传送带模型中的能量问题概述
- 格式:ppt
- 大小:721.50 KB
- 文档页数:18
传送带模型中的动力学和功能关系问题1.模型概述传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f s相对.传送带模型问题的分析流程一:传送带中的动力学问题如图所示,一水平的浅色传送带左、右两端相距8m,传送带上左端放置一煤块(可视为质点),初始时,传送带和煤块都是静止的,煤块与传送带之间的动摩擦因数为0.2.从某时刻起,传送带以4m/s2的加速度沿顺时针方向加速运动,经一定时间t后,马上以同样大小的加速度做匀减速运动直到停止,最后,煤块恰好停在传送带的右端,此过程中煤块在传送带上留下了一段黑色痕迹(g=10m/s2,近似认为煤块所受滑动摩擦力等于最大静摩擦力大小).求:(1)传送带的加速时间t;(2)当煤块停止运动时,煤块在传送带上留下黑色痕迹的长度.跟踪训练:如图所示,一水平的浅色长传送带上放置一质量为m的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 开始运动,当其速度达到v后,便以此速度作匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )( )A .将在煤块的左侧留下黑色痕迹B .煤块与传送带间先有滑动摩擦力,当相对静止后有静摩擦力C .μ与a 之间一定满足关系μg <aD .传送带加速度a 越大,黑色痕迹的长度越长二:传送带中的功能关系例:如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在 电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2,求:(1)工件与传送带间的动摩擦因数(2)电动机由于传送工件多消耗的电能 (3)求此过程中传送带对物体所做的功 跟踪训练:1:如图所示,质量为m 的物体在水平传送带上由静止释放, 传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是( )A .电动机多做的功为12mv 21B .物体在传送带上的划痕长v 2μgC .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgv2:如图所示,小物块A 、B 由跨过定滑轮的轻绳相连,A 置于倾角为37°的光滑固定斜面上,B 位于水平传送带的左端,轻绳分别与斜面、传送带平行。
高三物理传送带模型中的能量问题1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=0.5,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=0.6,求物体从静止释放到第一次返回上升至最高点的过程中:(1)相对传送带发生的位移;(2)系统因摩擦产生的热量;(3)传送带多消耗的电能;(4)物体的最终状态及该状态后电动机的输出功率.【解析】(1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。
解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsin θ-μmgcos θ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s设物体从Q 到P 的时间为t 1,则t 1=v 1a 1=3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsin θ+μmgcos θ=ma 2得a 2=10 m/s 2,t 2=v 1-v 0a 2=0.2 s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2=1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2=0.2 m 物体速度与传送带速度相等后,由于mgsin θ>μmgcos θ物体不能匀速,将相对传送带向下滑,对地向上做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3=2 s 此过程中物体对地向上的位移x 3=v 02t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法2:相对运动法.