德国脱硫氧化风机翻译版.
- 格式:doc
- 大小:112.51 KB
- 文档页数:11
德国WKV公司活性焦吸附法脱硫脱硝技术简介活性焦对流脱硫技术简介活性焦法脱硫技术已经有近四十年研究应用历史,早期的技术研究及应用主要集中在德国、日本、美国等。
目前,国外已有规模为120×104m3/h的活性焦法脱硫装置及装机容量为300mw的同时脱硫脱硝装置,600mw活性焦干法烟气脱硫装置。
活性汪烟气脱硝原理活性焦内具有较多的大孔(>50nm)、中孔(2.0~50nm),较少的微孔(<2nm),孔隙已连贯的形态存在与活性焦内。
活性焦吸附污染物时有二种作用机理,一种为物理吸附,一种为化学吸附。
物理吸附作用依赖于活性焦多孔比表面积大的特性,将烟气中的污染物截流在活性焦内,利用微孔与分子半径大小相当的特征,将污染物分子限制在活性焦内。
化学吸附依靠的是活性焦表面的晶格有缺陷的c原子、含氧官能团和极性表面氧化物,利用它们所带的化学特征,有针对性的固定污染物在活性焦内表面上。
活性汪烟气脱硝工艺流程120~160℃的烟气通过增压风机加压进入脱硫岛烟气以一定气速进入吸附塔,烟气均匀的穿过活性焦吸附层,在吸附层内二氧化硫、汞、砷等重金属、hf、hcl和二噁瑛等大分子氧化物被脱除,脱除后的净烟气经净烟道汇集通过烟囱排放。
吸附so2达到饱和的活性焦从吸附塔底部排出,通过输送系统运至解析塔进行加热再生;再生的活性焦经筛分后会同补充的新鲜活性焦再送入吸附系统进行循环吸附使用。
经筛分破损活性焦从活性焦循环系统分离出来可以进入锅炉燃烧或再加工成其他产品。
再生回收的高浓度so2混合气体送入硫回收系统作为生产浓硫酸的原料。
活性汪烟气系统共同组成活性焦脱硫系统由烟气系统、吸附系统、解析系统、活性焦储存及输送系统、硫回收系统等组成。
溶解塔专利技术概述烟气均布装置(见下图)该烟气均布装置就是溶解塔对流溶解以求同时实现的核心技术,通过该技术可以并使烟气在溶解层内光滑流动,同时可以贯穿活性汪,同时实现饱和状态活性汪光滑简洁的被排泄,提升了活性汪的利用率,确保了烟气的烟气效率。
德国风电标准VDS3523翻译⽂件风⼒发电机防⽕指引1 初步说明2 适⽤范围3 风险性3.1 财产损失及后续成本3.1.2 损失举例3.1.3 起⽕原因4 保护的⽬标和保护的概念5 保护措施5.1 降低起⽕的风险5.2 ⽕灾探测与灭⽕5.3 为减少损失的措施5.4 质量保证6 来源1 初步说明随着需求,为⽀持可再⽣能源并提⾼其在整体能源供应中的份额,在过去的⼏年中风⼒发电发展迅速.除了地点扩⼤,风⼒发电机的性能和尺⼨(⾼度,转⼦直径)也在不断提升,⽬前已最多提升到6兆⽡(2007).随着风⼒发电机的性能提升和可⽤性及过去⼏年的损失经验,再未来起价值浓度回有所提升.--德国保险协会--德国劳式(Lloyd)⼯业服务,风能业务分部GL编写本风⼒发电机的防⽕准则这⼀准则将介绍关于风⼒发电机典型⽕灾风险的考虑以及特殊情况的对策.损失预防措施会被建议作为⽕灾危险性分析的根据.其⽬标是为减低⽕灾发⽣率及潜在的⽕灾破坏范围.除了特殊的防⽕措施检测,灭⽕和预防,全⾯的安全措施控制技术/监控系统操作是必需的.作为对故障早期检测的结果需保证把风⼒发电机恢复到安全状态.所谓状态监测系统(CMS)的应⽤基本上是为了避免机械损失.对风⼒发电机的维修和控制措施包括在损害发⽣前的可能性关机,通过监测可能推断出有关部件的状况及对机组模块和变化过程记录.为确保专业的监测和某些条件下所需要的反应,以下部分要考虑:--是否满⾜状态监测系统的预期⼯作条件--状态监测的范围--指标和测量(传感器)--捕捉,分析和传输信号--有关限制值--报警及报警确认--可能的条件变化⼏评价(诊断学)--数据储存和为应付情况变化进⾏评估的⽬的(数据库)风⼒发电机的制造商及其零部件以及运营商对其各⾃范围负责.状态监测系统不取代需要维修的风⼒发电机(5.1.6)关于安全信息措施的描述从坚持官⽅的义务和规定本出版物是根据有关的损失经验及故障安全分析.如果有更新的风险评估,可以对此进⾏修改.遵守法律和法规的有关规定.4 保护的⽬标和保护的概念风⼒发电机防⽕在本章中有详细解说,现⾏条例主要是为减少财产损害风险,⼀⽅⾯限制⽕灾蔓延另⼀⽅⾯防⽌由于⽕灾导致的业务中断,以确保风⼒发电机的可⽤性.风⼒发电机保护范围可能会有不同对象的具体风险,根据保险公司的经验确定保险性.经验表明,根据⽕灾保护的概念全⾯的保护是明智的,特别是保险⼈.根据这⼀概念,所有在结构上,风电特殊部位,和有组织的保护措施应在补充风险⽅⾯相互保护,⽽任何⼀种相互减值的保护职能应该被排除在外.以下⼏条可有效制⽌⽕灾发⽣:--使⽤不燃或难燃材料--使⽤⾃动报警和⾃动⽕灾检测系统实⾏早期⽕灾检测--频繁及专业维修--确认风险时⾃动关机和断电系统--对员⼯有危险情况处理能⼒的培训及⼯作涉及⽕警危险的内部规章(例如:焊接许可程序)为了限制⽕灾蔓延的危险,除使⽤防⽕部件外,实⾏早期⽕灾检测⽽使⽤⾃动报警和⾃动⽕灾检测系统和⾃动灭⽕系统也被证明是有效的.为减⼩损失⽽设的紧急措施计划始终是有帮助的,通过定期培训以确保这项计划能够执⾏.编制并执⾏⾼度公认的技术规则. 状态监测系统可以发现早期的条件变化,因此由这种变化产⽣的⽕灾是可以预防的.现有的风⼒发电机应该根据这⼀⽅针做出防⽕⽅⾯的修改,应先与当局及制造商,认证机构和承保⽅澄清,对于改装的批准和重新认证.合理保护范围的要求取决于风险参数.例如下⾯的情况要考虑在内:--不同类型风机和组成部分的损失经验--风机的兆⽡容量--风机结构及风险组件--风机地点(陆上或海上)--保险⾦额和扣除额表格所⽰为保护等级和保护措施.与保险公司达成协议可有不同的分级保护措施.在段落5.1.1含有防雷及电涌保护及5.1.2含有电⽓保护措施.早期⽕灾检测是为了起动⾃动关机和断电系统.机整体防⽕应与保险公司协商后由⼀个独⽴的检查确认机构检查,是为确保对其风机是否有充分的风险保障.可以对其做⼈证过程测试,型式试验和认证, 德国劳式(Lloyd)⼯业服务已经按需要证明他们的价值.参考:GL认证,风机防⽕认证,测试程序保护系统5 保护措施下⾯的解释代表是在风机专⽤防⽕保护概念指定框架内的防⽕措施.5.1 降低起⽕的风险在规划和建设阶段应考虑到⽕灾和爆炸的潜在风险及重要保护区.5.1.1 防雷及电涌保护5.2 ⽕灾探测与灭⽕环境和天⽓状况对风机消防保护系统操作条件有很⼤差别.以下要特殊考虑:--⼤⽓含盐(海上风机)--昼夜温差变化很⼤--振动--油⽥--发动机仓的空⽓流动条件⽽且,湿度增加,例如:风机的地点和建设可能对功能有影响.因此,在风机的规划阶段就应该考虑以上因素对防⽕系统有效性和可靠性的影响,并做出调整.5.2.1 ⽕灾探测为了有效地减⼩⽕灾损失,应使⽤⽕灾⾃动探测系统探测早期⽕灾,特别是,风机通常没有现场操作⼈员.可使⽤空间监测装置.⼀⽅⾯, ⽕灾⾃动探测系统会⾃动同知控制单元,另⼀⽅⾯,它可以⾃动启动灭⽕系统并关闭风机.机房监控⽕灾监控系统要对引擎仓,装有设备的塔筒部分,外部变压器和电⼒变电站进⾏监测. ⽕灾监控系统还要对⾼架地板,天花板和电⼒负载部分(电缆和其他线路)进⾏监测.参考:VDS 2095 ⽕灾监控及报警系统--规划和安装指南.⽕灾探测器必须适合被监测的区域及其⽕灾特点.例如某些特殊条件:温度,湿度,振动,当选择⽕灾探测器时必需作为考虑;如果可能,可以对⽕灾探测器进⾏加热.最好在风机内使⽤有针对烟雾特点的⽕灾探测器.监控装置经营条件例如:封装,强制风冷,房屋中的空⽓变化率例如:开关设备及变频机柜应进⾏设备监控和空间监控.”烟雾”应作为监控装置监测⽕灾的⼀个特点.参考:VDS 2304 电⽓系统和电⽓设备保护--规划和安装指南.⽕灾探测器是否适合不同的风机应由运⾏环境及与风机制造商咨询后决定.这样能提供最佳的探测效果和最低的误报.除了机房⽕灾监控和温度监控,油变压器应有连续报警系统保护(预报警和主报警及停机系统).如果早期⽕灾探测系统动作,⾄少以下反应应被触发:--⽕灾报警及报警信号被传到有⼈职守的控制室内--风机停机及切断外部电源--通过两路探测信号启动灭⽕系统探测系统根据报警值的逐渐变化可以出现不同的报警阶段(例如预报警,主报警,等等).重要5.2.2 灭⽕由于风机通常是在⽆⼈职守的条件下运⾏并且消防⼈员并不能及时(海上风场)和快速接近⽕场,⾃动灭⽕系统可以保证有效地灭⽕和减⼩损失,在过去已经有过证明.灭⽕系统以对风仓的有效⽕灾保护为⽬的,推荐使⽤⾃动的固定灭⽕系统.⽓体灭⽕系统和⽔喷雾系统都基本上适⽤(给出特殊条件可特殊考虑).这些灭⽕系统可作为装置保护或空间保护或两者综合.保护系统对保护设备或组件有选择性.在灭⽕系统启动前,空调通风系统应该⾃动关闭.关于在风机的应⽤,灭⽕剂要尽量达到⽆残留性,⽆腐蚀性,⾮导电性,并适合在在普遍的风机环境条件(温度,天⽓,设备和房间抗渗保护)下运⾏,并装载合适的剂量.以下系统适⽤于风⼒发电机:--⼆氧化碳灭⽕系统--惰性⽓体灭⽕系统--细⽔雾灭⽕系统--⽔喷雾灭⽕系统(变速箱,变电所,)⼲粉灭⽕系统和⽓溶胶灭⽕系统暂不建议在风机中应⽤,因为它们可能导致间接损失. 灭⽕系统是否适合不同的风机应由运⾏环境及与风机制造商咨询后决定.以下⽅⾯要特别考虑到:--灭⽕有效性所需的⽓体浓度和⽔压⽓体灭⽕系统的覆盖时间,考虑到复燃⽔灭⽕系统的⼯作时间,考虑到灭⽕有效性房间抗渗/泄压--灭⽕剂的储存(数量,重量等)--量/所需空间--安装/检验,执⾏--维护--可靠性--费⽤为确保灭⽕系统的有效性,应特别注意对泄压⼝的有关要求.应注意在⽓体灭⽕系统西对⼈的保护.每种灭⽕系统具有⼀定限度的有效性和优缺点.因此,为确保灭⽕的有效性,应在给定的条件参数下选择适宜的灭⽕系统.参考:VDS 2093 ⼆氧化碳灭⽕系统--规划和安装指南.VDS 2108 泡沫灭⽕系统--规划和安装指南.VDS 2109 ⽔喷雾灭⽕系统--规划和安装指南.VDS 2304 电⼦设备保护应⽤--规划和安装指南.VDS 2380 使⽤⾮液化惰性⽓体灭⽕装置的规划与安装VDS 2381 使⽤卤化碳⽓体灭⽕装置的规划与安装VDS 2496 灭⽕系统启动准则VDS 2498 细⽔雾灭⽕系统指南,补充VDS 2109VDS 2562 批准新灭⽕技术的程序⽕灾探测,报警,报警控制,启动灭⽕装置,和监控通常是由⽕灾探测为此核准制度.(见5.2.1) 灭⽕器故障监控。
