2014年春概率统计A试卷B答案
- 格式:doc
- 大小:327.00 KB
- 文档页数:6
2014年历年概率汇编 答案20.湖北卷解:(1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4×0.93×0.1=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-800=4200,因此P (Y =4200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5000×2=10 000,因此P (Y =10 000)=P (X ≥80)= p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4200×0.2+10 000×③安装3台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5000-1600=3400,因此P (Y =3400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5000×2-800=9200,因此P (Y =9200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.由此得Y所以,E (Y )=3400×0.2+9200综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.四川卷17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 18.福建卷解:(1)设顾客所获的奖励额为X .(i)依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.16天津卷.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960, 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3), 所以随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.18.重庆卷解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384,P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.17.湖南卷解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=25,故所求的分布列为数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.17.安徽卷解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×1081+5×881=22481.16.北京卷解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 相互独立.根据投篮统计数据,P (A )=35,P (B )=25.故P (C )=P (AB )+P (AB ) =35×35+25×25 =1325. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.21.江西卷解:(1)当n =3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20(种),所以ξ的分布列为:E ξ=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为n -1,n ,n +1,…,2n -2.又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k 2k 种. 所以当n =2时,P (C )=46=23,当n ≥3时,P (C )=2⎝⎛⎭⎫2+∑n -2k =1C k 2k C n 2n.(3)由(2)得,当n =2时,P (C )=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ).理由如下:P (C )<P (C )等价于4(2+∑n -2k =1C k 2k )<C n2n ,①用数学归纳法来证明:(i)当n =3时,①式左边=4(2+C 12)=4(2+2)=16,①式右边=C 36=20,所以①式成立. (ii)假设n =m (m ≥3)时①式成立,即4⎝⎛⎭⎫2+∑m -2k =1C k 2k <C m 2m 成立,那么,当n =m +1时, 左边=4⎝⎛⎭⎫2+∑m +1-2k =1C k 2k=4⎝⎛⎭⎫2+∑m -2k =1C k 2k +4C m -12(m -1)<C m 2m +4Cm -12(m -1)=(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)!=(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)· 2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边, 即当n =m +1时,①式也成立.综合(i)(ii)得,对于n ≥3的所有正整数,都有P (C )<P (C )成立.18.辽宁卷解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15,P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率分别为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.X 的分布列为因为X ~B (3,0.6)(1-0.6)=0.72. 20.全国卷解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.18.山东卷解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3),则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15 =310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6. (2)由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ所以数学期望E ξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.19.陕西卷解:(1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6元/kg ”, 由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.P (X =4000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为(2)设C i 表示事件“第i 季利润不少于2000元”(i =1,2,3), 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.20.全国卷解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。
2014统计学试卷与答案一、填空题(每空1分,计10分)1、统计指标包括 、计算方法、空间限制、时间限制、具体数值和计量单位6个要素。
2、无论采用何种调查方法进行调查,首先都要制定 。
3、质量指标是反映 的指标。
4、8名队员的身高(单位:CM )由低到高排序为:181,182,182,183,184,185,186,186,身高的中位数是 CM 。
5、假定中国和美国的国民年龄方差相同,现在各自重复随机抽样获取1%的公民来分别估计两个国家国民的平均年龄,其他条件相同的情况下,哪个国家国民平均年龄的估计误差会较小一些 。
6、变量之间完全相关,则其相关系数为 。
7、若逐期增长量每年相等且为正数,则各年的环比发展速度是年年 。
(上升,不变,下降)。
8、回归分析中OLS (普通最小二乘法)的原理是 。
9、编制综合指数的特点是 。
10、拉氏指数是把同度量因素的时间固定在 的一种综合指数形式。
二、判断题(每题1分,计10分,请填入“√”或“⨯”)( )1、数量指标根据数量标志计算而来,质量指标根据品质标志计算而来;( )2、普查是全面调查,抽样调查是非全面调查,所以普查比抽样调查准确;( )3、凡是离散型变量都适合编制单项式数列; ( )4、任何变量数列都存在众数;( )5、如果o e m m x <<,则变量分布为左偏; ( )6、判定系数越大,估计标准误就越大;( )7、正相关是指两个变量的数量变动方向都是上升的;( )8、统计的本质就是关于为何统计,统计什么和如何统计的思想; ( )9、两个总量指标时间数列相对比得到的时间数列一定是相对数时间数列;( )10、同度量因素在起到同度量的同时,还具有一定的权数作用。
三、单项选择题(每题1分,计10分) 1、统计学的研究对象是( )。
A 、各种现象的内在规律 B 、各种现象的数量方面 C 、统计活动过程 D 、总体与样本的关系2、以产品的等级来衡量某种产品的质量好坏,则该产品等级是( )。
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