以传送带为参考系,在求出相对初速度和相对加速度后,三个阶段物体相对传送带的位移分别为Δx 1=v 0t 1+12a 1t 21=21 m Δx 2=(v 1-v 0)t 2-12a 2t 22=0.2m Δx 3=12a 3t 23=4 m 第二阶段物体相对传送带向上运动,两者相对滑动总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法3:图象法.设沿传送带向上为正方向,画出如图3所示物体和传送带运动的v -t 图象,直接用物体和传送带v -t 图线所夹的面积表示相对发生的位移:Δx 1=(v 0+v 0+v 1)t 12=21 m ,Δx 2=(v 1-v 0)t 22=0.2 m Δx 3=12v 0t 3=4 m 两者相对滑动的总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.(2)系统因摩擦产生的热量,是由于一对滑动摩擦力作用点移动的不同导致做功不等而造成的,产生的热量不是与传送带和物体间的相对移动的位移而是与相对移动的距离有关(如图4所示阴影部分面积):Q =Q 1+Q 2+Q 3=F f ·Δl =μmgcos θ(Δx 1+Δx 2+Δx 3)=100.8 J.出现相对来回的情况时,热量要用相对路程而不能用相对位移(3)传送带消耗的电能是因为传送带要克服摩擦力做功,这与传送带对地运动位移有关(如图5所示阴影部分面积),在物体向下加速和相对传送带向下运动的减速阶段,摩擦力对传送带做负功消耗电能,在物体相对传送带向上运动的减速阶段,摩擦力对传送带做正功,减少电能损耗.ΔE 电=-F f (x 传送带1-x 传送带2+x 传送带3)=-μmgcos θ(v 0t 1-v 0t 2+v 0t 3)=-76.8 J即传送带多消耗的电能为76.8 J.可由功能关系处理,从开始到回到最高点过程中,系统增加了热能100.8 J ,减少了重力势能mgxsin θ,x=x1-x2-x3=4m, mgxsin θ=24j,系统动能就有变,系统总的增加了100.8-24=76.8j 所以传送带多消耗的电能是76.8j(4)物体返回上升到最高点时速度为零,以后将重复上述过程,且每次碰后反弹速度、上升高度依次减小,最终达到一个稳态:稳态的反弹速度大小应等于传送带速度4 m/s ,此后受到的摩擦力总是斜向上,加速度为gsin θ-μgcos θ=2 m/s 2,方向斜向下,物体相对地面做往返“类竖直上抛”运动,对地上升的最大位移为x m =v 202a 1=4 m ,往返时间为T =2v 0a 1=4 s 传送带受到的摩擦力大小始终为F f =μmgcos θ,稳态后方始终斜向下,故电动机的输出功率稳定为P =F f v 0=μmgcos θ×v 0=16 W.传送带受到物体的摩擦力方向向下,电动机对传送带的力要向上,这样,电动机的输出功率用力和时间的积就可以求出了。
高中物理专题复习---传送带模型的能量分析微专题34 传送带模型的能量分析传送带模型能量分析的问题主要包括以下两个核心问题:1) 摩擦系统内摩擦热的计算:依据 $Q=F_f \cdotx_{\text{相对}}$,找出摩擦力与相对路程大小即可。
要注意的问题是公式中的 $x_{\text{相对}}$ 并不是指的是相对位移大小。
特别是相对往返运动中,$x_{\text{相对}}$ 为多过程相对位移大小之和。
2) 由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。
以倾斜向上运动传送带传送物体为例,多消耗的电能$E=\Delta E_{\text{重}} + \Delta E_{\text{k}} + Q_{\text{摩擦}}$。
②运用功能关系,传送带克服阻力做的功等于消耗的电能 $E=fS_{\text{传}}$。
如图所示,水平传送带长为 $s$,以速度 $v$ 始终保持匀速运动,把质量为 $m$ 的货物放到 $A$ 点,货物与传送带间的动摩擦因数为 $\mu$,当货物从 $A$ 点运动到 $B$ 点的过程中,摩擦力对货物做的功不可能是:A。
等于 $mv^2/2$B。
小于 $mv^2/2$C。
大于 $\mu mgs$D。
小于 $\mu mgs$解析:货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于 $v$,根据动能定理知摩擦力对货物做的功可能等于 $mv^2/2$,可能小于$mv^2/2$,可能等于 $\mu mgs$,可能小于 $\mu mgs$,故选C。