附录一Flue gas desulfurizationFlue gas desulfurization is commonly known as FGD and is the technology used for removing sulfur dioxide (SO2) from the exhaust flue gases of power plants that burn coal or oil to produce steam for the turbines that drive their electricity generators. The most common types of FGD contact the flue gases with an alkaline sorbent such as lime or limestone. [1][2][3] As sulfur dioxide is responsible for acid rain formation, stringent environmental protectionregulations have been enacted in many countries to limit the amount of sulfur dioxide emissions from power plants and other industrial facilities.Prior to the advent of strict environmental protection regulations, tall flue gas stacks (i.e., chimneys) were built to disperse rather than remove the sulfur dioxide emissions. However, that only led to the transport of the emissions to other regions. For that reason, a number of countries also have regulations limiting the height of flue gas stacks.For a typical conventional coal-fired power plant, FGD technology will remove up to 99 percent of the SO2 in the flue gases.∙Contents∙ 1 History∙ 2 FGD chemistry∙ 3 Types of FGD systemso 3.1 Spray towero 3.2 Spray-dryero 3.3 Dry sorbent injection∙ 4 Sulfur dioxide emission removal performance levels∙ 5 Facts and statistics∙ 6 Alternative methods of reducing sulfur dioxide emissions∙7 Sulfuric acid mist formation∙8 ReferencesHistoryMethods for removing sulfur dioxide from flues gases have been studied for over 150 years. Early concepts useful for flue gas desulfurization appear to have germinated in 1850 in England.With the construction of large-scale power plants in England in the 1920s, the problems associated with large volumes of SO2emissions began to concernthe public. The problem did not receive much attention until 1929, when the British government upheld the claim of a landowner against the Barton Electricity Works for damages to his land resulting from SO2 emissions. Shortly thereafter a press campaign was launched against the erection of power plants within the confines of London. This led to the imposition of SO2 controls on all such power plants.[4]During this period, major FGD installations went into operation in England at three power plants. The first one began operation at the Battersea Station in London in 1931. In 1935, the second one went into service at the Swansea Power Station. The third one was installed in 1938 at the Fulham Power Station. All three installations were abandoned duringWorld War II.Large-scale FGD units did not reappear in commercial operation until the 1970s, and most of the activity occurred in the United States and Japan.[4] As of June 1973, there were 42 FGD units, ranging in size from 5 to250 megawatts, in operation: 36 in Japan and 6 in the United States.[5]As of about 1999-2000, there were 678 FGD units operating worldwide (in 27 countries) producing a total of about 229 gigawatts. About 45% of that FGD capacity was in the United States, 24% in Germany, 11% in Japan and 20% in various other countries. Approximately 79% of the units, representing about 199 gigawatts of capacity, were using lime or limestone wet scrubbing. About 18% (or 25 gigawatts) utilized spray-dry scrubbers or dry sorbent injection systems.[6][7][8]FGD chemistrySO2 is an acid gas. Therefore, the most common large-scale FGD systems use an alkaline sorbent such as lime or limestone to neutralize and remove the SO2 from the flue gas. Since lime and limestone are not soluble in water, they are used either in the form of an aqueous slurry or in a dry, powdered form. When using an aqueous slurry of sorbent, the FGD system is referred to asa wet scrubber. When using a dry, powdered sorbent, the system is referred to as a dry system. An intermediate or semi-dry system is referred to asa spray-dry system.The reaction taking place in wet scrubbing using a CaCO3 (limestone) slurry produces CaSO3 (calcium sulfite) and can be expressed as:CaCO3 (solid) + SO2(gas) → CaSO3 (solid) + CO2 (gas)When wet scrubbing with a Ca(OH)2 (lime) slurry, the reaction alsoproduces CaSO3 (calcium sulfite) and can be expressed as:Ca(OH)2 (solid) + SO2(gas) → CaSO3 (solid) + H2O (liquid)When wet scrubbing with a Mg(OH)2 (magnesium hydroxide) slurry,the reaction produces MgSO3 (magnesium sulfite) and can beexpressed as:Mg(OH)2 (solid) + SO2(gas) → MgSO3 (solid) + H2O (liquid)Some FGD systems go a step further and oxidize theCaSO3 (calcium sulfite) to produce marketable CaSO4 · 2H2O(gypsum):CaSO3 (solid) + ½O2 (gas) + 2H2O (liquid) → CaSO4 · 2H2O (solid)Aqueous solutions of sodium hydroxide (known as causticsoda or simply caustic) may also be used to neutralize andremove SO2 from flue gases. However, caustic