=x +1+1−2x =−x +2≤2x +1,解得x ≥13,故13≤x <12,当x ≥12时,f(x)=x +1+2x −1=3x ≤2x +1,解得x ≤1, 故12≤x ≤1,综上所述,不等式f(x)≤2x +1的解集为[13,1].(II)证明:f(x)={−3x,x ≤−1−x +2,−1<x <123x,x ≥12,故f(x)的最小值为f(x)min =f(12)=32,即t =32, ∴a +b +2c =2t =3,∵a +b +2c =a +c +b +c =2, ∴1a+c+1b+c =13(1a+c+1b+c)[(a +c)+(b +c)]=13(2+b+c a+c+a+c b+c)≥13(2+2√b+c a+c⋅a+c b+c)=43,当且仅当a +c =b +c =1时,等号成立,即得证.【解析】(I)根据已知条件,分x ≤−1,−1<x <12,x ≥12三种情况讨论,并取其并集,即可求解.(II))f(x)={−3x,x ≤−1−x +2,−1<x <123x,x ≥12,故f(x)的最小值为f(x)min=f(12)=32,即t =32,再结合基本不等式的公式,即可求解.本题考查了绝对值不等式的求解,以及基本不等式的应用,属于中档题.。
高三第一学期期中数学考试卷(文科)(3)一、填空题:(5×14=70)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则≥-+=≥= 2. 等差数列{}n a 中,12010=S ,那么29a a +的值是3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是4. 复数21i -的值为5.下列函数中,在其定义域内既是奇函数,又是减函数的是 ①0.5log y x =()0≠x ② x xy +=1 ()0≠x ③ x x y --=3 ④ x y 9.0=6.与直线2x -y -4=0平行且与曲线x y 5=相切的直线方程是 . 7.函数y 的定义域和值域分别是 和 8.在ABC ∆中,60=∠C ,则=+++ac bc b a 9.圆064422=++-+y x y x 截直线x-y-5=0所得弦长等于 10. P 是椭圆221169x y +=上的动点, 作PD⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为 .11.已知双曲线22x -my 2=1的一条准线与抛物线y 2=4x 的准线重合,则双曲线的离心率为12.若,a b 是正常数,a b ≠,,(0,)x y ∈+∞,则222()a b a b x y x y++≥+,当且仅当a bx y =时上式取等号. 利用以上结论,可以得到函数29()12f x x x =+-(1(0,)2x ∈)的最小值为 ,取最小值时x 的值为 .13.一水池有两个进水口,一个出水口,每水口的进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定能确定正确的诊断是 .14. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒移动一个单位,那么第2008秒末这个粒子所处的位置的坐标为______。
二、解答题:15.(本小题满分14分)求满足下列条件曲线的标准方程:(1) 长轴是短轴的3倍且经过点B(0,1)的椭圆方程;(2) 顶点在原点,焦点在x 轴上且通径长为6的抛物线方程。
16.(本小题满分14分)已知向量a=(cos 23x ,sin 23x),b =(2sin 2cos x x ,-),且x ∈[0,2π]. (1)求ba +;(2)设函数b a x f +=)(+ba⋅,求函数)(x f 的最值及相应的x 的值。
17.(本小题满分14分)某村计划建造一个室内面积为800m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少? 18.(本小题满分16分)设函数x x f a log )(=(1,0≠>a a a 为常数且),已知数列),(1x f ),(2x f ),(n x f 是公差为2的等差数列,且21a x =.(Ⅰ)求数列}{n x 的通项公式;(Ⅱ)当21=a 时,求证:3121<+++n x x x .19.(本小题满分16分)(普通班做)已知点M (-2,0),N (2,0),动点P 满足条件PM PN -,该动点的轨迹为F , (1)求F 的方程。
(2)若A 、B 是F 上的不同两点,O 是坐标原点,求OA OB ∙的最小值。
(免试班做)已知圆O :122=+y x ,圆C :1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|.(Ⅰ)求实数a 、b 间满足的等量关系; (Ⅱ)求切线长|PA|的最小值;(Ⅲ)是否存在以P 为圆心的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的方程; 若不存在,说明理由. 20.(本小题满分16分) (普通班做)定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.(Ⅰ)试判断函数33()f x x x =-在[1,3]上是不是有界函数?请给出证明;(Ⅱ)若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.(免试班做)对于函数2()(1)2(0)f x ax b x b a =+++-≠,若存在实数0x ,使00()f x x =成立,则称0x 为()f x 的不动点.(1)当2,2a b ==-时,求()f x 的不动点;(2)若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若()y f x =的图象上A 、B 两点的横坐标是函数()f x 的不动点,且直线2121y kx a =++是线段AB 的垂直平分线,求实数b 的最小值.ABP第一学期期中测试数学(文)试卷答案一、填空题:1.