2016 湖北省部分高中高三联考) 如图所示,质量为$m$ 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度 $v$ 匀速运动,物体与传送带间的动摩擦因数为 $\mu$,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是:A。
传送带中的能量问题解析传送带作为一种运输工具,其能量的转化主要考虑两个方面:①、增加物体的机械能(动能和势能)②、增加系统的内能(即由于物体和皮带之间发生相对运动因摩擦而产生的热量)例1. 如图,电机带动传送带以速度v 匀速传动,一质量为m 的小木块由静止放在传送带上(传送带足够长)若小木 块与传送带之间的动摩擦因数为µ,当小木块与传送带相对静止时,求:⑴、小木块的位移。
⑵、传送带经过的路程。
⑶、小木块获得的动能。
⑷、摩擦过程产生的热量。
⑸电机带动传送带匀速转动输出的总能量。
分析:木块刚放上时速度为零,必然受到传送带的滑动摩擦力作用做匀加速直线运动,达到与传送带有共同速度后不再有相对运动,整个过程中木块获得一定的动能,系统要产生摩擦热。
对木块:相对滑动时,a=µg,达到相对静止所用的时间为t=v g μ,木块的位移21122v s vt g μ==,传送带的位移22v s vt g μ==,木块相对传送带的位移2212v s s s g μ=-=,小木块获得的动能212k E mv =,产生的热量221211()()2Q fs f s s mg s s mv μ==-=-=,电动机输出的总能量转化为小木块的动能和系统产生的热量2k E E Q mv =+=注意:当木块的初速为零时,木块经过的位移和木块相对皮带的位移恰好相等,这一特点要记住,在解题中很有用处。
2.如图,已知传送带两轮的半径r =1m ,传动中传送带不打滑,质量为1kg 的物体从光滑轨道A 点无初速下滑(A 点比B 点高h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时,物体恰能在C 点离开传送带,则(1)BC 两点间距离为多少?(2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件?(3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少?解:(1)设物体质量为m ,在C 点时运动速度为C v ,BC 间距离为s 。
微专题34 传送带模型的能量分析【核心要点提示】传送带模型能量分析的问题主要包括以下两个核心问题(1)摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。
要注意的问题是公式中的x 相对并不是指的是相对位移大小。
特别是相对往返运动中,x 相对为多过程相对位移大小之和。
(2)由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。
以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q =∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传 【微专题训练】如图所示,水平传送带长为s ,以速度v 始终保持匀速运动,把质量为m 的货物放到A 点,货物与传送带间的动摩擦因数为μ,当货物从A 点运动到B 点的过程中,摩擦力对货物做的功不可能是( )A .等于12mv 2B .小于12mv 2C .大于μmgsD .小于μmgs【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于v ,根据动能定理知摩擦力对货物做的功可能等于12mv 2,可能小于12mv 2,可能等于μmgs ,可能小于μmgs ,故选C. 【答案】C(2016·湖北省部分高中高三联考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机多做的功为mv 2/2B .物体在传送带上的划痕长v 2/2μgC .传送带克服摩擦力做的功为mv 2/2D .电动机增加的功率为μmgv【解析】电动机多做的功转化成了物体的动能和内能,物体在这个过程中获得的动能就是12mv 2,所以电动机多做的功一定要大于12mv 2,故A 错误;物体在传送带上的划痕长等于物体在传送带上的相对位移,物体达到速度v 所需的时间t =v μg ,在这段时间内物体的位移x 1=v 22μg ,传送带的位移x 2=vt =v 2μg ,则物体相对位移x =x 2-x 1=v 22μg ,故B 正确;传送带克服摩擦力做的功就为电动机多做的功,所以由A 的分析可知,C 错误;电动机增加的功率即为克服摩擦力做功的功率,大小为fv =μmgv ,所以D 正确。
