材料加工过程的数值模拟PPT课件
- 格式:ppt
- 大小:865.50 KB
- 文档页数:34
第一部分:铸造过程的数值模拟1.1概述铸造工艺历史悠久,但长期以来只是一种手工艺经验积累,近代逐渐成为一门工程技术,但仍缺乏完整的科学体系[1-3]。
铸件凝固及其相应的铸型充填是铸造工艺的基本技术问题,大部分铸造缺陷产生于这一过程或与之密切相关,但由于该项研究问题复杂、难度较大,在实际生产中不得不更多地依赖于经验。
液体金属进入型腔之后,流态和温度是如何变化的,凝固是如何进行的,缺陷是如何生成的,这些对铸造工作者来说还带有相当的盲目性。
如何把它们计算和描绘出来,优化出最佳方案并形成工艺文件,尽可能以较少人力、物力生产出优质铸件,这就是铸件凝固数值模拟的主要任务[2]。
该学科是材料发展的前沿领域, 是改造传统铸造产业的必由之路。
经历了数十年的努力, 铸件充型凝固过程计算机模拟仿真发展已进入工程实用化阶段, 铸造生产正在由凭经验走向科学理论指导。
铸造充型凝固过程的数值模拟, 可以帮助工作人员在实际铸造前对铸件可能出现的各种缺陷及其大小、部位和发生的时间予以有效的预测,在浇注前采取对策以确保铸件的质量, 缩短试制周期, 降低生产成本。
1962年丹麦的Forsund把有限差分法用于铸件凝固过程的传热计算,从此铸造工艺揭开了计算机优化的序幕。
电子计算机在铸造生产中得以应用,目前主要在生产管理和数据处理、生产过程自动化控制以及铸造工艺辅助设计等领域,而用计算机模拟仿真逐步代替传统的经验性研究方法,已成为21世纪铸件成形技术的发展趋势之一[3]。
数值模拟技术经过数十年的发展,已经步入工程实用化阶段。
1989年, 世界上第一个铸造CAE商品化软件在德国第7届国际铸造博览会上展出, 它以温度场分析为核心内容, 在计算机工作站上运行, 是由德国Aachen大学Sahm教授主持开发的, 被称之为MAG2MA软件。
同时展出的还有英国FOSECO公司开发的Solstar软件, 它可在微机上运行, 但对有限元分析作了极大的简化。
内容提要:本文首先论述了材料热加工工艺模拟研究的重大意义;回顾、分析了国内外热加工工艺模拟的研究历程和技术发展趋势和方向;提出了我国在该领域开展研究与应用工作的建议。
当前,金属材料仍是应用范围最为广泛的机械工程材料,材料热加工(包括铸造、锻压、焊接、热处理等)是机械制造业重要的加工工序,也是材料与制造两大行业的交叉和接口技术。
材料经热加工才能成为零件或毛坯,它不仅使材料获得一定的形状、尺寸,更重要的是赋予材料最终的成份、组织与性能。
由于热加工兼有成形和改性两个功能,因而与冷加工及系统的材料制备相比,其过程质量控制具有更大的难度。
因此,对材料热加工过程进行工艺模拟进而优化工艺设计,具有更为迫切的需求。
近二十多年来,材料热加工工艺模拟技术得到迅猛发展,成为该领域最为活跃的研究热点及技术前沿。
一、引言1.1 使金属材料热加工由"技艺"走向"科学",彻底改变热加工的落后面貌金属材料热加工过程是极其复杂的高温、动态、瞬时过程,难以直接观察。
在这个过程中,材料经液态流动充型、凝固结晶、固态流动变形、相变、再结晶和重结晶等多种微观组织变化及缺陷的产生与消失等一系列复杂的物理、化学、冶金变化而最后成为毛坯或构件。
我们必须控制这个过程使材料的成分、组织、性能最后处于最佳状态,必须使缺陷减到最小或将它驱赶到危害最小的地方去。
但这一切都不能直接观察到,间接测试也十分困难。
长期以来,基础学科的理论知识难以定量指导材料加工过程,材料热加工工艺设计只能建立在"经验"基础上。
近年来,随着试验技术及计算机技术的发展和材料成形理论的深化,材料成形过程工艺设计方法正在发生着质的改变。
材料热加工工艺模拟技术就是在材料热加工理论指导下,通过数值模拟和物理模拟,在试验室动态仿真材料的热加工过程,预测实际工艺条件下材料的最后组织、性能和质量,进而实现热加工工艺的优化设计。
它将使材料热加工沿此方向由"技艺"走向"科学",并为实现虚拟制造迈出第一步,使机械制造业的技术水平产生质的飞跃。