M2 - 基础统计学 - 进阶篇
- 格式:ppt
- 大小:3.86 MB
- 文档页数:76
高中数学必修2《统计》知识点讲义一、引言高中数学必修2中的《统计》部分是我们在日常生活中应用广泛的数学知识。
通过学习统计,我们可以更好地理解世界,做出更明智的决策。
本篇文章将详细讲解统计部分的重要知识点。
二、知识点概述1、描述性统计描述性统计是统计学的基石,它主要研究如何用图表和数值来描述数据的基本特征。
这部分内容将介绍如何制作频数分布表、绘制条形图、饼图和折线图等。
2、概率论基础概率论是统计学的核心,它研究随机事件发生的可能性。
在本部分,我们将学习如何计算事件的概率,了解独立事件与互斥事件的概念。
3、分布论基础分布论是研究随机变量及其分布的数学分支。
本部分将介绍如何计算随机变量的期望和方差,了解正态分布的特点及其在日常生活中的应用。
三、知识点详解1、描述性统计本文1)频数分布表:频数分布表是一种用于表示数据分布情况的表格,其中每一列表示数据的一个取值,每一行表示该取值的频数。
通过频数分布表,我们可以直观地看到数据分布的集中趋势和离散程度。
本文2)图表:图表是描述数据的一种有效方式。
通过绘制条形图、饼图和折线图,我们可以直观地展示数据的数量关系和变化趋势。
2、概率论基础本文1)概率:概率是指事件发生的可能性,通常用P表示。
P(A)表示事件A发生的概率,其值在0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。
本文2)独立事件与互斥事件:独立事件是指两个事件不相互影响,即一个事件的发生不影响另一个事件的概率;互斥事件是指两个事件不包括共同的事件,即两个事件不可能同时发生。
3、分布论基础本文1)期望:期望是随机变量的平均值,通常用E表示。
E(X)表示随机变量X的期望,它是所有可能取值的概率加权平均值。
期望对于预测随机变量的行为非常有用。
本文2)方差:方差是衡量随机变量取值分散程度的指标,通常用D表示。
D(X)表示随机变量X的方差,它是每个取值与期望之差的平方的平均值。
方差越大,随机变量的取值越分散;方差越小,取值越集中。
M2测度指标1. 简介在统计学中,M2测度指标是用来衡量两个概率分布之间的相似性的一种方法。
它是一种非参数方法,可以用于比较任意两个概率分布,无论它们的形状如何。
M2测度指标基于Kolmogorov-Smirnov(KS)测试统计量,但相比于KS测试统计量,M2测度指标对于小样本数据和离散数据具有更好的鲁棒性。
因此,在许多实际应用中,M2测度指标被广泛应用于评估模型拟合优度、比较不同模型的性能等领域。
2. M2测度指标的定义给定两个概率分布P和Q,它们的累积分布函数分别为F(x)和G(x),则M2测度指标可以通过以下公式计算得到:-G(x))^2dH(x))其中H(x)是一个函数,用于解决两个累积分布函数在某些点不可导的问题。
3. M2测度指标的性质M2测度指标具有以下性质:•非负性:M2测度指标的取值范围是非负实数。
•对称性:M2测度指标对于P和Q的顺序是不敏感的,即M2(P,Q) = M2(Q,P)。
•一致性:如果P和Q相等,则M2测度指标为0;如果P和Q完全不同,则M2测度指标趋向于无穷大。
4. M2测度指标的应用4.1 模型拟合优度评估在统计建模中,我们通常需要评估一个模型对观测数据的拟合程度。
M2测度指标可以用来衡量模型拟合优度,并与其他常用的统计检验方法进行比较。
通过计算观测数据与模型预测数据之间的M2测度指标,我们可以判断模型是否能够准确地描述观察到的数据。
较小的M2值表示模型与观察数据更加一致,而较大的M2值则表示模型与观察数据存在较大差异。
4.2 概率分布比较在概率论和统计学中,我们经常需要比较两个概率分布之间的相似性。
M2测度指标可以用来度量两个概率分布之间的差异程度。
通过计算两个概率分布的M2测度指标,我们可以判断它们在形状、位置和尺度上的差异。
较小的M2值表示两个概率分布更加相似,而较大的M2值则表示两个概率分布存在较大差异。
4.3 模型选择在模型选择过程中,我们通常需要比较不同模型之间的性能优劣。
必修2数学第九章统计知识点一、随机抽样。
1. 简单随机抽样。
- 定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤ N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
- 常用方法:抽签法和随机数法。
- 抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
- 随机数法:利用随机数表、随机数生成器或统计软件来产生随机数,根据随机数抽取样本。