2014年全国各地高考试题分类汇编(理数概率与统计(解答题(2014安徽理数 17. (本小题满分 12分甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5局仍未出现连胜, 则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 23,乙获胜的概率为 13,各局比赛结果相互独立. (1求甲在 4局以内(含 4局赢得比赛的概率;(2记 X 为比赛决出胜负时的总局数,求 X 的分布列和均值(数学期望.解:用 A 表示“ 甲在 4局以内 (含 4局赢得比赛” , k A 表示“第 k 局甲获胜” , k B 表示“ 第 k 局乙获胜” 则 (23k P A =, (13k P B =, 1,2,3,4,5. k = (1 ((((121231234P A P A A P B A A P AB A A =++ (((((((((121231234P A P A P B P A P A P A P B P A P A =++ 2222122125633333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪⎪⎪⎝⎭⎝⎭⎝⎭.(2 X 的可能取值为 2,3,4,5. (((((((12121212529P X P A A P B B P A P A P B P B ==+=+=, (((((((((123123123123239P X P B A A P A B B P B P A P A P A P B P B ==+=+=, (((123412344P X P AB A A P B A B B ==+((((((((123412341081 P A P B P A P A P B P A P B P B =+=, ((((85123481P X P X P X P X ==-=-=-==, 故 X 分布列为52108234599818181EX =⨯+⨯+⨯+⨯=.(2014北京理数 16:(1从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过的概率.(2从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过 6. 0,一场不超过 6. 0的概率.(3记 x 是表中 10个命中次数的平均数,从上述比赛中随机选择一场,记 X 为李明在这比赛中的命中次数,比较 EX 与 x 的大小. (只需写出结论解:(1 根据投篮统计数据, 在 10场比赛中, 李明投篮命中率 0.6的场次有 5场, 分别是主场 2, 主场 3, 主场 5, 客场 2,客场 4.所以在随机选择的一场比赛中,李明的投篮命中率超过 0.6的概率是 0.5.(2设事件 A 为“ 在随机选择的一场主场比赛中李明的投篮命中率超过0.6” ,事件 B 为“ 在随机选择的一场客场中,李明的投篮命中率一场超过0.6” ,事情 C 为“ 在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过 0.6,一场不超过0.6” .则 C =, A , B 独立.根据投篮统计数据, (35P A =, (25P B =. (((P C P P =+332213555525=⨯+⨯=. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过 0.6,一场不超过 0.6的概率为1325. (3 EX =.(2014大纲理数 20. (本小题满分 12分设每个工作日甲、乙、丙、丁 4人需使用某种设备的概率分别为 0.6, 0.5, 0.5, 0.4,各人是否需使用设备相互独立. (1求同一工作日至少 3人需使用设备的概率; (2 X 表示同一工作日需使用设备的人数,求 X 的数学期望.解:记 i A 表示事件:同一工作日乙、丙中恰有 i 人需使用设备, 0,1, 2, i =, B 表示事件:甲需使用设备, C 表示事件:定需使用设备, D 表示事件:同一工作日至少 3人需使用设备.(1 122D A B C A B A B C=⋅⋅+⋅+⋅⋅, (0.6P B =, (0.4P C =, (122C 0.5i P A =⨯, 0,1, 2, i = 所以 ((((12212P D P A B C A B A B C P A B C P A B =⋅⋅+⋅+⋅⋅=⋅⋅+⋅+(2P A B C ⋅⋅=((((((((1220.31P A P B P C P A P B P A P B P C ++=.(2 X 的可能取值为 0, 1, 2, 3, 4,则 (((((((200010.60.510.40.06P X P B A C P B P A P C ==⋅⋅==-⨯⨯-=,((0011P X P B A C B A C B A C ==⋅⋅+⋅⋅+⋅⋅(((((((((001P B P A P C P B P A P C P B P A P C =++((((2220.60.510.410.60.50.410.620.510.4=⨯⨯-+-⨯⨯+-⨯⨯⨯-0.25=, (((((22240.50.60.40.06P X P A B C P A P B P C ==⋅⋅==⨯⨯=, (((340.25P X P D P X ==-==,(((((210134P X P X P X P X P X ==-=-=-=-=10.060.250.250.06=----=0.38,数学期望 ((((00112233EX P X P X P X P X =⨯=+⨯=+⨯=+⨯=+(440.2520.3830.2540.062P X ⨯==+⨯+⨯+⨯=.(2014福建理数 18. (本小题满分 13分为回馈顾客, 某商场拟通过摸球兑奖的方式对 1000位顾客进行奖励, 规定:每位顾客从一个装有 4个标有面值的球的袋中一次性随机摸出 2个球, 球上所标的面值之和为该顾客所获的奖励额. (1若袋中所装的 4个球中有 1个所标的面值为 50元,其余 3个均为 10元,求: ①顾客所获的奖励额为 60元的概率;②顾客所获的奖励额的分布列及数学期望;(2商场对奖励总额的预算是 60000元,并规定袋中的 4个球只能由标有面值 10元和 50元的两种球组成,或标有面值 20元和 40元的两种球组成. 为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解:(1设顾客所获的奖励额为 X .(i 依题意,得 (111324C C 160C 2P X ===,即顾客所获的奖励额为 60元的概率为 12. (ii 依题意,得 X 的所有可能取值为 20, 60. (1602P X ==, (2324C 120C 2P X ===, 即 X 的分布列为所以顾客所获的奖励额的期望为 (200.5600.540EX =⨯+⨯=(元. (2 根据商场的预算, 每个顾客的平均奖励额为 60元. 所以, 先寻找期望为 60元的可能方案. 对于面值由 10元和 50元组成的情况,如果选择 (10,10,10,50的方案,因为 60元是面值之和的最大值,所有期望不可能为 60元;如果选择 (50,50,50,10的方案,因为 60元是面值之和的最小值,所以期望也不可能为 60元,因此可能的方案是 (10,10,50,50,记为方案 1.对于面值由 20元和 40元组成的情况,同理可排除 (20,20,20,40和(40,40,40,20的方案,所以可能的方案是 (20,20,40,40,记为方案 2. 以下是对两个方案的分析:对于方案 1,即方案 (10,10,50,50,设顾客所获得奖励额为 1X , 则 1X 的分布列为 1X 的期望为 (1121206010060636E X =⨯+⨯+⨯=, 1X 的方差为 ((((21121160020606060100606363D X =-⨯+-⨯+-⨯=. 对于方案 2,即方案 (20,20,40,40,设顾客所获得奖励额为 2X , 则 2X 的分布列为 2X 的期望为 (212140608060636E X =⨯+⨯+⨯=, 2X 的方差为 ((((22221214004060606080606363D X =-⨯+-⨯+-⨯=. 由于两种方案的奖励额的期望都符合要求,但方案 2奖励额的方差比方案 1的小,所以应该选择方案 2. 注:第(2问,给出方案 1或方案 2的任一种方案,并利用期望说明所给方案满足要求,给 3分; 进一步比较方差,说明应选择方案 2,再给 2分. (2014广东理数 17. (13分随机观测生产某种零件的某工厂 25名工人的日加工零件数(单位:件 ,获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:(1 确定样本频率分布表中 121, , n n f 和 2f 的值; (2根据上述频率分布表,画出样本频率分布直方图; (3根据样本频率分布直方图,求在该厂任取 4人,至少有 1人的日加工零件数落在区间 (]30,35的概率. 解:(1 17n =, 22n =, 10.28f =, 20.08f =. (2样本频率分布直方图如图所示(3根据样本频率分布直方图,得每人的日加工零件数落在区间 (]30,35的概率为0.2, 设所取的 4人中,日加工零件数落在区间 (]30,35的人数为ξ, 则(4,0.2B ξ, (((4110110.210.40960.5904P P ξξ=-==--=-=… ,所以 4人中,至少有 1人的日加工零件数落在区间 (]30,35的概率约为 0.5904.(2014湖北理数 20. (本小题满分 12分计划在某水库建一座至多安装 3台发电机的水电站,过去 50年的水文资料显示, 水库年入流量 X (年入流量:一年内上游来水与库区降水之和, 单位:亿立方米都在 40以上. 其中,不足 80的年份有 10年,不低于 80且不超过 120的年份有 35年,超过 120的年份有 5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1求未来 4年中,至多 1年的年入流量超过 120的概率;(2X若某台发电机运行,则该台年利润为万元;若某台发电机未运行,则该台年亏损万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:(1依题意, (11040800.250p P X =<<==, (235801200.750p P X ===剟 , (351200.150p P X =>==.由二项分布,在未来 4年中至多有 1年的年入流量超过 120的概率为((43430143433991C 1C 140.9477101010p p p p ⎛⎫⎛⎫=-+-=+⨯⨯= ⎪⎪⎝⎭⎝⎭.(2记水电站年总利润为 Y (单位:万元①安装 1台发电机的情形. 由于水库年人流量总大于 40, 故一台发电机运行的概率为 1, 对应得年利润 5000Y =,(500015000E Y =⨯=.0000②安装 2台发电机的情形.依题意,当 4080X <<时,一台发电机运行,此时50008004200Y =-=,因此 ((1420040800.2P Y P X p ==<<==;当80X … 时,两台发电机运行, 此时 5000210000Y =⨯=, 因此 ((2310000800.8P Y P X p p===+=… ; 由此得 Y 的分布列如下: 所以, (42000.2100000.88840EY =⨯+⨯=.③安装 3台发电机的情形.依题意,当 4080X <<时,一台发电机运行,此时500016003400Y =-=,因此((1340040800.2P Y P X p ==<<==; 当 80120X 剟时, 两台发电机运行, 此时500028009200Y =⨯-=,因此 ((29200801200.7P Y P Xp ====剟 ;当 120X >时,三台发电机运行,此时 5000315000Y =⨯=,因此 ((3150001200.1PY P X p ==>==,由此得 Y 的分部列如下: 所以, (34000.292000.7150000.18620E Y =⨯+⨯+⨯=.综上,欲使水电站年总利润的均值达到最大,应安装发电机 2台.(2014湖南理数 17. 某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和 35,现安排甲组研发新产品 A ,乙组研发新产品 B .设甲,乙两组的研发是相互独立的. (1求至少有一种新产品研发成功的概率;(2若新产品 A 研发成功,预计企业可获得 120万元;若新产品 B 研发成功,预计企业可获得利润 100万元, 求该企业可获得利润的分布列和数学期望.