Branch and bound with mini-bucket heuristics
- 格式:pdf
- 大小:299.22 KB
- 文档页数:8
优先队列式分支限界法求单源最短路径java -回复优先队列式分支限界法(Priority Queue Branch and Bound)是一种用于求解单源最短路径问题的高效算法。
在这篇文章中,我们将详细介绍这个算法的原理和实现步骤。
首先,让我们来了解一下什么是单源最短路径问题。
在一个给定的带权有向图中,单源最短路径问题要求找到一个起始节点到其他所有节点的最短路径。
这个问题在许多实际应用中都非常重要,比如地图导航、网络路由和资源分配等。
要求解单源最短路径问题,通常可以使用著名的Dijkstra算法。
然而,当图中存在负权边时,Dijkstra算法就不再适用。
这时,我们可以使用优先队列式分支限界法,它可以处理负权边,并且有更好的时间复杂度。
优先队列式分支限界法的思想是通过维护一个优先队列(通常使用堆实现),在每一步选择下一个要拓展的节点时,选择当前路径权值最小的节点。
这样,每次拓展节点时,我们都可以保证已经找到的最短路径是全局最优解。
下面,我们将一步一步地介绍如何实现这个算法。
步骤1:初始化数据结构我们首先需要初始化一些数据结构,包括带权有向图的邻接表、一个优先队列和一个距离数组。
其中,邻接表用于存储图的结构信息,优先队列用于选择当前路径权值最小的节点,距离数组用于存储从起始节点到每个其他节点的距离。
步骤2:将起始节点加入到优先队列中我们将起始节点加入到优先队列中,并将起始节点的距离设为0。
步骤3:主循环接下来,我们进入主循环。
在每一次循环中,我们拿出优先队列中权值最小的节点,将其标记为已访问,并更新其周围节点的距离。
步骤4:更新周围节点的距离对于当前节点的每一个相邻节点,我们需要检查是否存在更短的路径。
如果存在更短的路径,则更新该节点的距离,并将其添加到优先队列中,以供下一次循环使用。
步骤5:重复步骤3和步骤4,直到优先队列为空重复执行步骤3和步骤4,直到优先队列为空。
此时,距离数组中存储的就是从起始节点到其他所有节点的最短路径。
分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有孩子结点;2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的孩子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式:1 . FIFO(First In First Out) 分支定界算法:按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。
2 .最小耗费或最大收益分支定界算法:在这种情况下,每个结点都有一个耗费或收益。
如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。
又称分支定界搜索法。
过程系统综合的一类方法。
该法是将原始问题分解,产生一组子问题。
分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。
如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。
分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。
用该法寻求整数最优解的效率很高。
将该法原理用于过程系统综合可大大减少需要计算的方案数日。
分支定界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。
在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。
分支定界算法流程Branch and Bound (B&B) algorithm is an algorithm for solving optimization problems, such as finding the best solution of a function in a given search space. 分支定界算法是一种用于解决优化问题的算法,比如在给定搜索空间中找到函数的最佳解。
The basic idea of the branch and bound algorithm is to divide the search space into smaller subspaces, or "branches," and then bound the solution of each branch to determine if it can be pruned or not. 分支定界算法的基本思想是将搜索空间划分为较小的子空间或“分支”,然后对每个分支的解进行界定,以确定是否可以剪枝。
In order to effectively use the branch and bound algorithm, it is important to have a good understanding of the problem and its search space. 为了有效地使用分支定界算法,重要的是要深入了解问题及其搜索空间。
One key aspect of the branch and bound algorithm is the bounding step, which involves determining an upper and lower bound for eachbranch in the search space. 分支定界算法的一个关键方面是界定步骤,它涉及确定搜索空间中每个分支的上界和下界。
分⽀限界法解决01背包问题1. 问题描述设有n个物体和⼀个背包,物体i的重量为wi价值为pi ,背包的载荷为M, 若将物体i(1<= i <=n)装⼊背包,则有价值为pi . ⽬标是找到⼀个⽅案, 使得能放⼊背包的物体总价值最⾼.设N=3, W=(16,15,15), P=(45,25,25), C=30(背包容量)2. 队列式分⽀限界法可以通过画分⽀限界法状态空间树的搜索图来理解具体思想和流程每⼀层按顺序对应⼀个物品放⼊背包(1)还是不放⼊背包(0)步骤:①⽤⼀个队列存储活结点表,初始为空② A为当前扩展结点,其⼉⼦结点B和C均为可⾏结点,将其按从左到右顺序加⼊活结点队列,并舍弃A。
③按FIFO原则,下⼀扩展结点为B,其⼉⼦结点D不可⾏,舍弃;E可⾏,加⼊。
舍弃B④ C为当前扩展结点,⼉⼦结点F、G均为可⾏结点,加⼊活结点表,舍弃C⑤扩展结点E的⼉⼦结点J不可⾏⽽舍弃;K为可⾏的叶结点,是问题的⼀个可⾏解,价值为45⑥当前活结点队列的队⾸为F, ⼉⼦结点L、M为可⾏叶结点,价值为50、25⑦ G为最后⼀个扩展结点,⼉⼦结点N、O均为可⾏叶结点,其价值为25和0⑧活结点队列为空,算法结束,其最优值为50注:活结点就是不可再进⾏扩展的节点,也就是两个⼉⼦还没有全部⽣成的节点3. 优先队列式分⽀限界法3.1 以活结点价值为优先级准则步骤:①⽤⼀个极⼤堆表⽰活结点表的优先队列,其优先级定义为活结点所获得的价值。
初始为空。
②由A开始搜索解空间树,其⼉⼦结点B、C为可⾏结点,加⼊堆中,舍弃A。
③B获得价值45,C为0. B为堆中价值最⼤元素,并成为下⼀扩展结点。
④ B的⼉⼦结点D是不可⾏结点,舍弃。
E是可⾏结点,加⼊到堆中。
舍弃B。
⑤ E的价值为45,是堆中最⼤元素,为当前扩展结点。
⑥ E的⼉⼦J是不可⾏叶结点,舍弃。
K是可⾏叶结点,为问题的⼀个可⾏解价值为45。
⑦继续扩展堆中唯⼀活结点C,直⾄存储活结点的堆为空,算法结束。
分支定界(branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有子结点;2 .在产生的子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
分支定界法本质还是一种枚举法,但是是隐枚举法。
它是整数规划领域中非常重要的一类算法思想。
是很多重要算法的源头。
它能解决的实际问题很多,最著名的一个应该就是求解背包问题。
定义分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
算法步骤第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。
如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。
否则这个解的目标函数值是原问题的最优解的上界。
第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。
这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。
否则它的目标函数值就是原问题的一个新的上界。
另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。
第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。
对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。
第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。