大学物理练习题十六
- 格式:ppt
- 大小:1.37 MB
- 文档页数:21
第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。
若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。
(B) 它的势能转换成动能。
(C) 它从相邻的一段质元获得能量其能量逐渐增大。
(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。
二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。
1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
长春⼯业⼤学物理答案光光学16-20练习⼗六光的⼲涉(⼀)1.如图16-1所⽰,在杨⽒双缝实验中,⼊射光波长为600nm ,屏幕上的P 点为第3级明纹位置。
则双缝到达P 点的波程差为1800nm 。
在P 点叠加的两光振动的相位差为 6π。
解:λk x Dd =为明纹 2.如图16-2所⽰,在杨⽒双缝实验中,把两缝中的⼀条狭缝s 2遮住,并在两缝的垂直平分线上放⼀块平⾯反射镜。
则屏幕上的⼲涉将如何变化?镜下⽅⽆条纹,镜上⽅明暗条纹分布状况与上⼀次恰好相反。
3.( 2 )在杨⽒双缝实验中,欲使⼲涉条纹间距变宽,应怎样调整:(1)增加双缝的间距;(2)增加⼊射光的波长;(3)减⼩双缝⾄光屏之间的距离;(4)⼲涉级数K 愈⼤,则条纹愈宽。
λλdD x k x D d =?= 4.( 1 )在杨⽒双缝实验中,原来缝s 到达两缝s 1和s 2的距离是相等的,如图18-3所⽰,现将s 向下移动⼀微⼩距离,则屏幕上⼲涉条纹将如何变化:(1)⼲涉条纹向上平移;(2)⼲涉条纹向下平移;(3)⼲涉条纹不移动。
5.( 1 )在双缝装置中,⽤⼀折射率为n 的薄云母⽚覆盖其中⼀条缝,这时屏幕上的第7级明条纹恰好移到屏幕中央原零级明条纹的位置,如果⼊射光的波长为λ,则这云母⽚的厚度为:(1)17-n λ(2)λ7(3)n λ7 (4)λ71-n1770-==-+?+=-++n e BO EO DE n CD BO EO DE CD λλ所以:有云母⽚:⽆云母⽚:6.在杨⽒双缝实验中,双缝间距为0.5毫⽶,双缝⾄屏的距离为1.0⽶,在屏上可见到两组⼲涉条纹,⼀组由波长为480nm 的光产⽣,另⼀组由波长为600nm 的光产⽣,问在屏上两组⼲涉条纹在第3级⼲涉明条纹的距离是多少?mm x mmx k nm mm x k nm k x Dd 72.060.3'3,600'88.23,480=?======时,当=时,当λλλ7.杨⽒双缝实验中,若两缝间距为0.2mm ,屏与缝间距为100cm 。
第1单元 质点运动学一. 选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[]。
(A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。
2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[]。
(1)a t = d /d v , (2)v =t /r d d , (3)v =t S d /d , (4)t a t =d /d v。
(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C)只有(2)是对的; (D) 只有(3)是对的。
3. 一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=〔其中a 、b 为常量〕,则该质点作[]。
(A) 匀速直线运动;(B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。
4. 一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI),则小球运动到最高点的时刻是[]。
(A) t=4s ;(B) t=2s ; (C)t=8s ;(D)t=5s 。
5. 一质点在xy 平面内运动,其位置矢量为j t i t r ˆ)210(ˆ42-+=〔SI 〕,则该质点的位置矢量与速度矢量恰好垂直的时刻为[]。
(A)s t 2=; 〔B 〕s t 5=; 〔C 〕s t 4=; 〔D 〕s t 3=。
6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。
当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是[]。
(A) 0221v v +=kt ;(B) 0221v v +-=kt ; (C)02121v v +=kt ; (D) 02121v v +-=kt 。
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
