实际问题与方程_例
- 格式:ppt
- 大小:1.74 MB
- 文档页数:12
解方程的实际案例将方程运用到实际生活中的问题数学中,方程是解决问题的基本工具之一。
通过解方程,我们可以找到未知数的值,进而解决各种实际问题。
本文将介绍解方程在实际生活中的应用案例,展示方程的实际价值。
一、家庭预算问题家庭预算是现代生活中的一个重要问题。
通过解方程,我们可以根据家庭成员的收入和支出情况,找到合适的生活方式。
假设小明家庭的月收入为x元,月支出为y元。
根据已知条件,我们可以得到以下方程:x - y = 2000 (方程一)3x + 2y = 5000 (方程二)解方程组(方程一和方程二),可以得到小明家庭的月收入和月支出的具体数值,从而帮助他们制定合理的家庭预算。
二、时间和距离问题解决时间和距离问题也是方程应用的一个典型案例。
比如,小红骑自行车从家骑到学校,全程10公里,速度为v km/h。
如果她加快速度5 km/h,则所需时间将减少1小时。
根据已知条件,我们可以建立以下方程:10 / v = 10 / (v + 5) - 1 (方程三)通过解方程(方程三),我们可以找到小红平时骑自行车的速度v,为她合理安排时间提供依据。
三、商业应用问题在商业领域,方程的应用也十分广泛。
假设一个商店以每件商品10元的价格出售,并设定了目标利润为200元。
为了达到目标利润,商店需要卖出多少件商品?我们可以通过以下方程来解决这个问题:10x = 200 (方程四)解方程(方程四)后,可以得出商店需要卖出20件商品,才能达到目标利润。
四、面积和周长问题解决面积和周长问题也常常需要运用方程。
比如,小明有一块正方形园地,已知围墙的周长是32米。
小明想扩大园地的面积,扩大后的园地边长为x米。
我们可以通过以下方程来解决这个问题:4x = 32 (方程五)解方程(方程五),可以得到小明扩大后园地的边长为8米。
综上所述,方程在实际生活中的应用案例非常丰富。
从家庭预算到时间和距离、商业应用到面积和周长等问题,通过解方程可以帮助我们解决各种实际难题,为生活提供便利和解决方案。
实际问题与一元一次方程(二)一、利润问题(1)=100% 利润利润率进价;(2)标价=成本(或进价)×(1+利润率);(3)实际售价=标价×打折率;(4)利润=售价-成本(或进价)=成本×利润率 注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
例1、某商店以每支4元的价格进100支钢笔,卖出时每支的标价6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店赢利188元,其中打9折的钢笔有几支?变式1-1、某商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,求这种商品的定价为多少元?变式1-2、某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获利270元,那么每台彩电原价是多少?变式1-3、某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金。
这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少(用四舍五入法精确到个位)?变式1-4、某厂生产一种产品,成本是每件5元,零售价为每件7元,年销售量为100万件。
为了获得更多的利润,厂里准备拿出一定的资金做广告。
根据调研,每投入1万元广告费,每年可多销售2.5万件产品。
那么投入多少万元广告费,可使年利润达到300万元?二、存贷款问题(1)利息=本金×利率×期数;(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数);(3)实得利息=利息-利息税;(4)1利息税=利息×利息税率;(5)年利率=月利率×12;(6)月利率=年利率×12例2、某公司从银行贷款20万元,用来生产某种产品,已知该贷款的年利率为15%(不计复利),每个产品成本是3.2元,售价是5元,应纳税款为销售款的10%。
实际问题与一元二次方程类型归纳练习题姓名:班级:座位号:一、传播问题例题:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了x人,第一轮后共有(x+1)人患了流感;②第二轮传染中,这些人中的每个人又传染了x人,第二轮后共有(x+1)(x+1)人患了流感.则:列方程(x+1)2=121,解得x=10或x=-12(舍),即平均一个人传染了10个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?练习题:1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,求每个枝干长出多少小分支?2、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有多少名同学?3、一个小组若干人,新年互相发送祝福短信,若全组共发送祝福短信72条,则这个小组共有多少人?4、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?5、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?二、增长率问题例题:两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?(精确到0.001)分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元.依题意,得5 000(1-x)2=3 000 .解得:x1≈0.225,x2≈1.775.根据实际意义,甲种药品成本的年平均下降率约为0.23.②设乙种药品成本的年平均下降率为y.则,列方程:6 000(1-y)2=3 600. 解得:y1≈0.225,y2≈1.775(舍).答:两种药品成本的年平均下降率相同.练习题:1、青山村种的水稻2001年平均每公顷产7 200 kg,2003年平均每公顷产8 460 kg,求水稻每公顷产量的年平均增长率.2、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.3、某印刷厂元月份印刷课本30万册,第一季度共印了150万册,问2、3月份平均每月的增长率是多少?4、来自信息产业部的统计数字显示,2007年一至四月份我国手机产量为4000万台,相当于2006年全年手机产量的80%,预计到2008年年底手机产量将达到9800万台,试求这两年手机产量平均每年的增长率:5、某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363C.300(1+2x)=363 D.363(1-x)2=300三、利润问题此类问题常见的等量关系是:利润=售价-进价,总利润=每件商品的利润×销售数量,利润率=进价利润例题:某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?分析:假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。