soda islimited to small-scale FGD systems, mostly in industrialfacilities other than power plants because it is moreexpensive than lime. It has the advantage that it forms asolution rather than a slurry and that makes it easier tooperate. It produces a solution of sodium sulfite or sodiumbisulfite (depending on the pH), or sodium sulfate that mustbe disposed of. This is not a problem in a paper mill forexample, where the solution can be recycled and reusedwithin the paper mill.Types of FGD systemsThe major types of large-scale, power plant FGD systemsinclude spray towers, spray dryers and dry sorbent injectionsystems.Spray towerThere are various types of wet scrubbers. For example, spraytowers, venturi scrubbers, packed towers and trayed towers. Slurries would cause serious erosion problems in a venturi scrubber because of the high speeds at the throat of the venturi section. Packed towers or trayed towers would plug up if handling slurries. For handling slurries, the spray tower is a good choice and it is in fact a commonly used choice in large-scale FGD systems.[3][9][10]Spray towers are used downstream of the particulate equipment (electrostatic precipitator or baghouse) where the flue gas contains very little, ifany, combustion fly ash. In a spray tower system, the sorbent slurry is simply injected via spray nozzles into a vertical tower where the slurry droplets are contacted with the upflowing flue gas.Part of the water in the slurry is evaporated by the hot flue gas and the flue gas becomes saturated with water vapor.The SO2 dissolves into the slurry droplets and reacts with the alkaline sorbent particles. The slurry falls to the bottom of the spray tower and is sent to a reaction tank where the reaction is completed and a neutral salt is formed. In a regenerable system, the residual slurry is recycled back for reuse in the spray tower. In a once-through system, the residual slurry is dewatered and either disposed of or oxidized to CaSO4 · 2H2O and sold as a by-product gypsum. Spray-dryerSpray-dryers are used upstream of the particulate removal equipment (electrical precipitator or baghouse) where the flue gas contains the combustion fly ash. In a spray-dryer system, the alkaline sorbent is usually lime slurry. The slurry is atomized and sprayed into a vessel as a cloud of fine bubbles where it contacts the hot flue gas. The water is completely evaporated by the hot gas and the residence time in the vessel (about 10 seconds) allows the SO2 and any other acid gases, such as SO3 and HCl, to react with the lime to form a dry powder of calcium sulfite, calcium sulfate and unreactedlime.[3][11][12]The dry powder is removed from the flue gas along with the combustion fly ash in the particulate removal equipment. Some of the solids from the particulate removal equipment (i.e., fly ash, calcium sulfite, calcium sulfate and unreacted lime) may be recycled and reused as part of the sorbent slurry.[12]Dry sorbent injectionThe dry FGD system simply injects powdered lime or limestone sorbent directly into the flue gas. As shown in the adjacent location diagram, the dry sorbent may be injected into any one of three locations: (1) the upper section of the steam generator, (2) the economizer section of the steam generator orthe ducting between the air preheater and the electrostaticprecipitator.[2][3][11][13]The powdered sorbent is pneumatically injected through lances designed to distribute the sorbent evenly across the flow path of the flue gas.When injected into the upper section of the steam generator, it should enter at a point where the temperature range is about 900 to 1200 °C. Injection into the economizer should be at a point where the temperature range is about 400 to 600 °C. Injection into the ducting between the preheater and the precipitator should be at point where the flue gas temperature is about 150 to 180 °C.[3][11] The SO2 reacts directly with the powdered sorbent and the spent sorbent is removed from the flue gas along with the combustion fly ash inthe particulate removal equipmentSulfur dioxide emission removal performance levelsPartial flue gas desulfurization (FGD) can achieve about 50-70 % removal of sulfur dioxide by the injection of dry limestone just downstream of the air preheater. The resultant solids are recovered in the electrostatic precipitators along with the fly ash.In power plants burning pulverized coal, wet flue gas desulfurization (FGD) that contacts the flue gases with lime slurries (in what are called wet lime scrubbers) can achieve 95% sulfur dioxide removal without additives and99+% removal with additives. Wet FGD has the greatest share of the FGD usage in the United States and it is commercially proven, well established technology.