练习十六 感生电动势 自感一、选择题1. 一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A ) 减缓铜板中磁场的增加。
(B ) 加速铜板中磁场的增加。
(C ) 对磁场不起作用。
(D ) 使铜板中磁场反向。
2. 磁感应强度为B v 的均匀磁场被限制在圆柱形空间内,B v的大小以速率d B /d t > 0变化,在磁场中有一等腰三角形ACD 导线线圈如图放置,在导线CD 中产生的感应电动势为1ε,在导线CAD 中产生的感应电动势为2ε,在导线线圈ACDA 中产生的感应电动势为ε。
则:(A ) 21εε−=,021=+=εεε。
(B ) 01>ε,02<ε,021>+=εεε。
(C ) 01>ε,02>ε,021<−=εεε。
(D ) 01>ε,02>ε,012>−=εεε。
3. 自感为0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减小到零时,线圈中自感电动势的大小为:(A ) 7.8×10−3V 。
(B ) 2.0V 。
(C ) 8.0V 。
(D ) 3.1×10−2V 。
4. 匝数为N 的矩形线圈长为a 宽为b ,置于均匀磁场B v中。
线圈以角速度ω旋转,如图所示,当t = 0时线圈平面处于纸面,且AC 边向外,DE 边向里。
设回路正向ACDEA 。
则任一时刻线圈内感应电动势为(A ) −abNB ω sin ωt 。
(B ) abNB ω cos ωt 。
(C ) abNB ω sin ωt 。
(D ) −abNB ω cos ωt 。
5. 用导线围成如图所示的正方形加一对角线回路,中心为O 点,放在轴线通过O 点且垂直于图面的圆柱形均匀磁场中。
磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向在四图中应为:6. 如图所示,均匀磁场被局限在无限长圆柱形空间内,且成轴对称分布,图为此磁场的截面,磁场按d B /d t 随时间变化,圆柱体外一点P 的感应电场E i 应(A ) 等于零。
第十六章 电磁场P177.16.1 一条铜棒长为L = 0.5m ,水平放置,可绕距离A 端为L /5处和棒垂直的轴OO'在水平面内旋转,每秒转动一周.铜棒置于竖直向上的匀强磁场中,如图所示,磁感应强度B = 1.0×10-4T .求铜棒两端A 、B 的电势差,何端电势高.[解答]设想一个半径为R 的金属棒绕一端做匀速圆周运动,角速度为ω,经过时间d t 后转过的角度为d θ = ωd t ,扫过的面积为d S = R 2d θ/2,切割的磁通量为d Φ = B d S = BR 2d θ/2,动生电动势的大小为ε = d Φ/d t = ωBR 2/2.根据右手螺旋法则,圆周上端点的电势高.AO 和BO 段的动生电动势大小分别为22()2550AO B LBL ωωε==, 22416()2550BOB LBL ωωε==. 由于BO > AO ,所以B 端的电势比A 端更高,A 和B 端的电势差为2310BO AOBL ωεεε=-=242332π 1.010(0.5)1010BL ω-⨯⨯⨯=== 4.71×10-4(V). [讨论]如果棒上两点到O 的距离分别为L 和l ,则两点间的电势差为222()(2)222B L l Bl B L Ll ωωωε++=-=.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?[解答]在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ = d l cos θ;线元到直线之间的距离为r = x A + l sin θ,直线电流在线元处产生的磁感应强度为图16.1图16.2002π2π(sin )A IIB rx l μμθ==+.由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为0cos d d d 2π(sin )A Iv lBv l x l μθεθ⊥==+,棒的动生电动势为00cos d 2πsin LAIv lx l μθεθ=+⎰00cos d(sin )2πsin sin LA A Iv x l x l μθθθθ+=+⎰ 0sin cot ln2πA AIvx L x μθθ+=,A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势.(2)当θ→0时,由于sin sin sin lnln(1)A A A Ax L L L x x x θθθ+=+→,所以02πAIvLx με→,这就是棒垂直割磁力线时所产生电动势.16.3 如图所示,平行导轨上放置一金属杆AB ,质量为m ,长为L .在导轨上的一端接有电阻R .匀强磁场B 垂直导轨平面向里.