解:记 E ={甲组研发新产品成功 }, F ={乙组研发新产品成功 },由题设知 (23P E =, (13P E =, (35P F =, (25P F =,且事件 E 与 F , E 与 F , E 与 F , E 与 F 都相互独立. (1记 H ={至少有一种新产品研发成功 },则 H EF =,于是 (((1223515P H P E P F ==⨯=, 故所求的概率为 ((213111515P H P H =-=-=. (2设企业可或利润为 X (万元 ,则 X 的可能取值为 0, 100, 120, 220,因为 ((12203515P X P EF ===⨯=, ((1331003515P X P EF ===⨯=,((2241203515P X P EF ===⨯=, ((236220P X P EF ===⨯=.故所求的分布列为数学期望为 (2321000100120220140151515151515E X =⨯+⨯+⨯+⨯===. (2014江苏 22. (本小题满分 10 分盒中共有 9个球,其中有 4个红球、 3个黄球和 2个绿球, 这些球除颜色外完全相同. (1从盒中一次随机取出 2个球, 求取出的 2个球颜色相同的概率 P ;(2 从盒中一次随机取出 4个球, 其中红球、黄球、绿球的个数分别记为 1x , 2x , 3x , 随机变量 X 表示 1x ,2x , 3x 中的最大数. 求 X 的概率分布和数学期望 (E X .解:(1取到的 2个颜色相同的球可能是2个红球、 2个黄球或 2个绿球,所以 22243229C C C 6315C 3618P ++++===. (2随机变量 X 所有可能取值为 2, 3, 4. {}4X =表示的随机事件是“ 取到的 4个球是 4个红球” , 故 (((1311121341P X P X P X ==-=-==--=.所以随机变量 X 的概率分布如下表: 因此随机变量 X 的数学期望(1123414631269E X =⨯+⨯+⨯=.(2014江西理数 21. (本小题满分 14分随机将 (1, 2, , 2, 2n n n *⋅⋅⋅∈N …这 2n 个连续正整数分成 , A B 两组, 每组 n 个数, A 组最小数为 1a ,最大数为2a ; B 组最小数为 1b ,最大数为 2b ,记21a a ξ=-, 21b b η=-. (1当 3n =时,求ξ的分布列和数学期望;(2令 C 表示事件“ ξ与η的取值恰好相等” ,求事件 C 发生的概率 (P C ;(3对(2中的事件 C , C 表示 C 的对立事件,判断 (P C 和 (P 的大小关系,并说明理由.解:(1当 3n =时, ξ的所有可能取值为 2, 3, 4, 5.将 6个正整数平均分成 A, B 两组,不同的分组方法共有 36C 20=种,所以ξ的分布列为1331723455101052E ξ=⨯+⨯+⨯+⨯=.(2 ξ和η恰好相等的所有可能取值为 1n -, n , 1n +, … , 22n -.又ξ和η恰好相等且等于 1n -时,不同的分组方法有 2种; ξ和η恰好相等且等于 ((1,2,23n k k n n +=-… 时,不同的分组方法有 22C k k 种,所以当 2n =时, (4263P C ==,当3n … 时, (221222C C n k k k n nP C -=⎛⎫+ ⎪=∑.(3由(2知当 2n =时, (13P C =,因此 ((P C P C >,而当3n … 时, ((P C P C <.理由入下:((P C P C <等价于 222142C C n k nk n k -=⎛⎫+< ⎪⎝⎭∑.①用数学归纳法来证明:1当 3n =时,①式左边 ((1242C 42216=⨯+=⨯+=,①式右边 36C 20==,所以①式成立.2假设(3n m m =… 时①式成立,即 222142C C m k m k m k -=⎛⎫+< ⎪⎝⎭∑成立,那么,当1n m =+时, 左边 ((1221122221211142C 42C 4C C 4C m m k k m m m k k m m m k k +------==⎛⎫⎛⎫=+=++<+= ⎪⎪⎝⎭⎝⎭∑∑((2! 422! ! ! 1! 1! m m m m m m ⋅-+=--((((21222! 411! 1!m m m m m m +--<++ (((((((21121211222! 421C C 1! 1! 2121m m m m m m m m m m m m m m +++++-+=⋅<=+++-右边,即当 1n m =+时①式也成立. 综合 1, 2得,对于3n … 的所有正整数,都有 ((P C P C <成立.(2014辽宁理数 18. (本小题满分 12分一家面包房根据以往某面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1求在未来连续 3天里,有连续 2天的日销售量都不低于 100个且另一天的日销售量低于 50个的概率; (2 用 X 表示在未来 3天里日销售量不低于 100个的天数, 求随机变量 X 的分布列, 期望 (E X 及方差 (D X .解:(1设 1A 表示事件“ 日销售量不低于 100个” , 2A 表示事件“ 日销售量低于50个” , B 表示事件“ 在未来连续 3天里有连续 2天日销售量不低于 100个且另一天销售量低于 50个” .因此 ((10.0060.0040.002500.6P A =++⨯=, (20.003500.15P A =⨯=,(0.60.60.1520.108P B =⨯⨯⨯=.(2可能取的值为 0, 1, 2, 3,相应的概率为 ((303010.60.064P X C ==⋅-=,((21310.610.60.288P X C ==⋅-=, ((22320.610.60.432P X C ==⋅-=, (33330.60.216P X C ==⋅=.分布列为因为 (3,0.6XB ,所以期望 (30.61.8E X =⨯=,方差 ((30.610.60.72D X =⨯⨯-=.(2014山东理数 18. (本小题满分 12分乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域 , A B ,乙被划分为两个不相交的区域 , C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在 C 上记 3分,在D 上记 1分,其他情况记 0分.对落点在 A 上的来球,队员小明回球的落点在 C 上的概率为12,在 D 上的概率为 13;对落点在 B 上的来球,小明回球的落点在 C 上的概率为 15,在 D 上日销售量 /个的概率为35.假设共有两次来球且落在 , A B 上各一次,小明的两次回球互不影响.求: (1小明两次回球的落点中恰有一次的落点在乙上的概率; (2两次回球结束后,小明得分之和ξ的分布列与数学期望.解:(1记 1A 为事件“ 小明对落点在 A 上的来球回球的得分为 i 分” (0,1,3i =, 则(312P A =, (113P A =, (01111236P A =--=;记 i B 为事件“ 小明对落点在 B 上的来球回球的得分为 i 分” (0,1,3i =,则 (315P B =, (135P B =, (01311555P B =--=.记 D 为事件“ 小明两次回球的落点中恰有 1次的落点在乙上” .由题意, 30100103D A B A B A B A B =+++,由事件的独立性和互斥性,((((((3010010330100103P D P A B A B A B A B P A B P A B P A B P A B=+++=+++= ((((((((30100103P A P B P A P B P A P B P A P B +++=1111131132535656510⨯+⨯+⨯+⨯= 所以小明两次回球的落点中恰有 1次的落点在乙上的概率为 310.(2由题意,随机变量ξ可能的取值为 0, 1, 2, 3, 4, 6,由事件的独立性和互斥, 得((0011106530P P A B ξ===⨯=, ((((1001100111131135656P P A B A B P A B P A B ξ==+=+=⨯+⨯=,((111312355P P A B ξ===⨯=, ((((30033003111123255615P P A B A B P A B P A B ξ==+=+=⨯+⨯=,((((311331131311114253530P P A B A B P A B P A B ξ==+=+=⨯+⨯=, ((33111 62510P P A B ξ===⨯=.可得随机变量ξ的分布列为:所以数学期望 111211191012346306515301030E ξ=⨯+⨯+⨯+⨯+⨯+⨯=.(2014陕西理数 19. (本小题满分 12分在一块耕地上种植一种作物,每季种植成本为 1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:(1设 X 表示在这块地上种植 1季此作物的利润,求 X 的分布列;(2若在这块地上连续 3季种植此作物,求这 3季中至少有 2季的利润不少于2000元的概率. 解:(1设 A 表示事件“ 作物产量为300kg ” B表示事件“ 作物市场价格为 6元∕ kg ” ,由题设知 (0.5P A =, (0.4P B =,因为利润 =产量⨯市场价格 -成本,所以 X 所有可能的取值为 5001010004000⨯-=, 500610002000⨯-=, 3001010002000⨯-=, 30061000800⨯-=. (((((400010.510.40.3P X P A P B ===-⨯-=,(((((((200010.50.40.510.40.5P X P A P B P A P B ==+=-⨯+⨯-=,(((8000.50.40.2P X P A P B ===⨯=,所以 X 的分布列为(2设 i C 表示事件“ 第 i 季利润不少于 2000元” ,由题意知 1C , 2C , 3C 相互独立, 由(1知, ((((1400020000.30.50.81,2,3P C P X P X i ==+==+==, 3季的利润均不少于 2000元的概率为 ((((31231230.80.512C C C P C P C P C ===;3季中有 2季利润均不少于 2000元的概率为 (((212312312330.80.20.384P C C C P C C C P C C C ++=⨯⨯=,所以,这 3季中至少有 2季的利润不少于 2000元的概率为 0.5120.3840.896+=.(2014四川理数 17. 一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐, 要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得 20分,出现三次音乐获得100分,没有出现音乐则扣除 200分(即获得 200-分 .设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1设每盘游戏获得的分数为 X ,求 X 的分布列; (2玩三盘游戏,至少有一盘出现音乐的概率是多少?(3玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:(1 X 可能的取值为 10, 20, 100, 200-.