传送带模型电机多消耗的能量传送带是一种常见的物料输送设备,广泛应用于工业生产中。
在传送带系统中,电机扮演着关键的角色,驱动传送带不断运转。
然而,我们也需要关注传送带模型电机多消耗的能量的问题。
传送带模型电机多消耗的能量主要有以下几个方面的原因。
电机的效率是影响能量消耗的重要因素之一。
电机的效率可以定义为输出功率与输入功率的比值。
高效率的电机能够将输入的电能转化为机械能的比例更高,能量损耗较小。
然而,在传送带模型中,常常使用的是直流无刷电机或者异步电机,这些电机的效率可能并不高,因此会导致能量消耗增加。
传送带模型电机多消耗的能量还与传送带的设计和运行参数有关。
传送带的设计包括传送带的宽度、长度、转动半径等等,这些参数都会对电机的负载和工作条件产生影响。
如果传送带设计不合理,可能会导致电机在运行过程中承受较大的负载,从而消耗更多的能量。
此外,传送带的运行速度也是一个重要的参数,过高或过低的速度都会增加能量消耗。
第三,传送带模型电机多消耗的能量还与传送带的摩擦阻力有关。
传送带在运行过程中,与物料之间以及与传送带支撑架之间都会存在摩擦,这会对电机的负载产生影响。
如果传送带与物料之间的摩擦较大,电机需要付出更多的功率来克服摩擦阻力,从而消耗更多的能量。
传送带模型电机多消耗的能量还与传送带的维护和管理有关。
传送带的定期保养和维护可以减少电机的能量损耗。
例如,传送带的链条需要定期润滑,传送带的张紧度需要适当调整,这些措施可以减少摩擦阻力,从而降低能量消耗。
传送带模型电机多消耗的能量是一个综合因素的结果。
电机的效率、传送带的设计和运行参数、摩擦阻力以及维护管理等都会对能量消耗产生影响。
为了减少能量消耗,我们可以采取一些措施,例如选择高效率的电机、合理设计传送带参数、减少摩擦阻力以及定期维护等。
只有在综合考虑这些因素的基础上,我们才能够有效地降低传送带模型电机的能量消耗,提高系统的能源利用率。
考点7.4 传送带模型能量分析问题传送带模型能量分析的问题主要包括以下两个核心问题传送带模型能量分析的问题主要包括以下两个核心问题(1)(1)摩擦系统内摩擦热的计算:依据摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。
要注意的问题是公式中的x 相对并不是指的是相对位移大小。
特别是相对往返运动中,x 相对为多过程相对位移大小之和。
位移大小之和。
(2)(2)由于传送物体而多消耗的电能:一般而言,有两种思路:由于传送物体而多消耗的电能:一般而言,有两种思路:由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。
以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q=∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传【例题】如图所示,传送带始终保持v =3 m/s 的速度顺时针运动,一个质量为m =1.0 kg ,初,初速度为零的小物体放在传送带的左端,若物体与传送带之间的动摩擦因数μ=0.150.15,传送带左,传送带左右两端距离为x =4.5 m(g =10 m/s 2).(1)(1)求物体从左端到右端的时间;求物体从左端到右端的时间;求物体从左端到右端的时间;(2)(2)求物体从左端到右端的过程中产生的内能;求物体从左端到右端的过程中产生的内能;求物体从左端到右端的过程中产生的内能;(3)(3)设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能.设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能.设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能. 