2.2传递函数
- 格式:ppt
- 大小:635.00 KB
- 文档页数:29
线性微分方程可以归纳其一般的表达式为:1011110111()()()...........()()()()...........()n n n n n n m m m m m m d c t d c t d c t a a a a c t dt dt dtd r t d r t d r t b b b b r t dt dt dt------++++=++++ (7.1)式子中,()c t 是输出量,()r t 是输入量。
0a ,1a ,1n a -…….. n a 和0b ,1b ,…….. 1m b -,m b 都是由系统结构决定的常数。
微分方程建立以后,便可以由此为基础分析控制系统的性能。
最直接的办法就是求解微分方程得到系统的输出响应,但是微分方程特别是高阶微分方程的求解以及参数性能分析是十分困难的,可以利用拉普拉斯变换来简化对微分方程的求解,并利用拉氏变换将微分方程这种时间域中的数学模型转化成复数s 域内的数学模型——传递函数。
传递函数不仅可以表征系统的动态特征,而且还可以用来研究系统的结构或参数变化对系统的影响。
在后面的章节中将要介绍的频率法和轨迹法,都是以传递函数为基础建立起来的,传递函数是经典控制理论中最主要和最基本的概念。
7.1传递函数的定义一般线性定常系统的微分方程课用式7.1表示,对于实际的控制系统,n 不小于m ,即n ≥m 。
设r(t)以及其各阶导数在t=0时刻的值均为0,则对式(7.1)中的各项分别求拉氏变换,可得: 10111011(......)()(..........)()n n n n m m m m a s a s a s a c s b s b s b s b r s ----++++=+++(7.2) 式子中,C(s)=L[c(t)],R(S)=L[R(t)]。
由式(2.1)可得: 10111011..........()()()......m m m m n n n n b s b s b s b C s G s R s a s a s a s a ----+++==++++ (7.3)2.2 传递函数的性质1)传递函数是复变量s 的有理真分式,具有复变函数的所有性质,只适用于线性定常系统,其分母多项式中s 的最高幂称为系统的阶次,一般分母多项式中s 的最高次方总大于或等于分钟多项式中的s 的最高次方。