14.4×4矩阵式键盘识别技术
- 格式:doc
- 大小:124.50 KB
- 文档页数:9
简述扫描法识别矩阵式键盘上闭合键的方法扫描法是一种常见的识别矩阵式键盘上闭合键的方法。
矩阵式键盘是指将键排列成矩阵形式的键盘,其中每个键都有一个唯一的行列坐标。
扫描法通过依次扫描矩阵中的每个键,并检测按下的键是否闭合来实现键盘输入的识别。
以下是利用扫描法识别矩阵式键盘上闭合键的一般步骤:1.确定矩阵的行数和列数:首先确定键盘的行数和列数,通常可以通过读取键盘的配置文件或者手动测量来获取。
2.设置输入输出引脚:将矩阵的行和列分别与输入输出引脚相连,通常使用数字输入输出引脚来实现。
根据具体的硬件平台和编程语言,设置引脚可以使用GPIO库或者其他相关库函数。
3. 循环扫描键盘:使用一个循环结构不断扫描键盘的状态。
一般的循环结构可以使用while或者for语句实现。
4.逐行扫描:在每次循环中,按照从上到下的顺序逐行扫描键盘。
可以使用一个循环结构来实现逐行扫描。
5.逐列检测:对于每行键盘键,按照从左到右的顺序逐列检测。
通过将当前的行输入高电平,然后逐一检测列的输入状态,以确定是否有键闭合。
如果检测到闭合键,可以记录下当前的行列坐标。
6.处理按键操作:在检测到闭合键后,根据该键的行列坐标来进行相应的键盘输入处理。
可以通过根据行列坐标查找键对应的ASCII码或者其他键值来实现。
7.更新循环:在完成当前一次循环后,更新循环计数器,继续循环扫描键盘。
需要注意的是,扫描法是一种实时性较强的识别方法,需要以较高的频率(例如每秒数十次)循环扫描键盘,以确保能够准确地检测到闭合键。
此外,具体的实现方法可能会因硬件平台和编程语言的不同而有所差异,需要根据具体的情况进行调整。
总结起来,扫描法通过按照一定的顺序逐行逐列扫描矩阵式键盘,并根据检测到的闭合键的行列坐标来进行识别,实现了键盘输入的功能。
这种方法简单、可靠,被广泛应用在许多电子设备和系统中。
“电子创新设计与实践”课程期中课题设计报告姓名:张思源,学:20102121026,年级:2010,专业:电信报告内容设计一个4*4矩阵键盘,并编写相关程序摘要1.4×4矩阵式键盘程序识别原理。
2.4×4矩阵式键盘按键的设计方法。
报告正文:一、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
二、参考电路图14.2 4×4矩阵式键盘识别电路原理图图14.1 4×4键盘0-F显示图14.3 4×4矩阵式键盘识别程序流程图三、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
四、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
五、程序流程图(如图14.3所示)六、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MSMOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MSJZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KEMOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KFMOV COUNT,#11LJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;;XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;; DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71H ;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f,0x66,0x7f,0x39, 0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个//{ case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键// { case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}参考文献:百度百科。
实验四: 4 × 4键盘输入实验一、实验目的:1.学习非编码键盘的工作原理和键盘的扫描方式。
2.学习键盘的去抖方法和键盘应用程序的设计。
二、实验原理:键盘是单片机应用系统接受用户命令的重要方式。
单片机应用系统一般采用非编码键4*4矩阵盘,需要由软件根据键扫描得到的信息产生键值编码,以识别不同的键。
本板采用键盘,行信号分别为P1.0-P1.3 ,列信号分别为P1.4-P1.7 。
具体电路连接见下图对于键的识别一般采用逐行(列)扫描查询法,判断键盘有无键按下,由单片机I/O口向键盘送全扫描字,然后读入列线状态来判断。