【解析】(1)(1)滑动摩擦力产生的加速度为滑动摩擦力产生的加速度为a =μg =0.15×10 m/s2=1.5 m/s 2所以速度达到3 m/s 的时间为t 1=v a =31.5s =2 s2 s 内物体发生的位移为x 1=12at 21=3 m<4.5 m所以物体先加速后匀速到达另一端.t 2=x -x 1v=0.5 s ,总时间为,总时间为t =t 1+t 2=2.5 s. (2)(2)物体与传送带之间的相对位移为物体与传送带之间的相对位移为Δx =vt 1-x 1=3 m ,所以产生的热量为,所以产生的热量为,所以产生的热量为 Q =μmg Δx =0.15×1×10×3 J=4.5 J.(3)(3)解法解法1:物体在传送带上滑行时皮带受到向右的摩擦力和电动机的牵引力做匀速直线运动.故摩擦力对传送带做功与电动机做的功动.故摩擦力对传送带做功与电动机做的功((电动机多消耗的电能电动机多消耗的电能))大小相等.大小相等. 故ΔE 电=μmgx 2=μmgvt =9 J, 解法2:电动机多消耗的电能等于物体的动能的增加量与产生的内能之和,故有:电动机多消耗的电能等于物体的动能的增加量与产生的内能之和,故有 ΔE 电=Q +12mv 2=9 J.【答案】(1)2.5 s (2)4.5 J (3)9 J 1.1.足够长的传送带以速度v 匀速传动,一质量为m的小物体A 由静止轻放于传送带上,若小物体与传送带之间的动摩擦因数为μ,如图所示,当物体与传送带相对静止时,转化为内能的能量为当物体与传送带相对静止时,转化为内能的能量为( ( ( D D D ) )2.2.A .mv 2B .2mv 2C.14mv 2D.12mv 23.3. (多选多选))如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率v 1匀速向右运动,一质量为m 的滑块从传送带右端以水平向左的速率v 2(v 2>v 1)滑上传送带,最后滑块返回传送带的右端.关于这一过程的下列判断,正确的有块返回传送带的右端.关于这一过程的下列判断,正确的有( ( ( ABD ABD ABD ) )A.A. 滑块返回传送带右端的速率为v 1B.B.此过程中传送带对滑块做功为12mv 21-12mv 22C.C. 此过程中电动机对传送带做功为12mv 21-12mv 22D.D.此过程中滑块与传送带间摩擦产生的热量为12m (v 1+v 2)2 4.4. 如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是达传送带顶端.下列说法正确的是( ( ( C C C ) )A.A. 第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.B. 第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.C. 第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D.D. 物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.5.如图所示,甲、乙两种粗糙面不同的传送带,倾斜于水平地面放置,以同样恒定速率v 向上运动.现将一质量为m 的小物体的小物体((视为质点视为质点))轻轻放在A 处,小物体在甲传送带上到达B 处时恰好达到传送带的速率v ;在乙传送带上到达离B 竖直高度为h 的C 处时达到传送带的速率v .已知B 处离地面的高度皆为H .则在小物体从A 到B 的过程中的过程中( ( ( C C C ) )A.A. 两种传送带与小物体之间的动摩擦因数相同两种传送带与小物体之间的动摩擦因数相同B.B.将小物体传送到B 处,两种传送带消耗的电能相等能相等 C.C. 两种传送带对小物体做功相等两种传送带对小物体做功相等D.D.将小物体传送到B 处,两种系统产生的热量相等相等6.6.如图所示,传送带与水平面之间的夹角为θ=30°,其上A 、B 两点间的距离为x =5 m ,传送带在电动机的带动下以,传送带在电动机的带动下以v =1 m/s 的速度匀速运动,现将一质量为m =10 kg 的小物体的小物体((可视为质点可视为质点))轻放在传送带的A 点,已知小物体与传送带之间的动摩擦因数为μ=32,在传送带将小物体从A 点传送到B 点的过程中,(g 取10 m/s 2)求:求:(1)(1) 传送带对小物体做的功;传送带对小物体做的功; (2)(2)电动机做的功.电动机做的功.【答案】【答案】 (1)255 J (2)270 J7.7. 