根据题意,有 (121311310C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭,(212311320C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭, (3033111100C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭,(0303111200C 1228P X ⎛⎫⎛⎫=-=⨯⨯-= ⎪⎪⎝⎭⎝⎭.所以 X 的分布列为(2设“ 第 i 盘游戏没有出现音乐” 为事件 (1,2,3i A i =,则 ((((2312008 i P A P A P A P X ====-=. 所以, “ 三盘游戏中至少有一次出现音乐” 的概率为 (3 23115111118512512i P A A A ⎛⎫-=-=-=⎪⎝⎭. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3 X 的数学期望为 33115102010020088884EX =⨯+⨯+⨯-⨯=-.这表明,获得分数 X 的均值为负. 因此,多次游戏之后分数减少的可能性更大.(2014天津理数 16. (本小题满分 13分某大学志愿者协会有 6名男同学, 4名女同学. 在这 10名同学中,3名同学来自数学学院,其余 7名同学来自物理、化学等其他互不相同的 7个学院. 现从这 10名同学中随机选取 3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同 . (1求选出的 3名同学是来自互不相同学院的概率;(2设 X 为选出的 3名同学中女同学的人数,求随机变量 X 的分布列和数学期望. 解:(1设“ 选出的 3名同学是来自互不相同的学院” 为事件 A ,则(120337373104960C C C C P A C ⋅+⋅==.所以选出的 3名同学是来自互不相同的学院的概率为 4960. (2随机变量 X 的所以可能值为 0, 1, 2, 3. ((3463100,1,2,3K kC C P X k k C -===.所以随机变量 X 的分布列是随机变量 X 的数学期望(1131601236210305E X =⨯+⨯+⨯+⨯=. (2014新课标 1理数 18. (本小题满分 12分从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1求这 500件产品质量指标值的样本平均数 x 和样本方差 2s (同一组数据用该区间的中点值作代表 ; (2由频率分布直方图可以认为,这种产品的质量指标值 Z 服从正态分布 2(, N μδ,其中μ近似为样本平均数 x , 2δ近似为样本方差 2s . (i 利用该正态分布,求 (187.8212.2 P Z <<;(ii 某用户从该企业购买了 100件这种产品, 记 X 表示这 100件产品中质量指标值为于区间 2. 212, 8. 187(的产品件数,利用(i 的结果,求 EX .. 2.若 Z ~2(, N μδ,则( P Z μδμδ-<<+=0. 6826, (22 P Z μδμδ-<<+=0. 9544.解:(1抽取产品质量指标值的样本平均数和样本方差 2s 分别为1700.021800.091900.222000.332100.242200.08=⨯+⨯+⨯+⨯+⨯+⨯+2300.02200⨯=(((((222222300.02200.09100.2200.33100.24200.08s =-⨯+-⨯+-⨯+⨯+⨯+⨯+(2300.02150⨯=(2 (ⅰ由 (1 知 Z(200,150N , 从而 (187.8212.2 P Z <<=(20012.220012.2 0.6826P Z -<<+=(ⅱ由(ⅰ知,一件产品中质量指标值为于区间(187.8,212.2的概率为 0.6826依题意知(100,0.6826XB ,所以 1000.682668.26EX =⨯=(2014 新课标 2 理数)19.(本小题满分 12 分)某地区 2007 年至 2013 年农村居民家庭纯收入 y (单位:千元)的数据如下表:年份年份代号 t 人均纯收入y 2007 1 2.9 2008 2 3.3 2009 3 3.6 2010 4 4.4 2011 5 4.8 2012 6 5.2 2013 7 5.9 (1)求y 关于 t 的线性回归方程;(2)利用(1)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人均纯收入的变化情况,并预测该地区 2015 年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为: bt t y y i 1 i i n t t i 1 i n 2 ˆ.ˆ y bt ,a 解:7 4 , 7 1 y(1)由所给数据计算得 t 1 2 3 4 5 6, ti t 7 i 1 1 72.93.3 3.64.4 4.85.2 5.9 4.3, t i 1 7 i t yi y =2 9 4 1 0 1 4 9 283 1.4 2 1 1 0.7 +0 0.1+1 0.5+2 0.9+3 1.6 =14 , t yi y i ˆ b t i 1 7 i t i 1 7,所求回归方程为y ˆ 0.5t 2.3 .ˆ yt 2 14 ˆ 4.3 0.5 4 2.3bt 0.5 ,a 28 ˆ 0.5 0 ,故 2007 年至 2013 年该地区农村居民家庭人均纯收入逐年增加,平均每年增加 0.5 (2)由(1)知,b ˆ 0.5 9 2.3 6.8 千元,故预测该地区 2015 年千元.将 2015 年的年份代号 t 9 代入(I)中的回归方程,得 y 农村居民家庭人均纯收入为 6.8 千元.(2014 重庆理数)18.(本小题满分 13 分)一盒中装有 9 张各写有一个数字的卡片,其中 4 张卡片上的数字是1 , 3 张卡片上的数字是2 , 2 张卡片上的数字是3 ,从盒中任取 3 张卡片.(1)求所取 3 张卡片上的数字完全相同的概率; b c,(2) X 表示所取 3张卡片上的数字的中位数,求 X 的分布列与数学期望(注:若三个数 a, b, c 满足 a剟则称 b 为这三个数的中位数).解:(1)由古典概型中的概率计算公式知所求概率为 P 3 C3 5 4 C3 . 3 C9 84 (2) X 的所有可能值为 1,2,3,且 P X 1 1 C2 1 2 C7 ,故 X 的分布列为 3 C9 12 1 3 1 1 2 1 3 C2 C1 17 434C5 C4 3C4 C2 C3 C6 C3 ,, P X 2 3 3 C9 42 C9 84 P X 3 X P 1 2 3 从而 E X 1 17 43 1 47 2 3 . 42 84 12 28 11 17 42 43 84 1 1212。
2014年全国各地高考题————概率统计专题1.[2014·重庆卷] 某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150C.200 D.2502.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.3.[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p34.[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本5.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.6.[2014·天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.7.[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)8.[2014·北京卷] 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图(如图1-6).组号分组频数1[0,2) 62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)12图1-6(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;9.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .2010.[2014·江苏卷] 为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有____株树木的底部周长小于100 cm.11.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,图是根据试验数据制成的频率分布直方图,7 [12,14) 6 8 [14,16) 2 9 [16,18) 2 合计100已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ) A .6 B .8 C .12 D .1812.[2014·山东卷] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C 数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.13.[2014·陕西卷] 某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x -,s 2+1002B.x -+100,s 2+1002C.x -,s 2D.x -+100,s 214.[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.15.[2014·湖北卷] 根据如下样本数据x 3 4 5 6 7 8 y4.02.5-0.50.5-2.0-3.0得到的回归方程为y ^=bx +a ,则( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >016.[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品 合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2,P (χ2≥k )0.100 0.050 0.010 k2.7063.8416.63517.[2014·广东卷] 某车间20名工人年龄数据如下表: (1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄 的茎叶图;(3)求这20名工人年龄的方差.18.[2014·新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.19.[2014·全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.20.[2014·浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计2021.