当AB 杆以初速度v 0向运动时,求:(1)AB 杆能够移动的距离;(2)在移动过程中电阻R 上放出的焦耳热为多少? [分析]当杆运动时会产生动生电动势,在电路中形成电流;这时杆又变成通电导体,所受的安培力与速度方向相反,所以杆将做减速运动.随着杆的速度变小,动生电动势也会变小,因而电流也会变小,所受的安培力也会变小,所以杆做加速度不断减小的减速运动,最后缓慢地停下来.[解答](1)方法一:速度法.设杆运动时间t 时的速度为v ,则动生电动势为ε = BLv ,电流为I = ε/R ,所受的安培力为F = -ILB = -εLB/R = -(BL )2v/R ,负号表示力的方向与速度方向相反.取速度的方向为正,根据牛顿第二定律F = ma 得速度的微分方程为BA图16.32()d d BL v v m R t-=,即: 2d ()d v B L t v m R=-积分得方程的通解为21()ln BL v t C mR=-+.根据初始条件,当t = 0时,v = v 0,可得常量C 1 = ln v 0.方程的特解为20()exp[]BL v v t mR=-.由于v = d x /d t ,可得位移的微分方程20()d exp[]d BL x v t t mR=-,方程的通解为20()exp[]d BL x v t t mR =-⎰2022()exp[]()mRv BL t C BL mR-=-+, 当t = 0时,x = 0,所以常量为022()mRv C BL =. 方程的特解为202(){1exp[]}()mRv BL x t BL mR=--. 当时间t 趋于无穷大时,杆运动的距离为2()mRv x BL =. 方法二:冲量定理.根据安培力的公式可得F = -(BL )2v/R ,负号表示安培力与速度的方向相反.因此2()d d BL x F t R-=,根据冲量定理得d 0tF t mv=-⎰,即:杆所受的冲量等于杆的动量的变化量.积分后可得02()mv Rx BL =. (2)方法一:焦耳定律.杆在移动过程中产生的焦耳热元为222()d d d d BLv Q I R t t t R R ε===220()2()exp[]d BLv BL t t R mR=-整个运动过程中产生的焦耳热为2200()2()exp[]d BLv BL Q t t R mR ∞=-⎰222002()exp[]22mv mv BL t mR ∞-=-=, 即:焦耳热是杆的动能转化而来的.方法二:动能定理.由于I = ε/R ,其中ε = BLv = BL d x /d t ,而安培力为F = -ILB ,负号表示安培力的方向与杆运动的方向相反.因此焦耳热元为d Q = I 2R d t = I εd t = IBL d x = -F d x .负号表示安培力做负功.根据动能定理,磁场的安培力对杆所做的功等于杆的动能的增量,因此安培力在杆的整个运动过程中所做的功为201d (0)2W F x mv =-=--⎰, 所以产生的焦耳热为212Q W mv ==. [小结]在求杆的运动距离时,用冲量定理可避免解微分方程.在求焦耳热时用动能定理可避免积分运算.16.4 如图所示,质量为m 、长度为L 的金属棒AB 从静止开始沿倾斜的绝缘框架滑下.磁感应强度B 的方向竖直向上(忽略棒AB 与框架之间的摩擦),求棒AB 的动生电动势.若棒AB 沿光滑的金属框架滑下,设金属棒与金属框组成的回路的电阻R 为常量,棒AB 的动生电动势又为多少?[解答](1)棒的加速度为a = g sin θ,经过时间t ,棒的速度为v = at = (g sin θ)t ,而切割磁力线的速度为v ⊥ = v cos θ,所以棒的动生电动势为ε = BLv ⊥ = BLg (sin θcos θ)t = BLg (sin2θ)t /2.(2)设棒运动时间t 时的速度为v ,则动生电动势为图16.4ε = BLv cos θ,电流为I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v cos θ/R ,其方向水平向右.安培力沿着斜面向上的分量为F' = F cos θ,其方向与速度的方向相反.取速度的方向为正,根据牛顿第二定律ΣF = ma 得速度的微分方程为2(cos )d sin d BL v vmg m R tθθ-=,即 2d d sin (cos )mRt v mgR BL vθθ=-, 方程可化为222d[sin (cos )]d (cos )sin (cos )mR mgR BL v t BL mgR BL vθθθθθ--=-. 积分得方程的通解为22ln[sin (cos )](cos )mR t mgR BL v C BL θθθ-=-+.根据初始条件,当t = 0时,v = 0,可得常量2ln(sin )(cos )mRC mgR BL θθ=, 方程的特解为22[sin (cos )]ln (cos )sin mR mgR BL v t BL mgR θθθθ--=, 棒的速度为22sin (cos ){1exp[]}(cos )mgR BL v t BL mRθθθ=--, 动生电动势为cos BLv εθ=2(cos )tan {1exp[]}mgR BL t BL mRθθ=--. [讨论]当时间t 趋于无穷大时,最终速度为2sin (cos )mgR v BL θθ=,最终电动势为tan mgRBL εθ=, 最终电流为tan mgI BLθ=. 