如图所示,与水平面夹角θ=30°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离L =4 m ,传送带以恒定的速率,传送带以恒定的速率v =2 m/s 向上运动现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=32,取g =10 m/s 2,求:,求: (1)(1) 物体从A 运动到B 共需多长时间?共需多长时间? (2)(2) 电动机因传送该物体多消耗的电能电动机因传送该物体多消耗的电能. . 【答案】【答案】(1)2.4 s (1)2.4 s(2)28 J8.8. 如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体的物体((物体可以视为质点物体可以视为质点)),从h =3.2 m高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.50.5,物体向左最多能滑到传送带左右两端,物体向左最多能滑到传送带左右两端AB 的中点处,重力加速度g =10 m/s 2,则:,则:(1)(1) 物体由静止沿斜面下滑到斜面末端需要多长时间?物体由静止沿斜面下滑到斜面末端需要多长时间? (2)(2) 传送带左右两端A 、B 间的距离l 至少为多少?至少为多少?(3)(3) 物体与传送带组成的系统在完成一次来回滑行过程中产生的摩擦热为多少?物体与传送带组成的系统在完成一次来回滑行过程中产生的摩擦热为多少? 【答案】【答案】 (1)1.6 s (1)1.6 s (2)12.8 m(2)12.8 m (3)196 J9.9.如图所示,在大型超市的仓库中,要利用皮带运输机将货物由平台D 运送到高为h =2.5 m 的平台C 上.为了便于运输,仓储员在平台D 与皮带间放了一个14圆周的光滑轨道ab ,轨道半径为R =0.8 m ,轨道最低点与皮带接触,轨道最低点与皮带接触良好.已知皮带和水平面间的夹角为θ=37°,皮带和货物间的动摩擦因数为μ=0.750.75,,运输机的皮带以v 0=1 m/s 1 m/s的速度沿顺时针方向匀速运动的速度沿顺时针方向匀速运动的速度沿顺时针方向匀速运动((皮带和轮子之间不打滑皮带和轮子之间不打滑)).现仓储员将质量为m =200 kg 的货物放于轨道的a 端(g =10 m/s 2).求:.求: (1)(1) 货物到达圆轨道最低点b 时对轨道的压力;时对轨道的压力; (2)(2)货物沿皮带向上滑行多远才能相对皮带静止;止; (3)(3)皮带将货物由A 运送到B 需对货物做多少功.【答案】【答案】(1)6(1)6(1)6××103N (2)0.625 m (3)3 500 J10.10.如图所示,x 轴与水平传送带重合,轴与水平传送带重合,坐标原点坐标原点O 在传送带的左端,传送带长L =8 m ,匀速运动的速度,匀速运动的速度v 0=5 m/s.一质量一质量m =1 kg的小物块轻轻放在传送带上x P =2 m 的P 点,小物块随传送带运动到Q 点后冲上光滑斜面且刚好到达N 点(小物块到达N 点后被收集,不再下滑不再下滑)).若小物块经过Q 处无机械能损失,小物块与传送带间的动摩擦因数μ=0.50.5,重力加速度,重力加速度g =10 m/s 2. (1)(1) 求N 点的纵坐标;点的纵坐标;(2)(2) 求小物块在传送带上运动产生的热量;求小物块在传送带上运动产生的热量;(3)(3)若将小物块轻轻放在传送带上的某些位置,最终均能沿光滑斜面越过纵坐标y M =0.5 m 的M 点,求这些位置的横坐标范围.点,求这些位置的横坐标范围. 【答案】【答案】 (1)1.25 m (1)1.25 m (2)12.5 J (2)12.5 J (3)0(3)0≤≤x <7 m11.11.一质量为M =2 kg 2 kg的小物块随足够长的水平传送带一起运的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中,子弹从物块中穿过,如图5甲所示,地面观察者记录了小物块被击穿后的速度随时间的变化关系,如图乙所示(图中取向右运动的方向为正方向),已知传送带的速度保持不变,g 取10 m/s 2. (1)(1) 指出传送带的速度v 的方向及大小,说明理由.的方向及大小,说明理由. (2)(2) 计算物块与传送带间的动摩擦因数.计算物块与传送带间的动摩擦因数.(3)(3)计算物块对传送带总共做了多少功?系统有多少能量转化为内能?为内能?【答案】【答案】(1)2 m/s (1)2 m/s ,方向向右,方向向右,方向向右 理由见解析理由见解析 (2)0.2 (3)-24 J 36 J12.12. 