程序及流程图:ORG 0000HAJMP MAINORG 0000HAJMP MAINORG 0030HMAIN:MOV P2,#0F7HMOV P1,#0F0HMOV R7,#100DJNZ R7,$MOV A,P1ANL A,#0F0HXRL A,#0F0HJZ MAINLCALL D10MSMOV A,#00HMOV R0,AMOV R1,AMOV R2,#0FEH SKEY0:MOV A,R2MOVP1,AMOVR7,#10DJNZ R7,$MOVA,P1ANLA,#0F0HXRLA,#0F0HJNZ LKEYINC R0MOVA,R2RL AMOVR2,AMOVA,R0CJNE A,#04H,SKEY0AJMP MAIN LKEY:JNB ACC,4,NEXT1MOVA,#00HMOVR1,AAJMP DKEYNEXT1:JNB ACC.5,NEXT2MOVA,#01HMOVR1,AAJMP DKEYNEXT2:JNB ACC.6,NEXT3MOVA,#02HMOVR1,AAJMP DKEYNEXT3:JNB ACC.7,MAINMOVA,#03HMOVR1,AAJMP DKEY DKEY:MOV A,R0MOVB,#04HMULABADDA,R1AJMP SQRSQR:MOVDPTR,#TABMOVC A,@A+DPTRMOVP0,AAJMP MAINTAB:DB0C0H,0F9H,0A4H,0B0H,99H, 92H, 82H, 0F8H DB 80H, 90H, 88H, 83H, 0C6H,0A1H,86H, 8EH D10MS:MOV R6,#10L1:MOV R5,#248DJNZ R5,$DJNZ R6,L1RETEND流程图:结束三、思考题:总结 FPGA是如何识别按键的?与单片机读取键值有何不同?答:FPGA的所有 I/O 控制块允许每个 I/O 引脚单独配置为输入口 , 不过这种配置是系统自动完成的。
在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,在矩阵键盘中每条水平线和垂直线在交叉处不直接相连,而是通过一个按键相连接,这样在由N条水平线和M条垂直线最多可以有N *M 个按键,大大的减少了对于芯片I/O的占用。
键盘矩阵的按键识别方法图1 矩阵键盘的结构方法一行扫描法1、判断键盘中有无键按下将全部行线P1.4-P1.7置低电平,当然P1.0-P1.3为高电平(或许芯片内部已经将这些引脚它上拉),然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。
若所有列线均为高电平,则键盘中无键按下。
2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
方法二先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。
再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。
将两次读取结果组合起来就可以得到当前按键的特征编码。
在I.MX27中keypad模块的实现Keypad port 相关引脚说明:在keypad模块中总共有16个引脚(8个行引脚 8个列引脚)KP_COL[7:0] 其中[5:0] 作为键盘模块的列引脚如果未使用也可以做为通常的GPIO口使用[7:6]两引脚复用可以作为键盘模块的列引脚 7脚还可以用做串口2的UART2_CTS 引脚6脚还可以当做串口2 的UART2_TXD脚使用 6脚有时还做为芯片内部的测试引脚KP_ROW[5:0] 其中[5:0] 作为键盘模块的行引脚如果未使用也可以做为通常的GPIO口使用[7:6]两引脚复用可以作为键盘模块的行引脚 7脚还可以用做串口2的UART2_RTS 引脚6脚还可以当做串口2 的UART2_RXD脚使用keypad port 相关的寄存器KPCR 键盘控制寄存器当列引脚作为输出时有凉宫输出方式1)Open-Drain Output (漏极开路输出)2) Totem-Pole-Output(图腾柱式输出)KPSR 键盘状态寄存器作用用于控制键盘的状态设定键盘的中断方式等kDDR 键盘数据流向寄存器作用用于控制键盘引脚作为输出功能还是作为输入功能使用当相应位被置为0代表输入当相应位被置为1时代表输出kPDR 键盘数据寄存器作用用于输出或者读出相应行列引脚上的数据,当相应引脚被置为输入/输出模式该寄存器的响应为代表输入/输出的值Keypad功能能模块的具体实现。
一、实验目的1.掌握4×4矩阵式键盘程序识别原理2.掌握4×4矩阵式键盘按键的设计方法二、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号(2)键盘中对应按键的序号排列如图14.1所示三、参考电路740)this.width=740" border=undefined>图14.2 4×4矩阵式键盘识别电路原理图740)this.width=740" border=undefined>图14.1 4×4键盘0-F显示740)this.width=740" border=undefined>图14.3 4×4矩阵式键盘识别程序流程图四、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h五、程序设计内容(1)4×4矩阵键盘识别处理(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码矩阵的行线和列线分别通过两并行接口和CPU通信键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能六、程序流程图(如图14.3所示)七、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUA