微分方程(习题及解答)0001
- 格式:docx
- 大小:33.52 KB
- 文档页数:5
微分方程单元测试题(含答案)题目一已知微分方程 $\frac{dy}{dx} = 2x$,求出这个微分方程的通解。
答案:根据微分方程的定义,我们可以利用变量分离法来求解这个微分方程。
首先我们将 $\frac{dy}{dx} = 2x$ 两边同时乘以 $dx$ 和$\frac{1}{2x}$,得到 $\frac{dy}{2x} = dx$。
然后我们进行积分,得到 $\int \frac{dy}{2x} = \int dx$。
将积分限写入,得到 $\int\frac{dy}{2x} = \int_{y_0}^y dx$(这里 $y$ 是变量 $x$ 的函数)。
对于左边的积分,我们可以用换元法来进行计算,令 $u = 2x$,则$du = 2dx$。
将其代入积分式中,得到 $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C_1 = \ln|u|^{1/2} + C_1$ (其中 $C_1$ 是常数)。
对于右边的积分,我们可以直接计算得到 $x + C_2$(其中$C_2$ 是常数)。
将左右两边的积分结果合并,得到 $\ln|u|^{1/2} + C_1 = x + C_2$,进一步化简得到 $\ln|2x|^{1/2} = x + C_3$,其中$C_3 = C_2 - C_1$ 是常数。
对等式两边同时取指数函数,得到$|2x|^{1/2} = e^{x + C_3}$,再进一步化简得到 $|2x|^{1/2} = e^{x}e^{C_3}$。
最后取绝对值,得到 $2x = \pm e^{x} e^{C_3}$,进一步化简得到 $x = \pm \frac{e^{x} e^{C_3}}{2}$。
因此,微分方程的通解为 $x = \pm \frac{e^{x} e^{C_3}}{2}$,其中 $C_3$ 是常数。
题目二已知微分方程 $\frac{dy}{dx} + y = 3x$,求出这个微分方程的特解。
微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。
2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。
3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。
4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。
答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。
由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。
2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。
因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。
由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。
3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。
4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。
因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。
数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。
为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。
练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。
微分方程初值问题练习题求解微分方程的初值问题微分方程是数学中的一个重要分支,它描述了变量之间的关系及其变化率。
初值问题是指在给定一个微分方程及初始条件的情况下,求解出一个特定的解。
本文将通过练习题的形式,来介绍如何求解微分方程的初值问题。
1. 练习一:一阶线性常微分方程考虑以下一阶线性常微分方程:\[ \frac{dy}{dx} + P(x)y = Q(x) \]其中,\(P(x)\) 和 \(Q(x)\) 是给定的函数。
已知初值条件 \(y(x_0) = y_0\),求解出该微分方程的解。
解答:首先将原方程变形为标准形式:\[ \frac{dy}{dx} = -P(x)y + Q(x) \]接下来使用积分因子法来求解该微分方程,积分因子定义为:\[ \mu(x) = e^{\int -P(x) dx} \]对原方程两边同时乘以积分因子,得到:\[ \mu(x) \frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x) \]由于左边是积分的导数,可以写成:\[ \frac{d}{dx}(\mu(x)y) = \mu(x)Q(x) \]对上式两边同时积分,得到:\[ \int \frac{d}{dx}(\mu(x)y) dx = \int \mu(x)Q(x) dx \]应用积分的基本性质,化简上式得到:\[ \mu(x)y = \int \mu(x)Q(x) dx + C \]其中,\(C\) 是常数。