如图为某生产流水线工作原理示意图如图为某生产流水线工作原理示意图..足够长的工作平台上有一小孔A ,一定长度的操作板(厚度可忽略不计厚度可忽略不计))静止于小孔的左侧,某时刻开始,零件静止于小孔的左侧,某时刻开始,零件((可视为质点可视为质点))无初速度地放上操作板的中点,同时操作板在电动机带动下向右做匀加速直线运动,直至运动到A 孔的右侧(忽略小孔对操作板运动的影响忽略小孔对操作板运动的影响)),最终零件运动到A 孔时速度恰好为零,并由A 孔下落进入下一道工序入下一道工序..已知零件与操作板间的动摩擦因数μ1=0.050.05,零件与工作台间的动摩擦因,零件与工作台间的动摩擦因数μ2=0.0250.025,不计操作板与工作台间的摩擦,不计操作板与工作台间的摩擦重力加速度g =10 m/s 2求:求: (1)(1) 操作板做匀加速直线运动的加速度大小;操作板做匀加速直线运动的加速度大小;(2)(2) 若操作板长L =2 m ,质量M =3 kg kg,零件的质量,零件的质量m =0.5 kg kg,则操作板从,则操作板从A 孔左侧完全运动到右侧的过程中,电动机至少做多少功?运动到右侧的过程中,电动机至少做多少功?【答案】【答案】(1)2 m/s (1)2 m/s2 (2)12.33 J13.13.飞机场上运送行李的装置为一水平放置的环形传送带,传送带的总质量为M ,其俯视图如图所示,现开启电动机,传送带达到稳定运行的速度v 后,将行李依次轻轻放到传送带上,若有n 件质量均为m 的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启到运送完行李需要消耗的电能为多少?多少?【答案】 12Mv 2+nmv 2。
2020年高考物理备考微专题精准突破专题3.6 “传送带”模型中的能量转化问题【专题诠释】传送带中摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;①有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的总功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【最新考向解码】【例1】(2019·长春实验中学高三上学期期末)如图甲所示,倾斜的传送带以恒定的速率逆时针运行。
在t=0时刻,将质量为1.0 kg的物块(可视为质点)无初速度地放在传送带的最上端A点,经过1.0 s,物块从最下端的B点离开传送带。
取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s2)。
求:(1)物块与传送带间的动摩擦因数;(2)物块从A到B的过程中,传送带对物块做的功。
【例2】(2019·吉林省吉林市高三上学期期末联考)如图所示,在皮带传送装置中,皮带把物体P匀速带至高处,在此过程中,下列说法不正确的是()A.摩擦力对物体做正功B.摩擦力对物体做负功C.支持力对物体不做功D.合外力对物体做功为零【技巧方法】1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向.在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速运动,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs=|s传-s物|;①若二者反向,则Δs=|s 传|+|s物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.【微专题精练】1.(多选)(2019·山西大学附属中学模拟)如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m =1 kg的物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是()A.0~8 s内物体位移的大小是18 m B.0~8 s内物体机械能增量是90 JC.0~8 s内物体机械能增量是84 J D.0~8 s内物体与传送带因摩擦产生的热量是126 J2.(2019·福建八县联考)如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是()A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D.物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热3.