另外,棒最终做匀速运动,重力做功的功率等于感生电流做功的功率,重力做功的功率为P = mg sin θv ,感生电流做功的功率为222(cos )BLv P I R R Rεθ===, 两式联立也可得2sin (cos )mgR v BL θθ=,由此可以求出最终电动势和电流.[注意]只有当物体做匀速运动时,重力所做的功才等于电流所做的功,否则,重力还有一部分功转换成物体的动能.16.5 电磁涡流制动器是一个电导率为ζ,厚度为t 的圆盘,此盘绕通过其中心的垂直轴旋转,且有一覆盖小面积为a 2的均匀磁场B 垂直于圆盘,小面积离轴r (r >>a ).当圆盘角速度为ω时,试证此圆盘受到一阻碍其转动的磁力矩,其大小近似地表达为M ≈B 2a 2r 2ωζt .[解答]电导率是电阻率的倒数ζ = 1/ρ.不妨将圆盘与磁场相对的部分当成长、宽和高分别为a 、a 和t 的小导体,其横截面积为S = at ,电流将从横截面中流过,长度为a ,因此其电阻为1l R S tρσ==. 宽为a 的边扫过磁场中,速度大小为v = r ω,产生的感生电动势为ε = Bav = Bar ω,圆盘其他部分的电阻远小于小导体的电阻,因此通过小导体的电流强度为I ≈ε/R = Bar ωζt ,所受的安培力为F = IaB ≈B 2a 2r ωζt ,其方向与速度方向相反.产生的磁力矩为M = Fr ≈B 2a 2r 2ωζt .其方向与角速度的方向相反.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金图16.5t属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x = 0,求下列两情形,框架内的感应电动势εi .(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt . [解答](1)经过时间t ,导体杆运动的距离为X = vt ,杆的有效长度为l = X tan θ = v (tan θ)t , 动生电动势为εi = Blv = Bv 2(tan θ)t . (2)导体杆在t 时刻运动到X 处,在三角形中取一个面积元 d S = y d x , 由于y = x tan θ,所以d S = x tan θd x ,通过该面元的磁通量为d Φ = B d S = K cos ωt tan θx 2d x ,通过三角形的磁通量为20tan cos d XK t x x Φθω=⎰31tan cos 3K tX θω=331tan cos 3Kv t t θω=,感应电动势为d d i t Φε=-323tan (3cos sin )3kv t t t t θωωω=--,即: 32tan (sin 3cos )3i kv t t t t θεωωω=-.[注意]公式B = Kx cos ωt 中的x 是场点到O 点的距离,不一定是杆运动的距离,为了区别两个距离,杆的距离用X 表示.16.7 如图所示的回路,磁感应强度B 垂直于回路平面向里,磁通量按下述规律变化Φ = 3t 2 + 2t + 1,式中Φ的单位为毫韦伯,t 的单位为秒.求:(1)在t = 2s 时回路中的感生电动势为多少? (2)电阻上的电流方向如何?[解答](1)将磁通量的单位化为韦伯得 Φ = (3t 2 + 2t + 1)/103,感生电动势大小为ε = |d Φ/d t | = 2(3t + 1)/103.t = 2s 时的感生电动势为1.4×10-2(V).(2)由于原磁场在增加,根据楞次定律,感应电流所产生的磁场的方向与原磁场的方向相反,所以在线圈中感生电流的方向是逆时针的,从电阻的左边流向右边.O图16.6图16.716.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何?[解答]环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+, 当x >>R 时,磁感应强度为2032IRB xμ≈.小线圈的面积为S = πr 2,通过的磁通量为2203π2IR r BS x μΦ=≈, 当小线圈运动时,感应电动势为22043πd d 2IR r vt xμΦε=-≈, 当x = NR 时,感应电动势为20423π2Ir vN Rμε≈. 感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同.16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0).[解答]经过时间t ,导体杆运动的距离为 x = vt , 扫过的面积为 S = Lx = Lvt ,通过此面积的磁通量为Φ = B ·S = BS cos θ = Lvkt 2/2. 