LCALL PANDUANLCALL XIANSHILJMP START ;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT#00H RET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3#0FFHCLR P3.4MOV A P3ANL A#0FHXRL A#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A P3ANL A#0FHCJNE A#0EH K1MOV COUNT#0LJMP DKK1: CJNE A#0DH K2MOV COUNT#4LJMP DKK2: CJNE A#0BH K3 MOV COUNT#8 LJMP DKK3: CJNE A#07H K4 MOV COUNT#12K4: NOPLJMP DKSW1: MOV P3#0FFH CLR P3.5MOV A P3ANL A#0FHXRL A#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A P3ANL A#0FHCJNE A#0EH K5 MOV COUNT#1 LJMP DKK5: CJNE A#0DH K6 MOV COUNT#5 LJMP DKK6: CJNE A#0BH K7 MOV COUNT#9 LJMP DKK7: CJNE A#07H K8 MOV COUNT#13K8: NOPLJMP DKSW2: MOV P3#0FFH CLR P3.6MOV A P3ANL A#0FHXRL A#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A P3ANL A#0FHCJNE A#0EH K9 MOV COUNT#2 LJMP DKK9: CJNE A#0DH KA MOV COUNT#6 LJMP DKKA: CJNE A#0BH KB MOV COUNT#10 LJMP DKKB: CJNE A#07H KC MOV COUNT#14 KC: NOPLJMP DKSW3: MOV P3#0FFH CLR P3.7MOV A P3ANL A#0FHXRL A#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A P3ANL A#0FHCJNE A#0EH KDMOV COUNT#3LJMP DKKD: CJNE A#0DH KE MOV COUNT#7LJMP DKKE: CJNE A#0BH KF MOV COUNT#11LJMP DKKF: CJNE A#07H KG MOV COUNT#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A COUNT MOV DPTR#TABLE MOVC A@A+DPTRMOV P0 ALCALL DELAYSK: MOV A P3ANL A#0FHXRL A#0FHJNZ SKRET ;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6#20D1: MOV R7#248DJNZ R7$DJNZ R6D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5#20LOOP: LCALL DELAY10MSDJNZ R5LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH06H5BH4FH66H6DH7DH07H DB 7FH6FH77H7CH39H5EH79H71H ;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f0x660x7f0x390x060x6d0x6f0x5e0x5b0x7d0x770x790x4f0x070x7c0x71};void main(void){ unsigned char i j k key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}九、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
矩阵式键盘的按键识别方法确定矩阵式键盘上何键被按下介绍一种“行扫描法”。
行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。
1、判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。
若所有列线均为高电平,则键盘中无键按下。
2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
下面给出一个具体的例子:图仍如上所示。
8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。