[14]The typical older FGD units in power plants burning pulverized coal within the United States achieve average sulfur dioxide emission levels of about 0.340 kg/MWh (0.22 lb SO2 /106Btu), which meets the level to which those units were permitted.The lowest demonstrated sulfur dioxide emission level (in 2005) for power plants burning pulverized high-sulfur coal within the United States was 1.08 kg/MWh (0.07 lb SO2 /106 Btu) and 0.046 kg/MWh (0.03 lb SO2 /106 Btu) for plants burning low-sulfur pulverized coal.[14]Facts and statisticsFlue gas desulfurization scrubbers have been applied to combustion units firing coal and oil that range in size from 5 MW to 1500 MW. ScottishPower are spending £400 million installing FGD at Longannet powerstation which has a capacity of over 2 GW. Dry scrubbers and sprayscrubbers have generally been applied to units smaller than 300 MW.Approximately 85% of the flue gas desulfurization units installed in the US are wet scrubbers, 12% are spray dry systems and 3% are dry injection systems.The highest SO2 removal efficiencies (greater than 95%) are achieved by wet scrubbers and the lowest (less than 80%) by dry scrubbers. However, the newer designs for dry scrubbers are capable of achieving efficiencies in the order of 90%.The capital, operating and maintenance costs per short ton ofSO2 removed (in 2001 US dollars) are:∙For wet scrubbers larger than 400 MW, the cost is $200 to $500 per ton∙For wet scrubbers smaller than 400 MW, the cost is $500 to $5,000 per ton∙For spray dry scrubbers larger than 200 MW, the cost is $150 to $300 per ton∙For spray dry scrubbers smaller than 200 MW, the cost is $500 to $4,000 per tonAlternative methods of reducing sulfur dioxide emissions An alternative to removing sulfur from the flue gases after burning is to remove the sulfur from the fuel before or duringcombustion. Hydrodesulfurization of fuel has been used for treating fuel oils.Fluidized bed combustion adds lime to the fuel during combustion. The lime reacts with the SO2 to form sulfates which become part of thecombustion ash.Sulfuric acid mist formationFossil fuels such as coal and oil contain significant amounts of sulfur.When burned, about 95 percent or more of the sulfur is generallyconverted to sulfur dioxide (SO2). This happens under normal conditions of temperature and of oxygen present in the flue gas. However, there are circumstances under which this may not be the case.For example, when the flue gas has too much oxygen and the SO2 isfurther oxidized to sulfur trioxide (SO3). Actually, too much oxygen is only one of the ways that SO3 is formed. Gas temperature is also an important factor. At about 800 °C, formation of SO3 is favored. Another way thatSO3 can be formed is through catalysis by trace metals in the fuel. This is particularly true for heavy fuel oil, where small amounts of vanadium are present. In whatever way that SO3 is formed, it does not behave likeSO2 in that it forms a liquid aerosolknown as sulfuric acid (H2SO4) mist that is very difficult to remove. Generally, about 1% of the sulfur dioxide will be converted to SO3. Since SO3 an acid gas, just as is SO2, it is also removed by the alkaline sorbents used in FGD systems.References1. ↑ Karl B. Schnelle and Charles A. Brown (2001). Air PollutionControl Technology>. CRC Press. ISBN 0-8493-9599-7.2. ↑2.02.1 SO2 Control Technologies (from website of the Institute ofClean Air Companies)3. ↑3.03.13.23.33.43.5 Air Pollution Control Technology Fact Sheet U.S.EPA publications EPA-452/F-03-0344. ↑4.04.1 Biondo, S.J. and Marten,J.C., A History of Flue GasDesulfurization Systems Since 1850, Journal of the Air PollutionControl Association, Vol. 27, No. 10, pp 948-961, October 1977.5. ↑ Beychok, Milton R., Coping With SO2, ChemicalEngineering/Deskbook Issue, October 21, 19746. ↑ Nolan, Paul S., Flue Gas Desulfurization Technologies forCoal-Fired Power Plants, The Babcock & Wilcox Company, U.S.,presented by Michael X. Jiang at the Coal-Tech 2000 InternationalConference, November, 2000, Jakarta, Indonesia7. ↑ Rubin, E.S., Yeh, S., Hounsell, D.A., and Taylor,M.R., Experience curves for power plant emission controltechnologies, Int. J. Energy Technology and Policy, Vol. 2, Nos. 1/2,20048. ↑ Beychok, Milton R., Comparative economics of advancedregenerable flue gas desulfurization processes, EPRI CS-1381,Electric