[2014·四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.22.[2014·广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.23.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3 C.p1<p3<p2D.p3<p1<p224.[2014·江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.25.[2014·江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于()A.118 B.19 C.16 D.11226.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15 B.25 C.35 D.4527.[2014·福建卷] 如图1-5所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图1-528.[2014·湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.45 B.35 C.25 D.1529.[2014·辽宁卷] 若将一个质点随机投入如图1-1所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )图1-1A.π2B.π4C.π6D.π830.[2014·重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)4.如图,在半径为R 的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是( )A .34 B .334 C .34π D .334π5.O 为边长为6的等边三角形内心,P 是三角形内任一点, 使得OP<3的概率是( ). A .123 B .93 C .123π D .93π 6、有五根细木棒,长度分别为1,3,5,7,9(cm).从中任取三根,能搭成三角形的概率是( ) A.203 B.52 C.51 D.10310.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )A.81B. 83C. 85D. 87 11、假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5 y11.55.58若由资料可知y 对x 呈线性相关关系,则y 与x 的线性回归方程y=bx+a 必过的点是( ) A .(2,2) B .(1,2) C .(3,4) D .(4,5)(第10题图)12.函数[]2()255f x x x x =--∈-,,,在定义域内任取一点0x ,使0()0f x ≤的概率是( ).15.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:则表中的=m ,=a 。
【最新整理,下载后即可编辑】广州大学2013-2014学年第二学期考试卷解答课程:概率论与数理统计(48学时)考试形式:闭卷考试学院:____________ 专业班级:__________ 学号:____________ 姓名:___________一、填空题(每小题3分,共30分)1.事件,,A B C中恰有一个不发生可表示为ABC ABC ABC++. 2.已知()0.2P A BP B A=0.5 .⋃=,则(|)P A=,()0.3P B=,()0.43.将4封信随机地投入4个邮筒中,则每个邮筒中各有一封信的概率为3/32 .4.袋中有红球6个,白球4个,从中取两次,每次任取一个,作不放回抽样. 则第二次取的是红球的概率为0.6 .5.甲、乙两人独立破译一密码,若两人各自独立译出密码的概率依次为0.6、0.5,则此密码被译出的概率为 0.8 . 6.设某种元件的寿命X (单位: 小时)具有概率密度2500,500()0,500x f x xx ⎧>⎪=⎨⎪≤⎩ 则元件寿命大于1000小时的概率为 0.5 .7.设随机变量X 的概率分布为1{}P X i n==,1,,i n =且数学期望()2014E X =,则n = 4027 .8.设()2E X =,()3E Y =,则(3210)E X Y +-= 2 .9.设随机变量X 与Y 相互独立,()()2D X D Y ==,则(2)D X Y -= 10 .10.设随机变量X 服从正态分布(1,4)N ,则{13}P X ≤≤= 0.341 . 参考数据:标准正态分布函数值(0.5)0.692Φ=,(1)0.841Φ=. 二、(每小题6分,共12分)1.10把钥匙中有2把能打开门,从中任意取2把,问能打开门的概率是多少?解:基本事件总数21045n C ==,------2分所求事件所含的基本事件数2011282817r C C C C =+=,------4分 所求概率为1745rP n==.------6分2.某射手每次射击命中目标的概率为0.9,现向一个目标射击至多5次,一但命中目标就停止射击,求射击次数X 的分布律. 解:1{}0.10.9k P X k -==⨯,1,2,3,4k =,------3分4{5}0.10.0001P X ===,-----5分 X 的分布律为------6分三、(本题满分8分)电路由电池A 与2个串联的电池B 及C 并联而成. 设电池A ,B ,C 损坏的概率分别为0.3,0.2,0.2,求电路发生间断的概率. 解:用A ,B ,C 分别表示事件“电池A ,B ,C 损坏”,则事件“电路发生间断”可表示为()A B C ⋃,------3分 所求概率为()()()()()P A B C P AB AC ⋃=⋃ ()()()P AB P AC P ABC =+-()()()()()()()0.108P A P B P A P C P A P B P C =+-=.------8分四、(本题满分8分)某厂有1A 、2A 、3A 三条流水线生产同一产品,已知每条流水线的产品分别占总量的40%,30%,30%,且这三条流水线的次品率分别为0.01,0.02,0.03. 现从出厂的产品中任取一件,求取到的是正品的概率.解:用i A 表示事件“产品是流水线i A 生产的”,B 表示事件“取到的是正品”,则1()0.4P A =,2()0.3P A =,3()0.3P A =,1(|)0.99P B A =,2(|)0.98P B A =,3(|)0.97P B A =,------4分由全概率公式,所求概率为112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.981=.---8分 五、(本题满分10分)设随机变量X 的概率密度为32,01()0,x x x f x ⎧+<<=⎨⎩其它 求X 的数学期望()E X 和方差()D X .解:()()d E X xf x x +∞-∞=⎰1301211(2)d 3515x x x x =+=+=⎰,------4分22()()d E X x f x x +∞-∞=⎰1230117(2)d 4312x x x x =+=+=⎰,------8分227121123()()[()]122252700D XE X E X =-=-=.------10分六、(本题满分12分)设随机变量X 与Y 相互独立,其概率分布分别为010.60.4iXp 010.30.7jY p(1)求X ,Y 的联合概率分布;(2)求随机变量Z X Y =+的分布函数. 解:(1)因X 与Y 相互独立,所以{,}{}{}P X a Y b P X a P Y b ====⋅=,------2分由此得X ,Y 的联合概率分布为------5分(2)Z 的取值为0,1,2,{0}{0,0}0.18P Z P X Y =====,{1}{0,1}{1,0}0.420.120.54P Z P X Y P X Y ====+===+=, {2}{1,1}0.28P Z P X Y =====.------8分Z 的分布函数为(){}F z P Z z =≤0,00.18,010.72,121,2z z z z <⎧⎪≤<⎪=⎨≤<⎪⎪>⎩------12分七、(本题满分10分)在次品率为0.2的一大批产品中,任意抽取400件产品,利用中心极限定理计算抽取的产品中次品件数在60与80之间的概率.2t x -~(,)X B n p ,400n =,0.2p =,------2分 由棣-拉定理,808X Y -==近似服从(0,1)N .------5分所求概率为{6080}P X ≤≤{2.50}P Y =-≤≤(0)( 2.5)≈Φ-Φ-(0)[1(2.5)]=Φ--Φ0.494=.------10分八、(本题满分10分) 设总体X 的概率密度函数1,01(,)0,x x f x λλλ-⎧<<=⎨⎩其它,其中0λ>是未知参数. 已知1,,n x x 是来自总体X 的一组样本观察值,求参数λ的最大似然估计值.解:似然函数为1()(,)ni i L f x λλ==∏,------2分易知()L λ的最大值点为111()ni i L x λλλ-==∏的最大值点,------4分。
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
浙江农林大学 2013 - 2014 学年第 二 学期考试卷(A 卷)课程名称 概率论与数理统计(A )课程类别:必修 考试方式:闭卷注意事项:1、本试卷满分100分.2、考试时间 120分钟.1.设随机变量~(2, ), Y ~(4, )X B p B p ,已知{}19P X ≥=,则{}1P Y ≥=( A ). A .6581 B .5681 C .8081D .1 2.设2~(25, 0.2), Y ~(, )X B N μσ,且()(), ()()E X E Y DX D Y ==,则Y 的密度函数()( C )p y =.A 22y-B 28y -C 2(5)8y --D 2(5)32y --3.()4, ()1, 0.6XY D X D Y ρ===,则(32)D X Y -=( C ). A .40B .34C .25.6D .17.64. 样本12(,,,)n X X X 取自标准正态分布(0,1)N ,X 为样本均值,及2S 为样本方差,则以下结果不成立的是( B ).A.~(0,1),1,2,,i X N i n =LB. ~(0,1)X N /~(1)S t n - D.221~()nii Xn χ=∑5. 样本12(,,,)n X X X L 取自总体X ,()E X μ=,2()D X σ=,则以下结论不成立的是( D ). A.i X ()均是μ的无偏估计; B.11ni i X X n ==∑是μ的无偏估计;学院: 专业班级: 姓名: 学号:装 订 线 内 不 要 答 题C.121()2X X +是μ的无偏估计;D. 111n i i X n =-∑是μ的无偏估计. 6. 假设检验中,显著性水平α的意义是( A )A. 0H 为真,经检验拒绝0H 的概率B. 0H 为真,经检验接受0H 的概率C. 0H 不真,经检验拒绝0H 的概率D. 0H 不真,经检验接受0H 的概率7. 