最后将 \(y\) 解出来,得到:\[ y(x) = e^{-\int P(x) dx}(\int e^{\int P(x) dx}Q(x) dx + C) \]将初值条件\(y(x_0) = y_0\) 代入上式,可以求解出常数\(C\) 的值,从而得到特定的解。
2. 练习二:二阶线性常微分方程考虑以下二阶线性常微分方程:\[ \frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x) \]其中,\(P(x)\),\(Q(x)\),\(R(x)\) 是给定的函数。
高中数学微分方程练习题及参考答案2023一、填空题1.微分方程 $y'=x^2$ 的通解为 $y=$_____________。
2.微分方程 $y'-2y=\cos x$ 的通解为 $y=$_____________。
3.微分方程 $y''-3y'+2y=0$ 的通解为 $y=$_____________。
4.微分方程 $y''+y=e^x$ 的通解为 $y=$_____________。
5.微分方程 $(x-1)y'-y=3$ 的通解为 $y=$_____________。
二、选择题1.微分方程 $y''-y'-12y=0$ 的解正确的选项是A. $y=c_1e^{4x}+c_2e^{-3x}$B. $y=c_1e^{3x}+c_2e^{-4x}$C. $y=c_1\sinh3x+c_2\cosh4x$D. $y=c_1\sinh4x+c_2\cosh3x$2.对于微分方程 $y''-2y'+y=x^3\mathrm{e}^{2x}$,以下选项正确的是A. 特解应为多项式 $Ax^3+Bx^2+Cx+D$B. 对于其特解应有 $A=0$C. 对于其特解应有 $B=0$D. 对于其特解应有 $B\neq0$3.微分方程 $y''-y'-2y=0$,其中 $y_1(x)=e^{2x}$,$y_2(x)=?$,正确的选项是A. $y_2(x)=e^{-x}$B. $y_2(x)=e^{x}$C. $y_2(x)=e^{-2x}$D. $y_2(x)=\mathrm{e}^{-2x}-4x\mathrm{e}^{-2x}$三、解答题1.求微分方程 $y'+\frac{1}{x}y=2\sin\ln x$ 的通解。
2.求微分方程 $y'-y=x\mathrm{e}^x$ 的通解。
微分方程课后习题答案微分方程是数学中的重要分支,它研究的是描述自然现象中变化规律的方程。
在学习微分方程的过程中,课后习题是巩固知识、提高技能的重要途径。
本文将为大家提供一些微分方程课后习题的答案,希望能够帮助大家更好地理解和掌握微分方程的知识。
1. 一阶线性微分方程题目:求解微分方程 dy/dx + y = 2x解答:这是一个一阶线性微分方程,我们可以使用常数变易法来求解。
首先,将方程改写为 dy/dx = 2x - y设 y = u(x) * v(x),其中 u(x) 是未知函数,v(x) 是待定函数。
将 y = u(x) * v(x) 带入方程,得到 u(x) * v'(x) + u'(x) * v(x) = 2x - u(x) * v(x)整理得 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x根据乘积法则,有 (u(x) * v(x))' = 2x对上式两边同时积分,得到 u(x) * v(x) = x^2 + C,其中 C 是常数。
然后,我们需要求解 u(x) 和 v(x)。
由于 v(x) 是待定函数,我们可以选择 v(x) = e^(-x),这样 v'(x) = -e^(-x)。
将 v(x) = e^(-x) 带入 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x,得到 u'(x) * e^(-x) = 2x对上式两边同时积分,得到 u(x) * e^(-x) = x^2 + C将 u(x) * e^(-x) = x^2 + C 代入 y = u(x) * v(x),得到 y = (x^2 + C) * e^x所以,原微分方程的通解为 y = (x^2 + C) * e^x,其中 C 是常数。
2. 二阶线性常系数齐次微分方程题目:求解微分方程 d^2y/dx^2 + 2dy/dx + 2y = 0解答:这是一个二阶线性常系数齐次微分方程,我们可以使用特征方程法来求解。
微分方程相关习题和答案微分方程是数学中的一个重要分支,它研究的是函数与其导数之间的关系。
微分方程广泛应用于物理、工程、经济等领域,是解决实际问题的有力工具。
在学习微分方程的过程中,习题是不可或缺的一部分,通过解习题可以加深对微分方程理论的理解和掌握。
下面我将给大家介绍几个微分方程相关的习题和答案。
1. 题目:求解一阶线性微分方程y' + 2xy = 3x。
解答:这是一个一阶线性常微分方程,可以使用常数变易法求解。
首先,将方程改写成标准形式y' + p(x)y = q(x),其中p(x) = 2x,q(x) = 3x。
然后,求出齐次线性微分方程y' + 2xy = 0的通解y_h(x)。
通过分离变量法可得y_h(x) =Ce^{-x^2},其中C为常数。