Power Research Institute, March 19809. ↑ Wet FGD System Materials Cost Update, by M.G. Milobowski,Babcock & Wilcox (Presented at EPRI-DOE-EPA Combined UtilityAir Pollutant Control Symposium, August 1997)10. ↑ Air Pollution Control Technology Fact Sheet U.S.EPA publications EPA-452/F-03-01611. ↑11.011.111.2 IEA Clean Coal Center: Spray dry scrubbers forSO2 removal12. ↑12.012.1 Dry Flue Gas Desulfurization (FGD)Systems (FromBabcock and Wilcox website)13. ↑ Barbara Toole-O'Neil and Ohio Coal Development Office (Editors)(1998). Dry Scrubbing Technologies for Flue Gas Desulfurization.Springer. ISBN 0-7923-8346-X.14. ↑14.014.1 Dr. James Katzer et al and MIT Coal Energy StudyAdvisory Committee (2007).汉语翻译烟气脱硫烟气脱硫,就是泛指用烟气脱硫技术电厂燃烧煤、石油化工或其他工业废气中除去硫氧化物的技术。
aborber 吸收塔absorber recirculation pumps 吸收塔循环泵absorber drain pit 吸收塔排水池booster fan 增压风机bypass damper 旁路挡板belt weigh feeder 皮带称重给料机belt conveyor 能上能下带输送机bucket elevator 斗式提升机ball mill 球磨机clean flue gas damper 净烟气挡板cypsum slurry bleed pumps 石膏浆液排放泵cloth wash water pump 滤布冲洗水泵cloth wash water tank 滤布冲洗水箱emergency storage tank 事故存贮箱emergency discharge pumps 事故排放泵filtrate tank 滤液箱gypsum dewater plant 石膏脱水车间gypsum hydrocyclone station 石膏旋流站gypsum wash water tank 石膏冲洗水箱gypsum wash water pump 石膏冲洗水泵gypsum stockpile 石膏库id fans unit 2 2#机组引风机industrial water 工业水industrial water tank 工业水箱industrial water pumps 工业水泵impulse suspending pumps 脉冲悬浮泵limestone slurry pumps 石灰石浆液泵limestone slurry tank 石灰石浆液箱limestione handling and absorbent ppreparation plant 石灰石处理吸收制备车间limestone storage silo 石灰石储仓limestone cyclone station 石灰石浆液旋流站mist eliminator washing pumps 除雾器冲洗水泵mist eliminator 除雾器mill slurry tank 磨机浆液箱mill slurry pumps 磨机浆液泵other consumers 其他消耗oxidatin air blowers 氧化风机process water tank 工艺水箱process water pumps 工艺水泵reclaim water pit 回收水池receiving hopper 卸料斗raw gas damper 原烟气挡板seal air fans 密封空气风机seal air heater 密封空气加热器vibrating feeder 振动给料机vacuum belt fulter 真空皮带脱水机vacuum pump 真空泵waste water hydrocyclone 废水旋流站waste water storage tank 废水箱waste water pumps 废水泵waste water treatment 废水处理。
循环流化床锅炉专业词汇:CFB boiler (circulating fluidized bed boiler)循环流化床锅炉fuel燃料bottom ash底渣circulating ash循环灰limestone石灰石fluidized air流化风separator分离器circulating combustion循环燃烧heat transfer传热consistence(density) of particles颗粒浓度medium transfer传质desulphurizer脱硫剂combustion chamber燃烧室coal feeder给煤机material feeder给料机air distributor布风板cyclone separator旋风分离器heat exchanger换热器back pass尾部烟道convection heating surface对流受热面bag filter布袋除尘器electrostatic precipitator(ESP)静电除尘器stack, chimney烟囱bed material床料upright pipes(vertical pipe)立管material-returning system回料系统Tapping (bulk packing)density堆积密度Dense region密相区secondary air二次风spout喷口gap rate空隙率Dilute region稀相区airflow气流conical section锥段elutriation扬析Transition region过渡区carryingover phenomena夹带现象Fluidized speed流化速度empty tower velocity空塔速度apparent speed表观速度heat carrying载热formula(equation)公式、方程式flue gas烟气cross-sectionof furnace炉膛截面积dynamic control combustion动力控制燃烧flux通量adaptability适应性peak adjustment调峰heat transfercoefficient传热系数slagging结渣flameout灭火explosion爆炸contamination污染物flue gas and air烟风auxiliary power厂用电abrasion-resistant refractory material耐磨耐火浇筑料expansion膨胀sealing密封boiler proper system锅炉本体系统boilerauxiliary system锅炉辅助系统combustion system燃烧系统steam & water system汽水系统ash handling system灰处理系统ignition system点火系统Furnace炉膛material-returning vessel返料器External heat exchanger外置式热交换器slag cooler冷渣器limestone silo石灰石仓Fluidized air chamber流化风室steam Drum汽包convectionsuperheater对流过热器economizer省煤器Primary air一次风Air preheater空气预热器I.D.fan (induced draft )引风机F.D.fan (forced draft ) 送风机lowersecondary air下二次风Upper secondary air上二次风Limestone fan石灰石风机boiler wall炉墙water wall水冷壁straight section直段denitrogened脱氮denitration脱硝air nozzles风帽orifice小孔air-distributor布风板inner pipe内管external cover外罩annular base plate环形底板bell glass air nozzle钟罩式风帽deformation变形below-bed ignition床下点火secondary air input二次风入口decomposition分解过程superheated wall过热屏reheated wall再热屏separating wall分隔墙parameter参数start-up启动shut down 停机HT insulated cyclone separator高温绝热旋风分离器steam(water)-cooled cyclone separator汽(水)冷旋风分离boilerrating锅炉出力heatradiation loss散热损maintenance维修inertial separator惯性分离器shutter(louver) separator百叶窗分离器air lock device锁气器(rated)nominal load额定负荷evaporative rating蒸发出力fluidized seal material returning device流化密封返料器Valve type material returning device阀型返料器platen heating surface屏式受热面evaporator蒸发器screening 筛分coarse screening宽筛crushing characteristics破碎特性granularity粒度screen cloth筛网screening mesh筛孔mesh diameter筛分孔径screening residue筛余量volatile挥发specific surface area比表面积particle sphericity颗粒球形度spherical