{x |x ≤2} 2. 24 3.23-==m m 或 4.1i + 5.③ 6.16x-8y+25=07.{}x x R ∈,{y y 8. 1 9. 6 10. 22149x y += 11. 212.25, 1513.① 14. (16,44) 二、解答题:15.(1)2219x y +=,2291y x +=;(2)26y x =± 16.解:(I )由已知条件: 20π≤≤x , 得:233(cos cos ,sin sin )2222x x x x a b +=-+=x x sin 22cos 22=-=(2)33()2sin coscos sin sin 2222x x x xf x x =-+2sin cos 2x x =- 22132sin 2sin 12(sin )22x x x =+-=+-因为:20π≤≤x ,所以:1sin 0≤≤x 所以,只有当:sin 1x =时, max ()3f x =sin 0x = , min ()1f x =-17.解:设矩形温室的左侧边长为am ,后侧边长为bm ,则2800ab m =. ∴蔬菜的种植面积)2(2808842)2)(4(b a b a ab b a S +-=+--=--=,∵800,0,0=>>ab b a ,∴80222=≥+ab b a ,∴648802808=⨯-≤S (m 2), 当且仅当b a 2=,即m b m a 20,40==时,648max =S m 2.答:当矩形温室的左侧边长为40m ,后侧边长为20m 时,蔬菜的种植面积最大,最大种植面积为648 m 2. 18.(Ⅰ)n n x f d a x f n a 22)1(2)(22log )(21=⋅-+=∴===n n n a a x nx 22log :==即(Ⅱ)当21=a 时,nn x ⎪⎭⎫⎝⎛=41 ,314113141141414121<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⋅⎪⎭⎫ ⎝⎛-=+++nnn x x x19.(普通班做)(1)F 的方程为12222=-y x )2(≥x (2))(设11,y x A ),(22y x B221420101421212121222222122222222221222122212121212121的最小值为轴时,综上所述:当由轴时不垂直当则方程为轴时,设当OB OA x AB k k x x k k b k k b OB OA k b k y y k b x x y x b kx y x AB y x y y x x OB OA b y AB x AB y y x x ∙⊥>-+=∙∴>-∴>-+=--+-+=∙∴⎪⎪⎩⎪⎪⎨⎧--=-+=∴⎩⎨⎧=-+==-=+=∙=⊥+=∙(免试班做)(Ⅰ)连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1, ∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a化简得实数a 、b 间满足的等量关系为:052=-+b a .(Ⅱ)由052=-+b a ,得52+-=b a1||||||2222-+=-=b a OA PO PA 1)52(22-++-=b b4)2(52420522+-=+-=b b b∴当2=b 时,2||min =PA (Ⅱ)∵圆O 和圆C 的半径均为1,若存在半径为R 圆P ,与圆O 相内切并且与圆C 相外切,则有1||-=R PO 且 1||+=R PC于是有:2||||=-PO PC 即 2||||+=PO PC从而得 2)4()2(2222++=-+-b a b a两边平方,整理得)2(422b a b a +-=+将52=+b a 代入上式得:0122<-=+b a故满足条件的实数a 、b 不存在,∴不存在符合题设条件的圆P.20.(普通班做)(Ⅰ)∵2233)(xx x f +=',当]3,1[∈x 时,0)(>'x f . ∴)(x f 在[1,3]上是增函数.∴当]3,1[∈x 时,)1(f ≤)(x f ≤)3(f ,即 -2≤)(x f ≤26. ∴存在常数M=26,使得]3,1[∈∀x ,都有|()|f x ≤M 成立. 故函数33()f x x x=-是[1,3]上的有界函数. (Ⅱ)∵a t t S ++-='2)1(1)(. 由|)(|t S '≤1,得|)1(1|2a t ++-≤1 ∴⎪⎪⎩⎪⎪⎨⎧-≥++-≤++-1)1(11)1(122a t a t ⎪⎪⎩⎪⎪⎨⎧-+≥++≤⇒1)1(11)1(122t a t a令1)1(1)(2++=t t g ,显然)(t g 在),0[+∞上单调递减,则当t →+∞时,)(t g →1. ∴1≤a 令1)1(1)(2-+=t t h ,显然)(t h 在),0[+∞上单调递减, 则当0=t 时,0)0()(max ==h t h ∴0≥a∴0≤a ≤1; 故所求a 的取值范围为0≤a ≤1. (免试班做)解2()(1)2(0),f x ax b x b a =+++-≠ (1)当2,2a b ==-时, 2()2 4.f x x x =-- 设x 为其不动点,即224.x x x --=则22240.x x --= 121, 2.()x x f x ∴=-=即的不动点是-1,2(2)由()f x x =得:220ax bx b ++-=. 由已知,此方程有相异二实根,0x ∆>恒成立,即24(2)0.b a b -->即2480b ab a -+>对任意R b ∈恒成立.20.163200 2.b a a a ∴∆<∴-<∴<<(3)设1122(,),(,)A x x B x x , 直线2121y kx a =++是线段AB 的垂直平分线, ∴ 1k =-记AB 的中点00(,).M x x 由(2)知0,2b x a=-2211,.212221b bM y kx a aa a =+∴-=+++ 在上化简得:1214212ab a a a=-=-≥=-++(a =当. min4b =-。