接下来,我们猜测特解y_p(x)为形如y_p(x) = Ax + B的一次多项式。
将y_p(x)代入原方程,整理得到2Ax + 2(Ax + B)x = 3x,比较系数可得A = 3/2,B = -1/4。
因此,特解为y_p(x) = (3/2)x - 1/4。
最后,将通解和特解相加,得到原方程的通解为y(x) = Ce^{-x^2} + (3/2)x - 1/4,其中C为常数。
2. 题目:求解二阶常系数齐次线性微分方程y'' - 4y' + 4y = 0。
解答:这是一个二阶常系数齐次线性微分方程,可以使用特征方程法求解。
首先,写出特征方程r^2 - 4r + 4 = 0,并求出其特征根r_1 = r_2 = 2。
由于特征根相等,所以通解形式为y(x) = (C_1 + C_2x)e^{2x},其中C_1和C_2为常数。
如果题目给出了初始条件,可以利用初始条件求解出具体的解。
例如,若已知y(0) = 1和y'(0) = 2,代入通解中的x = 0和x = 0的导数,得到C_1 = 1和C_2 = 1。
第一章微分方程函数单元测试题及答案问题:1. 请简要解释什么是微分方程函数。
2. 请解决以下微分方程:- (a) $$ \frac{dy}{dx} = 2x $$- (b) $$ \frac{d^2y}{dx^2} = -2y $$3. 将以下微分方程转化成标准形式:- (a) $$ 2yy' = x $$- (b) $$ y'' + xy' = 0 $$4. 将以下微分方程分类,并判断其类型:- (a) $$ \frac{dy}{dx} + y = e^x $$- (b) $$ \frac{d^3y}{dx^3} + 5\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 2y = 0 $$5. 求解以下线性常微分方程:- (a) $$ \frac{dy}{dx} + 2xy = 0 $$- (b) $$ \frac{d^2y}{dx^2} + 4y = 0 $$答案:1. 微分方程函数是一种包含函数及其导数的方程,其中函数的导数描述了函数的变化率。
2.- (a) 对方程两边同时积分可得:$$ y = x^2 + C $$,其中C为常数。
- (b) 这是一个二阶齐次线性微分方程,它的特征方程为:$$ r^2 = -2 $$。
特征根为:$$ r = \pm \sqrt{2}i $$。
因此,通解为:$$ y = C_1e^{\sqrt{2}ix} + C_2e^{-\sqrt{2}ix} $$,其中C1和C2为常数。
3.- (a) 将方程重写为:$$ y' = \frac{x}{2y} $$。
- (b) 将方程重写为:$$ y'' + xy' = 0 $$。
4.- (a) 这是一个一阶线性非齐次微分方程,因为右侧是一个非常数的函数。
- (b) 这是一个三阶齐次线性微分方程。
5.- (a) 这是一个一阶线性非齐次微分方程,其齐次部分为:$$ \frac{dy}{dx} + 2xy = 0 $$。
5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。
微分方程的概念与基本解法练习题对于数学领域而言,微分方程是一类非常重要的数学工具,它用于描述物理、工程学和其他科学领域中的各种变化和变化率。
在本文中,将介绍微分方程的概念,并提供一些基本解法的练习题。
一、微分方程的概念微分方程可以被定义为包含未知函数及其导数的方程。
具体而言,给定一个未知函数y(x),微分方程将通过y(x)及其导数的函数关系来描述一个过程或现象。
微分方程可以分为几种类型,其中最常见的是常微分方程和偏微分方程。
常微分方程只涉及一个自变量,而偏微分方程涉及多个自变量。
二、基本解法练习题下面将提供一些微分方程的基本解法练习题。
请根据题目给出的微分方程,找到其解析解,并进行验证。
1. 题目一:一阶线性微分方程求解以下一阶线性微分方程:(dy/dx) + y/x = x2. 题目二:二阶线性齐次微分方程求解以下二阶线性齐次微分方程:d^2y/dx^2 - 4y = 03. 题目三:二阶线性非齐次微分方程求解以下二阶线性非齐次微分方程:d^2y/dx^2 + 2dy/dx + y = e^(-x)4. 题目四:一阶变量可分离微分方程求解以下一阶变量可分离微分方程:(dy/dx) = y/x5. 题目五:一阶齐次微分方程求解以下一阶齐次微分方程:(dy/dx) = (2x + y) / (x - y)6. 题目六:一阶恰当微分方程求解以下一阶恰当微分方程:x^3y dx - (x^4 + 5xy^2) dy = 0三、解答与验证1. 题目一解答:将微分方程改写为标准形式:(dy/dx) = -y/x + x乘以x并重排,得到:x(dy/dx) + y = x^2该方程为一阶线性微分方程,可以使用积分因子法求解。
2. 题目二解答:特征方程为:r^2 - 4 = 0解得r1 = 2,r2 = -2因此,通解为:y(x) = c1e^(2x) + c2e^(-2x)3. 题目三解答:齐次方程特征方程为:r^2 + 2r + 1 = 0解得r1 = -1,r2 = -1所以,齐次方程的通解为:y_h(x) = c1e^(-x) + c2xe^(-x)对于非齐次方程,可以通过常数变易法求解。
2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。