degree球形度median diameter中位径gas density气体密度Critical bubbling velocity临界鼓泡速度gas backmixing气体返混fine powder细粉freely falling body motion自由落体运动gravity重力floatage/ bouyance浮力air flow dragging force气流曳力accelerating velocity加速equilibrium relationship平衡关系maximum sedimentation velocity终端沉降速度relative motion相对运动static particle静止颗粒gas-solid sliding velocity气固滑移速度critical value临界值heat transmission factor传热系数near-wall region近壁区gas phase气相gas film气膜bed layer床层particle mass 颗粒团dispersion phase弥散相heat transfer wall surface传热壁面gas phase convection heat transfer coefficient气相对流换热系数particle convection heat transfer coefficient颗粒对流换热系数radiant heat-transfer coefficient辐射换热系数heat emissioncoefficient放热系数volume flow体积流量high intensity高强度emulsification phase乳化项fixed bed固定床material feeding bunker加料仓separation and returning system分离回送系统pneumatic conveying气力输送vortex flow漩涡流动moving bed移动床ash Balance灰平衡circulating circuit循环回路heat transfer mechanism传热机理air duct风道bed density床层密度thermal-conductivity导热系数(导热率)volatile matter挥发物ash sludge灰浆steam blowing out吹管scrapiron铁屑core-annulus flow环核流动radial distribution径向分布overall pressure drop总压降high-speed fluidized bed快速流化床strip floc条状絮状物burning out燃尽dry-out 烘炉safety valve setting安全门整定steam and water quality汽水品质anthracite coal无烟煤lean coal 贫煤momentum 动量banking characteristic 压火特性oil stone 油石fly ash resistivity 飞灰比电阻coil pipe蛇行管flue gasduct烟道air chamber风室carbon content 含碳量gypsum 石膏industrial data acquisition system 工业用采数系统mineral asbestos矿石棉combustion efficiency燃烧效率combustible content可燃物含量excess air coefficient 过量空气系数typical working condition 典型工况active carbon filter活性碳过滤器包墙过热器 enclosed wall superheater下降管 downcomer屏式过热器 platen/screen-type superheater 工质 working medium蒸发设备 evaporating device膜式水冷壁 membrane water wall排渣口 slag discharging outlet水冷蒸发屏 water-cooled evaporating screen喷水减温器water- spraying desuperheater 喷燃器burner反冲洗阀 back wash valve管组 pipe bank进口集箱 inlet header转向室guiding chamber给料皮带material feeding belt加药管 chemical-dosing tube三通T-joint挡板 damper出渣discharge slag进口导叶 inlet guide vane联杆 linkage动平衡 dynamic balance压头 pressure head喘振 surge水冷套 water cooling jacket炉膛负压 furnace vacuum主燃料切除 main fuel trip (MFT)放气阀 vent/exhaust valve疏水阀 drain valve截止阀 stop valve止回阀 check valve弹簧安全装置 spring safety device给料增压风机material feeding booster fan气固两相流风箱gas-solid two-phase flow air box 密封用风sealing air出口烟道outlet flue gas duct排污管blow-down pipe波形板corrugated plate防漩装置a device against rotation水冷蒸发屏water-cooling evaporating screen耐火、绝热材料层refractory and insulatedmaterial layer 气力输送pneumatic conveying闸板gate board点火器igniter减温器desuperheater/attemperator对空排汽阀steam bleeding valve定容式风机constant volume blower逆流(反向电流)countercurrent干燥箱Drying cabinet给水分配管Feed water distrubited pipe放气阀Vent valve副柱sub-post发光二极管light-emitted diode (LED)点动操作stepping operation超载overload变频电机Frequency-converting motor负压vacuum铣床milling machine增压风机Booster fan (Coal Distribution Air Fan)多孔管perforated pipe涡流eddy current闸板gate aboard上升管riser左右对称 bilateral symmetry热冲击thermal shock水平烟道horizontal flue gas duct水冷风室water-cooled air chamber灰斗ash bunker吹灰器soot blower后墙back wall侧墙side wall下水连接管sewage connecting pipes清扫链clean-out chain原理图(示意图)Schematic Diagram落煤管coal spout进口导叶调节门IGV control valve进气箱air input box调节杆dolly bar驱动机构drive mechanism联动试车interlock test running弹簧储能spring energy集汽室steam trap永久负载permanent load油封oil seal热电阻thermal resistance原煤仓(斗)raw coal bunker联箱header管束(排)tube bundle饱和蒸汽saturated steam减速器speed reducer/decelerator耐用的、持久的durable防磨盖板anti-wear cover plate热传导Thermal conduction卧式汽水分离器Horizontal steam-water separator 热偏差 heat deviation(bias)叶轮blade wheel/impeller传动机构actuator联杆link消声器silence/muffler进渣管Slag inlet tube播煤风coal-spreading air水冷套water jacket烟煤soft coal密封垫圈sealing washer起座压力start pressure回座压力reseating/return pressure变送器transmitter标高Elevation苏单项目专业术语缩写1.1缩写表单位或组织CMECChina National Machinery & Equipment Import & Export Corporation China National Mechanical & Equipment Import & Export Company中国机械设备进出口总公司NEC National Electricity Corporation苏丹国家电力公司IEC International Electrical Commission国际电工协会ISO International Standard Organisation国际标准组织LI Lahmeyer International GmbH, Bad Vilbel雷美尔咨询公司VGBTechnische Vereinigung der G roßkraftwerks Betreiber(Technical Association of large Power Plant Operators) 大型电厂协会其它AC Alternating Current 交流电AVR Automatic Voltage Regulator自动电压调整器CFB Circulating Fluid Bed循环流化床CFBB Circulating Fluid Bed Boiler循环流化床锅炉CCR Central Control Room中央控制室CCW Closed Cooling Water System闭式循环冷却水系统CT Current Transformer电流变压器CW Circulating Water System (Cooling Water System) 循环冷却水系统DC Direct Current直流电DCS Distributed