2. 系统抽样。
- 定义:将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样。
- 步骤:- 先将总体的N个个体编号。
- 确定分段间隔k,对编号进行分段,当(N)/(n)(n是样本容量)是整数时,取k = (N)/(n);当(N)/(n)不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数N'能被n整除,这时k=(N')/(n)。
- 在第1段用简单随机抽样确定第一个个体编号l(l≤ k)。
- 按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l + k),再加k得到第3个个体编号(l+2k),依次类推,直到获取整个样本。
3. 分层抽样。
- 定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样。
- 步骤:- 根据已有的信息,将总体分成互不相交的层。
- 计算各层中个体的个数与总体个数的比。
- 按各层个体数占总体数的比确定各层应抽取的样本容量。
- 在每一层中进行简单随机抽样或系统抽样,获取相应的样本个体,合在一起得到分层抽样的样本。
- 特点:使样本具有较强的代表性,而且在各层抽样时,可灵活选用不同的抽样方法。
二、用样本估计总体。
《统计学基础》课后习题答案第一章课后练习题答案二、单项选择题1.C2.D3.D4.C5.C6.B7.C8.A9.D 10.B三、多项选择题1.ACE 2.AC 3.ABC 4.CD 5.BDE 6.ABCE 7.DE8.ACD 9.AE 10.BCDE四、判断题1.√2.√3.√4.√5.×6.×7.√8. √9. √第二章课后练习题答案二、案例分析题调查方案一般包括以下几个方面的内容。
一、确定调查目的调查目的是指某项调查需要摸清的情况和解决的问题。
明确地规定调查目的,是统计调查中最根本的问题。
二、确定调查对象与调查单位调查对象是指要调查的社会经济现象的总体,它是由性质相同的许多单位组成的集合体。
调查单位就是构成调查对象总体的个体单位,即标志的承担者。
确定调查对象,就是要确定被研究现象总体的范围,调查对象确定后,调查单位也就随之确定了。
除确定调查单位外,还需确定填报单位(又称报告单位)。
调查单位是调查登记标志的承担者,填报单位则是负责填写调查报告的单位。
确定调查单位,就是明确所要搜集的资料落实、依附于谁。
确定填报单位,则是为了明确谁来负责执行登记、填写、上报资料的工作。
三、确定调查项目和调查表(一)调查项目调查项目是指需要向调查单位调查的内容,也就是确定向调查单位登记些什么问题。
制定调查项目应注意以下几点:1.所选择的调查项目,必须是能够取得确切资料的,那些无法取得资料的项目就不能作为调查项目。
2.对每一调查项目应该有确切的涵义和统一的解释,以免调查人员或被调查者按照各自不同的理解进行回答。
3.各个调查项目之间应尽可能相互联系,彼此衔接,以便研究现象之间的相互联系和从动态上研究现象的发展变化规律。
还应该设置为了核对资料所必要的项目。
调查项目确定后,将各个调查项目按照一定的顺序排列在一定的表格上,就形成了调查表。
调查表是统计工作中搜集资料的基本工具。
(二)调查表调查表一般有表头、表体和表脚三部分组成。
统计学概论一、课程说明课程编号:046102课程性质:专业必修课适用专业:财经类统计学专业、管理类专业开设。
开课学期:一般可在第二学期开设。
学时与学分:课堂学时:32学时;上机实验:16学时;3学分。
先修课程:高等数学、西方经济学等相关课程。
二、开课目的统计学概论课程是国家教育部确定的高等院校财经类专业11门核心课程之一,是一门认识客观现象总体数量关系和方法论科学。
统计学是基于数据,利用统计理论与方法从数据中得到有关信息的分析工具,可用于经济、管理等各个研究领域。
统计学概论是财经类统计学专业的专业必修课,管理类专业的专业选修课。
通过本课程的学习,学生可以学到运用统计数据研究经济管理问题的实证分析技能,建立定性分析和定量分析相结合的研究思想;使学生能够比较系统地掌握统计学的基本理论、基本知识和基本方法,为进一步学习专业课及各分支学科打下基础。
通过本课程的学习,使学生明确统计的特点和作用,理解并记忆统计学的有关基本概念和范畴,掌握并能运用统计基本方法和技术,能进行统计设计,统计调查、统计整理和统计分析、以提高科学研究和实际工作能力。
设置本课程的总体目标是:1.使学生系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想。
2.使学生掌握各种统计方法的不同特点、应用条件及适用场合。
3.为进一步学习专业课程打好基础。