对因子A 取r 个不同水平,因子B 取个不同水平,A 与B 的每种水平组合重复次试验后,对结果进行双因子有重复试验的方差分析,则以下关于各偏差平方和自由度的结论错误的是( D ).A. A 因子的偏差平方和A SS 的自由度为B. B 因子的偏差平方和B SS 的自由度为C. 交互作用的偏差平方和A B SS ⨯的自由度为(1)(1)r s --D. 误差平方和E SS 的自由度为(1)(1)(1)r s t ---8. 在线性模型01Y x ββε=++的相关性检验中,如果原假设01:0H β=被否定,则表明两个变量之间( D ). A .不存在任何相关关系B .不存在显著的线性相关关系C .不存在一条曲线ˆ()Yf x =能近似描述其关系1.在整数0至9中先取一数X 后放回再取一数Y ,则在(09)Y k k =≤≤的条件下,X 的分布律为1()(),0,1,910P X i Y k P X i i ====== . 2.设随机变量1234,,,X X X X 相互独立,且都服从正态分布2(,)(0)N μσσ>则12341()4X X X X +++服从的分布是2(,)4N σμ. 3.设,A B 互不相容件,且知11(),()42P A P B ==则()P A B = __1/2_____________. 4. 设总体(,1)X N μ:,μ是未知参数,12,X X 是样本,则11221ˆ33X X μ=+及21211ˆ22X X μ=+都是μ的无偏估计,但2ˆμ有效.5.在检验假设0H 的过程中,若检验结果是接受0H ,则可能犯第 二 类错误.1.已知某种材料的抗压强度2~(,)X N μσ,随机抽取10个试件进行抗压试验,由试验数得到的实验结果如下.(1)为了估计2σ的0.95的置信区间,活动表中,置信水平应填 0.95 ; (2)2σ的置信水平为0.95的置信区间为(586.7968382, 4133.662906) .2.为了检验甲乙两厂蓄电池的电容量是否有显著差异,随机地从甲乙两厂生产的蓄电池中抽取一些样本,用其数据得到实验结果如下表所示.(1)问题的假设为0:H 甲乙电池的电容量无差异,1:H 甲乙电池的电容量有差异; (2)由于(实验结果) P=0.410392>0.05 ,所以,在0.05的显著性水平,问题的结论为 甲乙电池的电容量无差异 .3.进行农业实验,选择四个不同品种的小麦其三块试验田,每块试验田分成四块面积相等的(1)在方差分析表中,缺失的品种自由度为 3 ,缺失的误差自由度为 6 . (2)由于(实验结果) P=0.013364<0.05 ,所以,在显著性水平=α0.05下,小麦品种对收获量的影响 显著 (是否显著). 4.下表是16只公益股票某年的每股帐面价值和当年红利,利用Excel 的数据分析功能得到的统计分析结果如下:(1)当年红利和每股帐面价值的回归方程为ˆ0.097409Yx =; (2) 回归系数的经济意义为 每股帐面价值增加1个单位,则当年红利增加 0.097409个单位;(3)若某公司股票每股帐面价值20.25元,估计当年红利约为 1.972532 .1 (6分).据调查一地区居民某重大疾病的发病率为0.0003,有一种非常有效的检验法可检查出该疾病,具体数据如下:95%的患病者检验结果为阳性,96%的未患病者检验结果为阴性.今有一人检查结果为“阳性”,问他确实患有这种重大疾病的可能性有多大? 解:记A={居民患某重大疾病},B={检查呈阳性},由题意有()0.0003,()0.95,()0.96P A P B A P B A ===因所求概率为()P A B ,又贝叶斯公式得()()()()()()()0.00030.950.007080.00030.950.99970.04P A P B A P A B P A P B A P A P B A =+⨯==⨯+⨯2(7分).设某批矿砂含镍量(%)服从正态分布,从中抽取容量为5的一个样本,测得其含镍量(%)的平均值 3.252x =,标准差0.013s =,问在显著性水平0.01α=下,能否认为这批矿砂含镍量的均值为3.25? (0.0050.005(4) 4.6041,(5) 4.0322t t ==) 解:0:3.25H μ=, 1:3.25H μ≠检验统计量:0.34401x t ===拒绝域:2{(1)}t t n α>-因为0.01α=,0.005(4) 4.6041t =, 0.005(4) 4.6041t t <= 所以接受0H ,答:能够认为这批矿砂含镍量的均值为3.251. 设二维随机变量(,)X Y 的联合密度函数为30,02(,)0x x y Ae p x y ->≤≤⎧=⎨⎩,其他,.(1)验证常数3/2A =;(2)求概率{1/21}P X -<≤;(3)求关于X 的边缘概率密度()X p x ;(4)判断X 与Y 是否独立,给出理由. 解:(1)2230(,)1()1x R p x y dxdy Ae dy dx +∞-=⇒=⎰⎰⎰⎰所以 3/2A =; (2)12330{1/21}()1x P X Ae dy dx e ---<≤==-⎰⎰;(3)233033,0()(,)20,0x xX e dy e x p x p x y dy x --+∞-∞⎧=>⎪==⎨⎪≤⎩⎰⎰3031,02()(,)220,xY e dx y p y p x y dx else +∞-+∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰; (4)因为(,)()()X Y p x y p x p y = 所以X 与Y 相互独立.2. 设总体X 的概率密度为,0(;)0,x e x p x θθθ-⎧≥=⎨⎩其它,其中θ>0为未知参数,12,,,nX X X L 为来自总体X 的样本.(1)求X 的数学期望()E X ;(2)求参数θ的矩估计;(3)求关于参数θ的似然函数;(4)求参数θ最大似然估计.解:(1)因为随机变量()X E θ ,所以1()E X θ=;(2)11()iX E X n θ==∑,所以1ˆXθ=; (3)1(),,0,,0()0,0,i i n xx n i i i e i x e i x L else else θθθθθ--=⎧∑⎧∀>⎪⎪∀>==⎨⎨⎪⎪⎩⎩∏ (4)似然函数两边取对数: ln ()ln()iL n x θθθ=-∑求导:ln ()0i d L nx d θθθ=-=∑参数θ最大似然估计值:1ˆx θ= 参数θ最大似然估计量:1ˆXθ=。
2014年高考概率试题汇总1.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.2.对一个容量为N 的总体抽取容量为n 的样本,学科网当选取简单随机抽样、zxxk 系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,,p p p 则A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==3.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是.4.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 5.从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 。
6.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 7.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.458.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球学科网()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为zxxk ()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<9.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-《概率论与数理统计》期末考试试卷 (A)一、填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = __0.5_____; 若 A 与 B 相互独立, 则 P (A ⋃B ) = ____0.58____.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = _____2/5_________.3.设随机变量 X 的分布函数为,2,1 21 ,6.011 ,3.01,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F 则 X 的分布律为___________________________ .4.若离散型随机变量 X 的分布律为则常数 a = _0.3________; 又 Y = 2X + 3, 则 P {Y > 5} = _0.5________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ___10_____, D (X ) = _8__________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) =___21______.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) = σ 2, 则由切比雪夫不等式有 P {|X - μ | < 3σ } ≥ _________________.8.从正态总体 N (μ, 0.1 2) 随机抽取的容量为 16 的简单随机样本, 测得样本均值5=x ,则未知参数 μ 的置信度为0.95的置信区间是 ____________________________. (用抽样分布的上侧分位点表示). 1. D 2. A 3. C 4. B 5. D 6. C详解:2.因为⎰∞-=xt t f x F d )()( 故⎰-∞-=-at t f a F d )()( 令u =-t ⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=a t t f 0d )(21 (21d )(0=⎰+∞t t f )详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P二、选择题(只有一个正确答案,每小题3分,共18分)1.设A , B , C 是三个随机变量,则事件“A , B , C 不多于一个发生” 的逆事件为( D ).(A) A , B , C 都发生 (B) A , B , C 至少有一个发生 (C) A , B , C 都不发生 (D) A , B , C 至少有两个发生2.设随机变量 X 的概率密度为 f (x ), 且满足 f (x ) = f (-x ), F (x ) 为 X 的分布函数, 则对任意实数 a , 下列式子中成立的是 ( A ). (A) 错误!未找到引用源。