Control System分散控制系统DIN German Industrial Standard德国工业标准FAC Final Acceptance Certificate最终验收证FG Function Group功能组GIS Gas (SF6) Insulated Switch-gear气体(SF6)绝缘开关HB Heat Balance热平衡HP High Pressure高压(力)HV High Voltage ( > 36 kV ) 高电压KKS Kraftwerk-Kennzeichen-System = Power Plant Identification System电厂标识系统I&C Instrumentation and Control仪表和控制LDC Load Dispatch Center负荷分配中心LP Low Pressure低压(力)LV Low Voltage ( < 1 kV ) 低电压( < 1 kV )MCR Maximum Continuous Rating最大连续蒸发量MMI Man/Machine Interface人/机界面MR Meeting Report会议纪要MV Medium Voltage ( > 1 kV < 36 kV ) 中电压MVR Manual Voltage Control手动电压控制PAC Provisional Acceptance Certificate初步验收证书PDAProgramming/ Diagnostic/ Alarms Station工程师站POS Process Operation Station过程操作站PT Potential Transformer电压互感器P&ID Process and Instrumentation Diagram工艺流程和仪表图RTU Remote Terminal Unit远程终端SCADA Supervisory Control & Data Acquisition电气微机监控系统SLD Single Line Diagram电气主接线ST Steam Turbine 汽轮机SWG Switchgear开关UCB Unit Control Board 机组控制盘VDU Video Display Unit显示器、氧化铁ferric oxide 氧化铝alumina 铝aluminum二氧化硅silicon dioxide 氧化钙(生石灰) calcium oxide熟石灰(氢氧化钙) white lime 石灰石limestone氧化镁magnesia 镁magnesium 碳carbon二氧化碳Carbon dioxide 一氧化碳carbon monoxide烟囱chimney, stack 浇注料refractory总图、总平面图General Layout 工艺流程Process Flow安装图Installation Drawing 装配图erection drawing附件、附属物Appurtenance 除去矿物质(除盐)Demineralize灰厍气化设备Gasifying Device of Fly Ash Silo Gasify 使气化接地与防雷Earthing and Lightning Protection变电站、分站、分所Substation 配置、结构、构成configuration综合水泵房Composite water pump house 精炼厂、炼油厂Refinery燃烧、消耗V Combust 燃烧器Combuster 燃烧N combustion废热锅炉、余热锅炉Heat Recovery Steam Generators循环流化床锅炉Circulating Fluid Bed (CFB) boiler蒸汽轮机SteamTurbine Generator (STG) 燃气轮机Gas turbine也就是说(副词)i.e. 从此以后,今后hereafter技术规范(说明)Technical Specification 引风机Induced Draught FanAVR 自动电压调节器automatic voltage regulator 消音器silencers碟片式过滤器debris filter 氯化\用氯气处理Chlorination次氯酸Hypochlorite水除盐装置Water Demineralisation Plant离子交换技术ion exchange technology 阳床(阳离子交换器)cation exchanger 脱二氧化碳器decarbonator 阴床anion exchanger 混床mixed-bedexchanger未净化的水(原水)raw water 澄清水池clarified water basin再生设备Regeneration equipment 凝结剂、絮凝剂Coagulan生活废水Sanitary Waste Water 化粪池septictank饮用水系统Potable Service Water System 水龙头water tap 氨、氨水ammonia 肼、联氨hydrazine 磷酸钠sodiumphosphate 苛性钠、烧碱Caustic soda稀硫酸dilute Sulphuric acid 溴化物Bromide消防栓和消火栓箱Hydrants and hose cabinets推车式灭火器和手提式灭火器Wheeled and portable fire extinguishers备用零件和专用工具Spare parts and special tools往复式无油空气压缩机装置Reciprocating oil free running air compressor unit辅助设备\外部设备ancillary equipment. 过滤设备filtration equipment土建工程和建筑设施Civil Works and Building Facilities沥清防水层asphalt water barriers 钢筋混凝土结构reinforced concrete structure 根据详细规范设计的带有沥青防水层钢筋混凝土屋顶RC concrete roof withasphalt water barriers according detail specification.钢筋混凝土(围)挡墙RC retaining walls 装卸和运输Handling and Transport地磅Weight Bridge 砌筑墙masonrywall 考虑到under consideration混凝土骨架结构concrete skeleton structure 摆放空间lay down areas龙门起重机\龙门吊\行车Gantrycrane 安装和维修erection and maintenance卫生设备,卫生设施sanitary facilities 祈祷prayer(n) pray(V)消防队Fire Brigade 调度室Control Building 管道支架pipe rack测试和校准testing and calibration投标文件Tender Documents试运行和性能试验commissioning and performance testing后翻斗式自卸卡车rear dump truck 磷酸三钠Trisodiumphosphate排水系统和下水道系统Drainage and Sewerage System聚合(高分子)电解质Polyelectrolyte 局域网LAN 母线bus bar电缆沟cable trench 地形勘测topographical survey更改、再布置和重建Modification, relocation and reconstruction。
1.1 概述1.2 正确的使用方法2 安全注意事项2.1 安全说明2.2 操作手册中的说明和图标3技术数据3.1 普通技术数据3.2 衬板位置3.2.1 齿轮和马达FA 31-FA 181 3.2.2 齿轮和马达FAC 41-FAC 181 3.2.3 齿轮和马达FF/FZ 31-FF/FZ 181 3.2.4 齿轮和马达FC 31-FC 181 3.2.5 齿轮和马达F 201-FA 201 3.2.6 前后齿轮——复合斜齿轮3.3 油量3.3.1 两档及三档传动装置和传动电机3.3.2 复合斜齿轮的轴和马达3.4 重量3.5 声音4 使用工具,处理和储存4.1 工具4.2 处理4.3 储存5 技术说明5.1 普通说明5.2 构架5.3 齿轮组成5.4 润滑油5.6 轴的密封5.7 冷却5.8 偶合器5.9 支撑装置5.10 表面喷涂6安装6.1 总说明6.2 驱动衬板的凸缘6.3 驱动衬板的底部6.3. 1基础6.3.2 安装齿轮和衬板的底部6.4 齿轮轴的输入和输出驱动的安装6.5 轴安装齿轮机构用空心轴和平键6.5.1 装配6.5.1.1 装配6.5.1.2 轴的安全装置6.5.2 分解6.6 轴安装齿轮机构用空心轴和花键齿轮6.6.1 装配6.6.1.1 安装6.6.1.2 轴的安全装置6.7 轴安装齿轮机构用空心轴和平键6.7.1 装配6.7.1.1 安装6.7.1.2 轴的安全装置6.7.2 缩小圆盘式硬件安全装置6.7.2.1 缩小圆盘的装配6.7.2.2 缩小圆盘的拆卸6.7.2.3 清除和润滑那缩小圆盘6.8 标准电动机附件6.8.1 附件关于带有bipex联轴器的偶合器6.8.2 附件关于压圈联轴6.9 电机底座板块6.10 轴安装齿轮机构的转矩臂7 .启动7.1 测量在启动之前7.1.1 没有长期保管的启动7.1.2 在长期保管情况下的启动7.1.2.1长期保管直到 18个月7.1.2.1长期保管直到 36个月7.1.3 装满润滑剂7.1.4 用挡板运转7.2 油面检查7.2.1 检查那齿轮机构罩油面7.2.2 油位观察玻璃(特殊功能部件)7.2.3 量油杆(特殊功能部件)7.3 停机7.4 用齿轮油保管7.5 外部的保管8. 操作8.1 一般操作数据9. 障碍失调、原因和补救9.1 一般故障简介10. 保养与修理10.1 一般情况关于维修10.2 描述保养与修理10.2.1 执行换油10.2.2驱动装置的耐磨轴承10.2.3清理那通风孔塞10.2.4清洗驱动器10.2.5检查紧固定位螺钉10.3润滑剂11.备件储存、服务地址11.1库存备件11.2备件和客户服务地址厂家声明1.1 概述这些说明书是搅拌器出厂时就携带的,因此在任何时候都要将说明书保存完整。