4.培养学生具有搜集数据、整理数据,运用统计分析方法,解决实际问题的能力。
使学生能够利用统计理论与方法解决经济管理及日常生活学习中的实际问题。
第三节指数体系一、总量指数与指数体系总量指数与各因素指数的关系。
指数体系的构成。
二、指数体系的分析与应用加权综合指数体系及其应用。
简单介绍加权平均指数体系及应用、平均指标指数体系及应用。
第四节几种常用的价格指数实际中常见的几种指数,如零售价格指数、消费价格指数、生产价格指数、股票价格指数等。
六、教学学时分配统计学概论教学环节与学时分配表七、推荐教材与参考书目(一)建议教材1.向蓉美、王青花主编的《统计学导论》(第二版)西南财经大学出版社出版,2008 年11月第1次印刷2.贾俊平编著的《统计学》(第二版),中国人民大学出版社出版,2006年9月第一次印(二)总参考书目1.曾五一、肖红叶主编,《统计学导论》,科学出版社2006年版。
基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =对称的钟形曲线;②X =时,f(X)取得最大值;③有两个参数,位置参数和形态参数;④曲线下面积为1,区间±的面积为68.27%,区间±1.96的面积为95.00%,区间±2.58的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称; ②形态取决于自由度,越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高; ③当逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。
性患者25例,女性患者15例;其年龄为51~80岁,平均年龄为(63.90±4.74)岁;其中,胃癌患者有20例,AEG伴肝转移患者有20例。
两组患者的一般资料相比,差异无统计学意义(P>0.05)。
1.2 方法对两组患者均进行手术治疗。
对于两组患者中的胃癌患者,根据其病情对其进行全胃切除术+食管空肠吻合术、近端胃部分切除术+胃空肠吻合术或远端胃部分切除术+胃空肠吻合术。
对于两组患者中AEG伴肝转移患者,根据其肿瘤的Siewert分型为其选择合适的手术方式。
对于Siewert分型为Ⅰ型AEG(远端食管癌)的患者,对其进行开胸手术(食管次全切除联合近端胃大部切除术)联合开腹手术(肝部分切除术)。
对于Siewert分型为Ⅱ型AEG(贲门癌)和Ⅲ型AEG(贲门下癌)患者,对其进行经腹全胃切除术+食管空肠吻合术+肝部分切除术。
术后用卡培他滨、奥沙利铂对两组患者进行化疗,每21 d为一个化疗周期。
在此基础上,阿帕替尼对阿帕替尼组患者进行靶向治疗,方法是:从术后第1天开始,让患者口服此药,每次服250~800 mg,每天服1次,共用药4周。
1.3 疗效判定标准与观察指标比较两组患者的近期疗效及用药后其发生不良反应的情况。
将两组患者的近期疗效分为完全缓解、部分缓解、控制和进展。
完全缓解:治疗后患者的靶病灶完全消失,且该疗效至少维持一个月。
部分缓解:治疗后患者靶病灶的最长径之和减少≥30%,且该疗效至少维持一个月。
进展:治疗后患者靶病灶的最长径之和增加≥20%或出现新病灶。
控制:治疗后患者的疗效介于部分缓解和进展之间,且该疗效至少维持一个月。
疾病的总缓解率=(完全缓解例数+部分缓解例数)/总例数×100%。
1.4 统计学方法用SPSS 22.0软件处理本研究中的数据,计数资料用%表示,用χ²检验,计量资料用均数±标准差(s±)表示,用t检验,P<0.05表示差异有统计学意义。
目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。
1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。
1.5举例说明总体、样本、参数、统计量、变量这几个概念。
1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。
1.8请举出统计应用的几个例子。
1.9请举出应用统计的几个领域。
1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。
要求:(1)描述总体和样本。
(2)指出参数和统计量。
(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。
1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。
回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。