(2019·潍坊高三统考)如图所示,甲、乙传送带倾斜放置,并以相同的恒定速率v逆时针运动,两传送带粗糙程度不同,但长度、倾角均相同.将一小物体分别从两传送带顶端的A点无初速度释放,甲传送带上小物体到达底端B点时恰好达到速度v;乙传送带上小物体到达传送带中部的C点时恰好达到速度v,接着以速度v运动到底端B点.则小物体从A运动到B的过程()A.小物体在甲传送带上的运动时间比在乙上的大B.小物体与甲传送带之间的动摩擦因数比与乙之间的大C.两传送带对小物体做功相等D.两传送带因与小物体摩擦产生的热量相等4.(2019·泉州模拟)如图所示为地铁站用于安全检查的装置,主要由水平传送带和X光透视系统两部分组成,传送过程传送带速度不变.假设乘客把物品轻放在传送带上之后,物品总会先、后经历两个阶段的运动,用v表示传送带速率,用μ表示物品与传送带间的动摩擦因数,则()A.前阶段,物品可能向传送方向的相反方向运动B.后阶段,物品受到摩擦力的方向跟传送方向相同C.v相同时,μ不同的等质量物品与传送带摩擦产生的热量相同D.μ相同时,v增大为原来的2倍,前阶段物品的位移也增大为原来的2倍5.将一质量为1 kg的滑块轻轻放置于传送带的左端,已知传送带正以4 m/s的速度顺时针运行,滑块与传送带间的动摩擦因数为0.2,传送带左右距离无限长,当滑块放上去2 s时,突然断电,传送带以1 m/s2的加速度做匀减速运动至停止,则滑块从放上去到最后停下的过程中,下列说法正确的是()A.前2 s传送带与滑块之间因摩擦力所产生的热量为8 JB.前2 s传送带与滑块之间因摩擦力所产生的热量为16 JC.2 s后传送带与滑块之间因摩擦力所产生的热量为8 JD.2 s后传送带与滑块之间因摩擦力所产生的热量为06.(2019·湖北省黄冈市模拟)机场使用的货物安检装置如图所示,绷紧的传送带始终保持v=1 m/s的恒定速率运动,AB为传送带水平部分且长度L=2 m,现有一质量为m=1 kg的背包(可视为质点)无初速度的放在水平传送带的A端,可从B端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g=10 m/s2,下列说法正确的是()A.背包从A运动到B所用的时间为2.1 s B.背包从A运动到B所用的时间为2.3 sC.背包与传送带之间的相对位移为0.3 m D.背包与传送带之间的相对位移为0.1 m7.(2019·福建省宁德市上学期期末)智能分拣设备迅速将包裹分拣装车.若把智能分拣设备简化成如图6所示的水平传输装置,皮带在电动机的带动下保持v=1 m/s的速度向右运动,现将一质量为m=2 kg的包裹轻放在皮带上,包裹和皮带间的动摩擦因数μ=0.5.包裹从轻放在皮带上到相对皮带静止的过程中,设皮带足够长,取g=10 m/s2,求:(1)包裹滑动时加速度a的大小;(2)包裹滑动的时间t;(3)包裹位移x的大小.8.(2018·江西省六校第五次联考)如图所示,一倾角θ=37°的斜面底端与一传送带左端相接于B点,传送带以v=7 m/s的速度顺时针转动,有一小物块从斜面顶端以v0=4 m/s的初速度沿斜面下滑,当物块滑到斜面的底端点时速度恰好为零,然后在传送带的带动下,运动到C点.已知斜面AB长度为L1=6 m,传送带BC 长度为L2=6 m,物块与传送带之间的动摩擦因数μ2=0.3(sin 37°=0.6,cos 37°=0.8,g=10 m/s2).求:(1)物块与斜面之间的动摩擦因数μ1;(2)物块在传送带上运动的时间.9.(2018·安徽省安庆市二模)如图所示,半径R=1.6 m的光滑半圆形轨道固定于竖直平面内,下端与传送带相切于B点,水平传送带上A、B两端点间距L=16 m,传送带以v0=10 m/s的速度顺时针运动,将质量m =1 kg的小滑块(可视为质点) 放到传送带上,滑块与传送带间的动摩擦因数μ=0.4,取g=10 m/s2.(1)将滑块在传送带A端由静止释放,求滑块由释放到第一次经过B端时所需时间;(2)若滑块仍由静止释放,要想滑块能通过圆轨道的最高点C,求滑块在传送带上释放的位置范围;(3)若将滑块在传送带中点处释放,同时沿水平方向给滑块一初速度,使滑块能通过圆轨道的最高点C,求此初速度满足的条件.10.(2018·甘肃省兰州一中模拟)如图甲所示,倾角为37°足够长的传送带以4 m/s的速度顺时针转动,现将小物块以2 m/s的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s内小物块与传送带之间的划痕为多长.。