目录2.概述 (2)3.运输 (3)4.临时存储 (3)5.安装 (3)6.启动 (4)7.维护 (5)8.停机 (6)9.清洗 (7)10.润滑油性能 (7)11.配件的使用及维护手册 (8)11.1.压力和真空释放阀 (8)11.2.干燥,层状入口过滤器 (8)11.3.过滤监控(可选) (8)11.4.N-Eupex偶合器 (8)11.5.自动起动卸荷阀(可选) (8)11.6.声罩 (9)12.运行中可能出现的问题指导 (10)13.预防 (11)14.检修 (11)1.安全信息概述这位移活塞式鼓风机是按照最新的技术标准建造的;完全履行德国法规要求的事故预防VGB16。
不过,运行时不能不排除要冒不恰当的操作,不适当的应用和未经训练的人员的危险。
这些将引起人身伤害,同时也会对设备和生产工作带来危害。
在用户的工厂里,任何涉及到操作,维护和检修此机械的人,必须读过并且理解此操作/维护手册,特别是这个安全信息。
这台机械必须由受过培训和资格认证的人员来操作。
为了避免不确定的能力人员的操作,必须明确规定操作这台机械的责任。
所有有关此机械的工作,包括检修,换油,维护等,应当在停机时执行,并且空压机的电源关闭且要上锁。
建议-操作人员安全-必须避免降低操作安全的工作方法-用户有责任确保无任何非认证人员参与与此机械有关的工作。
-操作人员有责任向领导提出任何降低机械操作安全的改动.-用户有责任确保机械在适当的条件下操作-管理者必须通告操作人员需要穿戴的安全服,保护眼镜和听力保护。
-通过适当的管理手段,用户必须确保工作现场和通向机械或机械周围的清洁。
-任何情况下都不允许安全设备被移走或失效。
-电气部件的工作者必须经过认证。
-当进行机械检查工作时,特别是当打开隔音罩时,必须做好听觉保护。
-排除的热液体温度可高达250℃,不允许触摸。
-管道系统不允许在没有减压和泄放不确定性质的气体之前解体。
-密封油和仪表管不允许打开,连接不能过紧。
存在危险,例如会有油喷出。
-使用机械搬运氧气,在搬运工具附近必须避免有油质。
否则有火灾和爆炸的危险。
-必须训练极度警告,以防内燃机驱动的机械排放有毒的乏气。
机械房间必须充分通风。
-在核电站内机械的操作,应用明确的说明书。
有辐射危险-清洁工作涉及的喷雾和净化剂必须符合有关的指导说明。
存在吸入毒物和接触腐蚀性物质的危险。
-安全设备,例如减压阀,警示标志,警告带,接触温度计,接触开关,不允许移动或修改。
-为安全起见,不允许有未经生产厂家审定的转变和修改零件和附件需要注意的是,非我们提供的零部件和附件即没有测试也没有核准。
这些组合安装和产品罐的应用在一定情况下会改变设备的特性。
我们将免除因引用非我们提供的零件和附件所产生损坏的责任。
2.概述在发货以前、这位移容积式鼓风机须经机械性能运行测试。
测试工作完成后,将润滑油排出。
风机送货时不提供油。
启动前一定先要向油腔内加油。
这台风机的设计将提供以下静压力:a)up size 30…pe=2.5barb)up size 35…pe=1.3bar在搬运空气和其他气体介质过程中,风机会产生压缩热,某些部件温度可高达150℃。
当接触风机时需小心。
除了风机本体,风机的货箱内应包括以下部件:带有过滤器和通风罩的入口消音器,出口消音器,安全减压阀,偶合器或皮带的安全罩,挠性伸缩接合(连接用),底架,柔性的机床底座,灵活的偶合器或皮带驱动器,可选的隔音罩。
风机外壳名牌上标有详细的型号,系列号,和本体的性能数据。
3.运输交付的风机已完全装配好,在运输过程中必须防止摇晃和碰撞。
在交付时,应检查是否有运输损坏,是否完全正确的供货。
检查手续:比较机械名牌上的数据与订单上的数据。
检查机架,装配法兰,入口过滤器,消音器和基本结构上的因摇晃或碰撞产生的裂缝和损坏。
用手旋转动力轴,检查旋转的阻力。
以这种方式,可以迅速的鉴别出损伤。
当用起重机吊钩运输时,吊索或者钢丝绳必须吊在底架四周。
4.临时存储货箱的储存,即使很短一段时间,能对其将来得可靠性和有效服役寿命产生可观的影响。
暂时存储应选择干燥,保护好,无震动的房间里。
若必要的话,可在其外表和暴露在外的风机部件在运输前涂上防腐漆。
若要延长储存时间,在输送室上需要涂上防护油防止腐蚀。
其边缘要盖住。
油箱和货箱存储期12个月。
若要延长存储期,就得重新设置保护措施。
若运输介质不匹配,防护剂必须除掉,防护剂可留在油箱内。
5.安装配件配备有柔性机械架座,所以不需要特殊的基座。
柔性架座用锚和螺栓固定在地基上。
耦合器和皮带轮应用适当的安装机械滑入。
禁止用锤子将其砸进去。
调整和找平:(当在机械上工作时,必须切断马达的电源)风机组件必须放在极好的水平位置。
最大的水平偏差:0.2mm/m(用机械水平仪)。
将水平仪放在机械基础架表面上或风机法兰上。
客户供应的马达由我们安装。
耦合或V带传动的对齐必须现场检查,采取必要的措施纠正。
哪里有可安装马达的位置,马达的安装脚或滑滑轨螺丝/螺丝孔仍需保留。
.偶合器直接传动(DA配置)为对准起见,鼓风机轴应被视为固定点。
驱动马达必须用添加钢垫片的方法垫到同样的高度。
垫片必须复盖每个支持鼓风机脚的表面.距离规定"a"边之间的耦合必须准确.若是n-eupex联轴器(带有弹性嵌入物的联轴器),这个距离应为3~8mm。
若安装特殊联轴器、应按照制造厂的说明书来执行。
传动轴中心线:型号3,4,7=M 10型号10,15=M 12型号25,30=M 16型号35,80=M 20型号大于90 =M 24GM3 17.15/17.16=M24在用表盘式测量表校直耦合器时,安装好的联轴器必须用盘式测量表校对。
正确安装使用拨号耦合仪表检查时必须使用拨号于思联轴器特技、利用设置在描速写:两只表安装在联轴器的一半上顶住另一半。
机轴必须多角度旋转,记下转动中最大示值。
耦合器允许偏差:径向:最大偏心率0.05mm(一周相差0.1mm),最好低于0.03mm。
轴向偏差:最大偏差0.05mm,在轴中心线100mm处测量能小于0.03更好。
在其他位置测量应按比例计算出允许偏差。
皮带传动(FA配置)皮带轮没有安装时,按以下程序:将风机和电机各自的皮带轮滑装到各自突出的轴上。
留在鼓风机皮带轮背后的间隙必须用添充物充满。
至少安装一个10mm宽的填充物。
有皮带轮套管时,面向马达靠近填充物处安装凸缘,是为了保证皮带轮和轴的端部相同。
锁定螺丝确保皮带轮的安全。
调整皮带可用校准线。
当校准线拉直时接触到A,B,C点且在一条直线上,两轴被确认是平行的。
皮带的紧度测量1.此表根据皮带侧面图判断他的紧度f2.记下小皮带轮的直径,在表中读出对应的偏差E3.总的偏差E必须根据中心距离公式计算出来。
4.测试力f必须垂直加在两轴中点e上。
压紧皮带直到总的偏差E求出来例如:侧面图=SPZ;dk=100mm;e=380mm;f=2.5daN;E=2.05mm;Ea7.8mm皮带初始运行30分钟后必须重新测试,24小时后再检查一次。
6.启动用异步电机驱动的鼓风机:当改变电机转速到另一转速时,电机必须在零转速下进行。
启动之前,确保所有已安装的指示均正常。
驱动马达试车拆除马达的与风机的偶合器或者皮带。
检查马达的转向与铸在风机上的转向标志一致。
观察马达运行平稳。
在装有仪表的地方进行性能测试。
鼓风机试车准备旋转连轴器或皮带旋转灵活。
应注意任何阻力。
检查传动部位是否有异物存在。
必要的话可在传动部位涂上防护油。
检查安全装置安装正确(特别是逆止阀方向,调节器和阀门)。
打开输送线上所有关闭的阀门,确认机械位置正常,风机位置不允许在关闭阀门的情况下操作。
检查传输线启动过滤器主要尺寸风机入口与工厂管道连接或排泄管。
建议最好把启动过滤器安装在风机入口出,以防吸入异物。
启动过滤器的压力损失在初始操作时必须严密监视,并且不能超过50mbar,启动过滤器在大约运行500小时后需要清洗一次。
拆除并用隔离套代替,或者从带孔的锥桶上拆调纱网。
油位油位应达到观油玻璃的中心线上。
向油箱内加油直到中心线下3-4mm,然后等待油从箱壁流下。
当油与箱壁分离后两侧油位都应达到观油玻璃中心线。
检查排污塞并要塞紧。
注意:当油位超过观油玻璃中心线时,有漏油的危险。
鼓风机设备试运鼓风机只能从完全停止状态启动。
偶合器或皮带保护装置必须安装。
在启动运行时,要确保不要超过风机铭牌上标示的最大压力。
在风机的进口和出口都要安装压力表。
必要时,可重新校准安全减压阀。
风机进口温度高时,应以渐进的方式恢复其操作温度。
最好不要超过订单上的入口温度。
注意鼓风机运行平稳、传动皮带或联轴器、鼓风机房温度、轴封、关机后逐渐减慢,轻松完成手动试运。
完成试运后检查鼓风机所有紧固件,并在必要时紧固它们. 必要时检查偶合器同轴性及是否端正,若是皮带驱动时,要重新紧固皮带。
操纵异步电机驱动的风机以下是要考虑的:马达变转速时-从高速到低速,每次变化必须达到零转速。
-从低速到高速,可以直接转换且不能有停顿。
7.维护在正常操作的情况下,鼓风机需要很少维修.活塞旋转运行不需要任何接触和润滑风机在隔音罩下运行时,必须把侧面操作面板移开。
拆除操作面板时要把解开门插销然后将其抬起。
润滑油确认这一系列鼓风机溅出油润滑。
必须按规定检查润滑油油位正确,且停机时不超过观油玻璃中心线。
当超出正常油位时,齿轮箱内会增温,油可能会渗入传输管道。
换油投产后首次换油在运行大约500小时的时候,然后一年一次或8000小时一次。
如果最高温度超过120℃,则应该换油。
运行4000小时后操作手册规定必须检查辅助设备,特别是电机轴承已到了寿命年限,需要更换。
密封风机的油箱和传动箱的分开,是通过安装在联合体上的带冷凝通道的活塞环实现的。
冷凝通道在风机运行时保持导通。
轻微的气流通过冷凝通道溢出到大气。
驱动轴使用半唇形密封环密封。
气力输送应用时,冷凝通道被堵死。
在不透气的结构中,传动轴使用两个半唇形密封环。
每年涂一次普通滚动轴承用油脂,经油嘴处注入油腔。
建议在更换润滑油前添涂润滑脂,因为过多的润滑脂可流入润滑油内随润滑油被排走。
在特殊情况下,可使用3个动力轴油封和油栏。
透明油杯必须时刻有油。
装常用的风机油。
若有水冷轴封环时,应连接冷却水管。
轴封环防磨润滑脂:walzerol 4 (SKF)Mobilux 3(Mobil)AGIP GR MU 3 (AGIP)Alvania R3(Shell) Energrease LS3(BP) Aralbub HL 3 (Aral)Beacon 3(Esso)Epexa 3(Elf)Renolit FWA220(Fuchs)Avilub Special Grease A (A VIA)润滑脂用量size 3-30=5cm335-130=10 cm3150-400=20 cm3GM3 17.15、17.16=20 cm38.停机关掉驱动马达- 当传输系统有来自系统的压力时切断风机,风机会因反向压力降速,同时停止也较快。