列线P1.0-P1.3分别接有4个上拉电阻到正电源+5V,并把列线P1.0-P1.3设置为输入线,行线P1. 4-P.17设置为输出线。
4根行线和4根列线形成16个相交点。
1、检测当前是否有键被按下。
检测的方法是P1.4-P1.7输出全“0”,读取P1.0-P1.3的状态,若P1.0-P1.3为全“1”,则无键闭合,否则有键闭合。
2、去除键抖动。
当检测到有键按下后,延时一段时间再做下一步的检测判断。
3、若有键被按下,应识别出是哪一个键闭合。
方法是对键盘的行线进行扫描。
P1.4-P1.7按下述4种组合依次输出:P1.7 1 1 1 0P1.6 1 1 0 1P1.5 1 0 1 1P1.4 0 1 1 1在每组行输出时读取P1.0-P1.3,若全为“1”,则表示为“0”这一行没有键闭合,否则有键闭合。
由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值。
1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
5、4×4键盘矩阵按键实验一、实验目的及要求键盘实质上是一组按键开关的集合。
通常,键盘开关利用了机械触点的合、断作用。
键的闭合与否,反映在行线输出电压上就是呈高电平或低电平,如果高电平表示键断开,低电平则表示键闭合,反之也可。
通过对行线电平高低状态的检测,便可确认按键按下与否。
为了确保CPU对一次按键动作只确认一次按键有效,还必须消除抖动。
当按键较多时会占用更多的控制器端口,为减少对端口的占用,可以使用行列式键盘接口,本实验中采用的4×4键盘矩阵可以大大减少对单片机的端口占用,但识别按键的代码比独立按键的代码要复杂一些。
在识别按键时使用了不同的扫描程序代码,程序运行时LED灯组会显示相应按键的键值0~15的二进制数。
本实验中P2端口低4位连接是列线,高4位连接的是行线。
二、实验原理(图)三、实验设备(环境):1、电脑一台2、STC-ISP(V6.85I)烧写应用程序3、Keil应用程序四、实验内容(算法、程序、步骤和方法):#include<STC15F2K60S2.h> //此文件中定义了STC15系列的一些特殊功能寄存器#include"intrins.h"#define uint unsigned int#define uchar unsigned charuchar code dsy_code[]={0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0 F,0xff};uchar Pre_keyno=16,keyno=16;void delayMS(char x){uchar i;while(x--)for(i=0;i<120;i++) ;}void keys_scan(){uchar tmp;P2=0x0f;delayMS(5);tmp=P2^0x0f;switch(tmp){case 1:keyno=0;break;case 2:keyno=1;break;case 4:keyno=2;break;case 8:keyno=3;break;default:keyno=16;}P2=0xf0;delayMS(5);tmp=P2>>4^0x0f;switch(tmp){case 1:keyno+=0;break;case 2:keyno+=4;break;case 4:keyno+=8;break;case 8:keyno+=12;break;}}main(){P0=0x00;while(1){P2=0xf0;if(P2!=0xf0)keys_scan();if(Pre_keyno!=keyno){P0=~dsy_code[keyno];Pre_keyno=keyno;}delayMS(50);}}五、实验结论(结果):本实验实现了XXX功能,核心算法采用了XXX的方式,达到了预期目的。
4×4矩阵式键盘识别技术计算机控制技术作业学校:西安科技大学专业班级:自动化 0703班姓名:张彦阳(0706050307)QQ:805864469设计题目:4×4矩阵式键盘识别技术一.设计电路实现功能:基于AT89C51编写程序完成4×4矩阵式开关控制灯泡点亮和熄灭,以显示从0000——1111十六位二进制数。
如以下原理图所示,当按下第一个开关时,所有灯泡为灭,按下第二个开关时,灯泡矩阵列最后一列点亮(即显示0001),依此类推,按下第二个开关时第三列灯泡点亮(即显示0010),按下第三个时第三第四列灯泡同时点亮(即显示0011),一直按便完成控制灯泡从0000——1111的依次点亮功能。
二.训练目的:对proteus软件的基本使用进行学习掌握对keilC51软件程序的整个调试过程要掌握掌握键盘识别编程的方法掌握软件键盘去抖得方法三.实例环境基于proteus完成实验原理图的绘制,用keil C51编程并调试通过,生成.hex文件,再将其导入AT89C51进行仿真模拟。
四.完整电路原理图:五.Proteus调试通过,仿真部分结果显示如下:1.当按下第二个开关时的仿真结果(即显示0001)。
2.当按下第三个开关时的仿真结果(即显示0010)。
3.当按下第四个开关时的仿真结果(即显示0011)。
4.当按下第十五个开关时的仿真结果(即显示1110)。
注:其他仿真结果没有列出。