(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)(一共4套)苏教版八年级下册期中数学考试题+详细答案系列(第3套)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2017春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n (填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
2014年高考概率与统计18.、[2014·新课标全国卷Ⅰ] 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图1-4所示的频率分布直方图:图1-4(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2.(i)利用该正态分布,求P (187.8<Z <212.2);(ii)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .附:150≈12.2.若Z ~N (μ,σ2),则p (μ-σ<Z <μ+σ)=0.682 6, p (μ-2σ<Z <μ+2σ)=0.954 4.18.解:(1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(i)由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26.19.[2014·新课标全国卷Ⅱ] 某地区2007年至2013年农村居民家庭人均纯收入y (单位:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:19.解:(1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4,y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,a ^=y --b ^t -=4.3-0.5×4=2.3,所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9,代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 18.,[2014·山东卷] 乒乓球台面被网分隔成甲、乙两部分,如图1-4所示,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.图1-418.解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3,由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3) =P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15 =310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6. (2)由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.19.,[2014·陕西卷] 在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率. 19.解:(1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6元/kg ”, 由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本,∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.P (X =4000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为(2)设C i 表示事件“第i 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896. 18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X .(i)依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E =40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2. 20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=0.94+4×0.93×0.1=0.947 7.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10 000,因此P(Y =10 000)=P(X≥80)=p2+p3所以,E(Y)=4200×0.2+10 000③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=所以,E(Y)=3400×0.2+综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.20.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2. 17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有 P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大.17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).17.解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×1081+5×881=22481.16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小.(只需写出结论)16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 相互独立.根据投篮统计数据,P (A )=35,P (B )=25.故P (C )=P (AB )+P (AB ) =35×35+25×25 =1325. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.16.、、[2014·天津卷] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960,所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3), 所以随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.18.、、[2014·辽宁卷] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图1-4所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).18.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15,P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率分别为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216. X 的分布列为17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.17.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=25,数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.21.、、[2014·江西卷] 随机将1,2,…,2n (n ∈N *,n ≥2)这2n 个连续正整数分成A ,B 两组,每组n 个数.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2.记ξ=a 2-a 1,η=b 2-b 1.(1)当n =3时,求ξ的分布列和数学期望;(2)令C 表示事件“ξ与η的取值恰好相等”,求事件C 发生的概率P (C );(3)对(2)中的事件C ,C -表示C 的对立事件,判断P (C )和P (C -)的大小关系,并说明理由.21.解:(1)当n =3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20(种),所以ξ的分布列为:E ξ=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为n -1,n ,n +1,…,2n -2.又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k 2k 种. 所以当n =2时,P (C )=46=23,当n ≥3时,P (C )=2⎝⎛⎭⎫2+∑n -2k =1C k 2k C n 2n.(3)由(2)得,当n =2时,P (C )=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ).理由如下:P (C )<P (C )等价于4(2+∑n -2k =1C k 2k )<C n2n ,①用数学归纳法来证明:(i)当n =3时,①式左边=4(2+C 12)=4(2+2)=16,①式右边=C 36=20,所以①式成立. (ii)假设n =m (m ≥3)时①式成立,即4⎝⎛⎭⎫2+∑m -2k =1C k 2k <C m 2m 成立, 那么,当n =m +1时, 左边=4⎝⎛⎭⎫2+∑m +1-2k =1C k 2k=4⎝⎛⎭⎫2+∑m -2k =1C k 2k +4C m-12(m -1)<C m 2m +4C m -12(m -1)=(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)!=(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)· 2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边, 即当n =m +1时,①式也成立.综合(i)(ii)得,对于n ≥3的所有正整数,都有P (C )<P (C )成立.18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.17.、[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:(1)1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.。