感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电动势的方向是顺时针的.16.10 长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.[解答]电流I 在r 处产生的磁感应强度为图16.8图16.902πIB rμ=,穿过面积元d S = b d r 的磁通量为0d d d 2πIbB S r rμΦ==,穿过矩形线圈ABCD 的磁通量为001d ln()2π2πx axIbIb x a r r xμμΦ++==⎰, 回路中的电动势为d d t Φε=-0d 11d [ln()()]2πd d b x a I x I x t x a x tμ+=-+-+ 00cos [ln()sin ]2π()I bx a av tt x x x a μωωω+=++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势. *16.11 如图,一个矩形的金属线框,边长分别为a和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为ε = B 0av .当线框中的电流为i 时,产生的自感电动势的大小为d d L i Ltε=. 根据欧姆定律得ε + εL = iR ,由于不计电阻,所以有0d 0d iB av Lt+=. ① 右边所受的力为F = iaB 0,根据牛顿第二定律得0d d v iaB mt=, 微分得图16.10图16.11202d d d d i vaB m t t=, ②联立①和②式得微分方程2202()d 0d aB v v t mL+=, 这是简谐振动的微分方程,其通解为v A B =+.当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /dt )A B =-+,当t = 0时,a t = 0,所以B = 0.速度方程为0v v =. 由于v = d x /d t ,所以0d d x v t v t ==⎰⎰00v C =+. 当t = 0时,x = 0,所以C = 0,所以位移方程为0x v =.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t = 10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b 为圆心)?设ab = 10cm ,bc = 15cm . [解答](1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。
第16章习题解答【16-1】解:取固定坐标xOy ,坐标原点O 在水面上(图题16-1示)设货轮静止不动时,货轮上的B 点恰在水面上,则浮力的增量为S ρgy 。
该力与位移y 成正比,方向指向平衡位置,故货轮的自由振动是简谐振动,其运动方程为:0gy S dt yd M 22=+ρ0y MgS dt y d 22=+ρ 根据简谐振动的动力学方程,有:Mg S 2ρω=故s 35.6s 8.910102101022g S M 22T 3334=⨯⨯⨯⨯⨯===πρπωπ【16-2】解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:m 1.0ksin m g l 0==θ(1)(1)A 物体共受三力;重力mg ,支持力N ,张力T 。
不计滑轮质量时,有:kx T =列出A 在任一位置x 处的牛顿方程式:220dt xd m )x l (k sin mg T sin mg =+-=-θθ将①式代入上式,整理后得:0x mkdt x d 22== 故物体A 的运动是简谐振动,且s rad mk/7==ω 由初始条件⎩⎨⎧=-=0υl x ,求得:⎩⎨⎧===πϕml A 1.00,故物体A 的运动方程为:x=0.1cos(7t+π)m(2)当考虚滑轮质量时,两段绳子中张力数值不等,如图题16-2(c )所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221dtxd m T sin mg =-θ (2)对滑轮列出转动方程为:222r2r 1dt xd Mr21r a )Mr 21(J T T ===-β (3)式中,T 2=k(l 0+x) (4) 将③、④代入式②式,有:220dtxd )m 2M ()x l (k sin mg +=+-θ整理得:0x )m 2M (kdt x d 22=++ 可见,物体A 仍作简谐振动,此时圆频率为:s /ra d 7.5m 2Mk =+=ω由于初始条件:x 0=-l 0,υ0=0可知,A 、ϕ不变,故物体A 的运动方程为: x=0.1cos(5.7t+π)m由以上可知:弹簧在斜面上的运动,仍为谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率。