六.源程序设计如下所示:PRG 0000HAJMP MAINORG 0030HMAIN: MOV P2,#0F0H LCALL DELAYMOV A,P2ANL A,#0F0HCJMP A,#0F0H,LAJMP MAINL: LCALL DELAYMOV A,P2JB ACC.4,L1MOV R3,#00HAJMP Q1L1: JB ACC.5,L2MOV R3,#01HAJMP Q1L2: JB ACC.6,L3MOV R3,#02HAJMP Q1 L3: JB ACC.7,MAIN MOV R3,#03HAJMP Q1Q1: MOV P2,#0FHLCALL DELAYMOV A,P2ANL A,#0FHJB ACC.0,Q2MOV R4,#00HAJMP JIAQ2: JB ACC.1,Q3MOV R4,#04HAJMP JIAQ3: JB ACC.2,Q4MOV R4,#08HAJMP JIAQ4: JB ACC.3,MAINMOV R4,#0CHAJMP JIAJIA: MOV A,R3ADD A,R4MOV R1,AAJMP MAIN DELAY: MOV R6,#20H Q6: MOV R5,#0BBH Q5: DJNZ R5,Q5DJNZ R6,Q6RETEND七.实践总结:本次试验基本取得成功,虽然是第一次接触proteus和keil C51软件,在做的过程出现了很多问题,主要涉及软件的基本使用,程序的调试等,但是经过同学的指导,我们自己的琢磨和查找一些资料,最终还是很顺利的完成了试验的整个设计过程,我们的能力也有所提高,对以后的学习有很大帮助。
矩阵键盘的按键识别原理嘿,朋友们!今天咱来唠唠矩阵键盘的按键识别原理。
你看啊,这矩阵键盘就像是一个小小的战场,每个按键都是一名勇敢的战士呢!想象一下,这些按键整齐地排列在那里,等待着我们去“召唤”它们。
那它到底是怎么识别我们按的是哪个键呢?其实啊,就像是一场巧妙的游戏。
矩阵键盘是通过行列交叉的方式来工作的哦!比如说,它有好多行和列,就像一个方格网。
当我们按下一个键时,就相当于在这个方格网上点亮了一个特定的点。
这就好像是在一群人中,你一下子就找到了你要找的那个人一样神奇!每个按键都有它自己独特的位置,通过行和列的组合,矩阵键盘就能准确地知道是哪个键被按下啦。
那它怎么知道这个键被按下了呢?这就得说到它的检测机制啦。
它会不停地去“巡逻”这些行列,一旦发现有某个地方的信号有变化,嘿嘿,那就说明有键被按下去啦!这多有意思呀!而且哦,矩阵键盘还很聪明呢!它不会因为你不小心碰到了别的键就乱了套,它能准确地识别出你真正想要按的那个键。
这就好像一个经验丰富的侦探,能从一堆线索中找到真正的关键信息。
你说这矩阵键盘是不是很厉害?它就静静地待在那里,随时准备为我们服务,只要我们一伸手,它就能快速响应。
想想我们日常生活中的各种电子设备,好多都有矩阵键盘的身影呢!从小小的遥控器到复杂的电脑键盘,它们都在默默地工作着。
我们每天都在和它们打交道,却很少有人真正去了解它们背后的原理。
现在你知道了矩阵键盘的按键识别原理,是不是对这些常见的东西又多了一份好奇和敬意呢?下次再使用有矩阵键盘的设备时,你可以在心里默默感叹一下它的神奇哦!反正我是觉得挺有意思的,它就像是一个隐藏在电子世界里的小秘密,等着我们去发现和探索。
这不就是科技的魅力所在嘛!所以呀,别小看了这些看似普通的东西,它们背后可都有着不简单的原理和故事呢!原创不易,请尊重原创,谢谢!。
第四章实验及实践课题(14) 4×4矩阵式键盘识别技术实验任务如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.14.1所示图4.14.12.硬件电路原理图图4.14.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接V,而接地是通过程序输出数字“0”实现的。
键盘处理CC程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图图4.14.36.汇编源程序KEYBUF EQU 30HORG 00HSTART: MOV KEYBUF,#8 ;一开始数码管全亮即是8WAIT:MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FH ;立即数与到累加器XRL A,#0FH ;立即数异或到累加器,和下面一句构成判断第1行有没按键按下的功能。
JZ NOKEY1 ;累加器为零转移到NOKEY1,LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1MOV A,P3ANL A,#0FHCJNE A,#07H,NK0 :累加器A与立即数不等转移到NK1MOV KEYBUF,#0 ;这里及下面改的比较多,主要是类似这颜色部分改了。
