超静定问题
- 格式:ppt
- 大小:1.38 MB
- 文档页数:8
西南交通大学应用力学与工程系材料力学教研室第八章简单的超静定问题§8-1 概述静定结构: 仅靠静力平衡方程就可以求出结构的全部未知的约束反力或内力FAB2A F1BααC平面任意力系:3个平衡方程平面共点力系:2个平衡方程独立平衡方程数:超静定结构(静不定结构): 仅凭静力学平衡方程不能求解全部未知内力或反力的结构。
超静定结构的未知力的数目多于独立的平衡方程的数目;两者的差值称为超静定的次数。
BD C A 132FααF F CF B F A BC ABCADA FααF N1y xF N3F N2BD C A 132FααF F CF B F A BC AA FααF N1y xF N3F N2•习惯上把维持物体平衡并非必需的约束称为多余约束,相应的约束反力称为多余未知力。
•超静定的次数就等于多余约束或多余未知力的数目。
•注意:从提高结构的强度和刚度的角度来说,多余约束往往是必需的,并不是多余的。
超静定的求解:根据静力学平衡条件确定结构的超静定次数,列出独立的平衡方程;然后根据几何、物理关系列出需要的补充方程;则可求解超静定问题。
F F CF B F A BC A•补充方程的数目=多余未知力的数目=多余约束数。
•根据变形几何相容条件,建立变形几何相容方程,结合物理关系(胡克定律),则可列出需要的力的补充方程。
•补充方程的获得,体现了超静定问题的求解技巧与关键。
此处我们将以轴向拉压、扭转、弯曲的超静定问题进行说明。
BD C A 132FααF F CF B F A BC AA FααF N1yxF N3F N2§8.2 拉压超静定问题1拉压超静定问题解法例两端固定的等直杆AB ,在C 处承受轴向力F 如图,杆的拉压刚度为EA ,求杆的支反力.解:一次超静定问题=−+F F F B A F BA F AB ablFC (1) 由节点A 的平衡条件列出杆轴线方向的平衡方程(2)变形:补充方程(变形协调条件)可选取固定端B 为多余约束,予以解除,在该处的施加对应的约束反力F B ,得到一个作用有原荷载和多余未知力的静定结构--称为原超静定结构的基本静定系或相当系统注意原超静定结构的 B 端约束情况,相当系统要保持和原结构相等,则相当系统在B 点的位移为零。
超静定问题的解题步骤概述说明以及解释1. 引言1.1 概述目前,超静定问题在工程设计和科学研究中扮演着至关重要的角色。
超静定问题是指那些具有多余约束条件的力学系统,在这种情况下,物体的运动过程不止一个可能的解。
解决超静定问题需要使用特定的数学工具和分析方法。
本文将介绍解题步骤,为读者提供一个清晰而简洁的指南。
1.2 文章结构本文分为五个主要部分。
在引言部分,我们将概述文章内容,并简要介绍超静定问题及其重要性。
第二部分将对超静定问题进行详细讨论,包括定义、背景知识以及实际应用场景。
接下来,第三部分将总结解题步骤,并概括每个步骤所需考虑的关键点。
第四部分则会更加详细地解释每个步骤,并提供具体操作步骤和示例。
最后,在结论与总结部分,我们将总结解题步骤,并讨论可能遇到的困难与挑战,以及其他相关问题和研究方向。
1.3 目的本文旨在帮助读者全面了解超静定问题和解题步骤。
通过详细讲解每个步骤的要点和操作方法,读者将能够更加轻松地解决超静定问题,并理解其在实际工程和科学领域的应用。
我们希望本文能成为读者解题过程中的有价值的参考资料,提供清晰而系统化的指导。
2. 超静定问题简介:2.1 定义和背景知识:超静定问题是指在静力学中,物体受到的约束超过了必要的约束数量。
这意味着通过仅使用平衡方程无法求解未知变量的值。
超静定问题在工程、建筑和力学领域中经常出现,并需要特殊的解题方法来找到合适的解决方案。
2.2 超静定问题的重要性:理解和解决超静定问题对于设计和分析结构非常重要。
一些实际应用场景中,超静定结构可以提供更高的刚度、稳定性和可持续性。
因此,研究人员和工程师需要掌握解决超静定问题的技巧。
2.3 实际应用场景:超静定问题广泛应用于建筑、土木工程、桥梁设计以及机械工程等领域。
例如,在建筑设计中,支撑柱或梁受到多个支点约束时可能会出现超静定问题。
在机械工程中,一些连接件或装配件也可能涉及到超静定问题。
了解超静定问题的定义、背景知识以及其在实际应用中的重要性对于理解本文后续将介绍的解题步骤至关重要。