LJMP DK1NK0: CJNE A,#0BH,NK1MOV KEYBUF,#1LJMP DK1NK1: CJNE A,#0DH,NK2MOV KEYBUF,#2LJMP DK1NK2: CJNE A,#0EH,NK3MOV KEYBUF,#3LJMP DK1NK3: NOPDK1:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK1A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK1ANOKEY1:MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHLCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2MOV A,P3ANL A,#0FHCJNE A,#07H,NK4MOV KEYBUF,#4LJMP DK2NK4: CJNE A,#0BH,NK5MOV KEYBUF,#5LJMP DK2NK5: CJNE A,#0DH,NK6MOV KEYBUF,#6LJMP DK2NK6: CJNE A,#0EH,NK7MOV KEYBUF,#7LJMP DK2NK7: NOPDK2:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK2A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK2ANOKEY2:MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3MOV A,P3ANL A,#0FHCJNE A,#07H,NK8MOV KEYBUF,#8LJMP DK3NK8: CJNE A,#0BH,NK9MOV KEYBUF,#9NK9: CJNE A,#0DH,NK10MOV KEYBUF,#10LJMP DK3NK10: CJNE A,#0EH,NK11MOV KEYBUF,#11LJMP DK3NK11: NOPDK3:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK3A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK3ANOKEY3:MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4MOV A,P3ANL A,#0FHCJNE A,#07H,NK12MOV KEYBUF,#12LJMP DK4NK12: CJNE A,#0BH,NK13MOV KEYBUF,#13LJMP DK4NK13: CJNE A,#0DH,NK14MOV KEYBUF,#14LJMP DK4NK14: CJNE A,#0EH,NK15MOV KEYBUF,#15LJMP DK4NK15: NOPDK4:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK4A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK4ANOKEY4:LJMP W AITDEL Y10MS:MOV R6,#10D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND 7.C语言源程序#include <AT89X51.H>unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char temp;unsigned char key;unsigned char i,j;void main(void){while(1){P3=0xff; /*第1行;一开始数码管全亮即是8*/ P3_4=0; /*决定第1行的标志*/temp=P3;temp=temp & 0x0f;if (temp!=0x0f) /*当P3无改变时跳过*/{for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=3;break;case 0x0d:key=2;break;case 0x0b:key=1;break;case 0x07:key=0;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第2行*/P3_5=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=7;break;case 0x0d:key=6;break;case 0x0b:key=5;break;case 0x07:key=4;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第3行*/P3_6=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=10;break;case 0x0d:key=9;break;case 0x0b:key=8;break;case 0x07:key=7;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第4行*/P3_7=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=16;break;case 0x0d:key=13;break;case 0x0b:key=12;break;case 0x07:key=11;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}}}。