2014年全国高考理科数学试题分类汇编(纯w o r d 解析版) 八、概率与统计(逐题详解) 第I 部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 【答案】 C【解析】C p 选反向解题.53C 4C 4-1.2525===2.【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(,)x y --,故选A 3.【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,. 4.【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则 A. 321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p ==【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )6 (B )8 (C ) 12(D )18 【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=6.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】 A 【解析】8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10 【答案】A【解析】由题意知:该地区中小学生总人数为:35004500200010000++=人,所以样本容量为100002%200⨯=,应抽取高中生人数为:420040794⨯=++,所以抽取的高中生近视人数为4050%20⨯=人.故选A.9.【2014年湖北卷(理04)】根据如下样本数据x 3 45 6 7 8 y4.02.5 -0.5 0.5-2.0-3.0得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a 【答案】 B【解析】画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a10.【2014年湖北卷(理07)】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是 【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D 12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3)n ≥,从乙盒中随机抽取(1i i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1i i ξ=,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1i p i =,2).则A.12p p >,12()()E E ξξ<B.12p p <,12()()E E ξξ>C.12p p >,12()()E E ξξ>D.12p p <,12()()E E ξξ< 【答案】A 【解析】,,,所以P1>P 2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以 ==,E (ξ1)﹣E (ξ2)=.故选A第II 部分13.【2014年辽宁卷(理14)】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1),∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
概率统计1.第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动.(1)所选3人中女生人数为ξ,求ξ的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.解:(1)ξ得可能取值为 0,1,2,3由题意P(ξ=0)=3437435CC=, P(ξ=1)=2143371835C CC=,P(ξ=2)=1243371235C CC=P(ξ=3)=034337135C CC=…………4分∴ξ的分布列、期望分别为:Eξ=0×435+1×1835+2 ×1235+3×135=97…………8分(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为2615C=,男生甲被选中,女生乙也被选中的种数为155C=…………10分∴P(C)=152651153 CC==在男生甲被选中的情况下,女生乙也被选中的概率为13……12分2.盒中装有5个乒乓球用作比赛,其中2个是旧球,另外3个是新球,新球使用后...即成为了旧球.(I)每次比赛从盒中随机抽取1个球使用,使用后...放回盒中,求第2次比赛结束后盒内剩余的新球数为2个的概率P;(II)每次比赛从盒中随机抽取2个球使用,使用后放回盒中,设第2次比赛结束后盒内剩余的新球数为X,求X的分布列和数学期望.3.某种名贵中药材的品质以其质量指标值衡量,质量指标越大表碉质量越好,且质量指标值大于或等于1 05的产品为优质品。
现用两种新的种植方案(分别称为A 方案和B 方案)做试验,各种植了100株这种名贵中药材,并测量了每株成熟后的中药材的质量指标值,得到下面试验结果:A 方案的频数分布表(I )分别估计用A 方案,B 方案种植的中药材的优质品率; (Ⅱ)已知用B 方案种植的一株名贵中药材的利润y (单位:元)与其质量指标值t 的关系式为5,9525,9510540,105t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 方案种植的中药材中任取一株,其利润记为X (单位:元),求X 的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一株中药材的质量指标值落人相应组的概率).4. 李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有12L L 、两条路线(如图),1L 路线上有123A A A 、、三个路口,各路口遇到红灯的概率均为12;2L 路线上有12B B 、两个路口,各路口遇到红灯的概率依次为3345,.(I )若走1L 路线,求最多遇到1次红灯的概率; (II )若走2L 路线,求遇到红灯次数的X 的数学期望;(III )按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.5、本着健康、低碳的生活理念,租自行车骑游的人越来越多。
2014年全国各地高考题————概率统计专题(15北京文科)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .300 类别 人数老年教师 900 中年教师 1800 青年教师 1600 合计 4300【答案】C 【解析】试题分析:由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =.(15北京文科)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升 D .12升 【答案】B 【解析】试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B.考点:平均耗油量.(15北京文科)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙、数学 【解析】试题分析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙. ②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 考点:散点图.5.(15北京文科)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √ × √ √ 217 × √ × √ 200√ √ √ × 300√ × √ × 85√ × × × 98×√××(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(1)0.2;(2)0.3;(3)同时购买丙的可能性最大. 【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由统计表读出顾客同时购买乙和丙的人数200,计算出概率;第二问,先由统计表读出顾客在甲、乙、丙、商品 顾 客 人 数丁中同时购买3中商品的人数100+200,再计算概率;第三问,由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100+200+300,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.(15年广东理科)某工厂36名工人的年龄数据如下表。
【最新整理,下载后即可编辑】2014年全国高考理科数学试题分类汇编(纯word 解析版) 八、概率与统计(逐题详解)第I 部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525===2.【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+ .0.3 4.4D y x =-+【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(,)x y --,故选A3.【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,.4.【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则A. 321p p p <=B. 132p p p <=C. 231p p p <=D. 321p p p ==【答案】D 【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa(A )6 (B )8 (C ) 12(D )18【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=6.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A. 200,20B. 100,20C. 200,10D. 100,10【答案】A【解析】由题意知:该地区中小学生总人数为:35004500200010000++=人,所以样本容量为100002%200⨯=,应抽取高中生人数为:420040794⨯=++,所以抽取的高中生近视人数为4050%20⨯=人.故选A.9.【2014年湖北卷(理04)】根据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.-3.0A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【答案】 B【解析】画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a10.【2014年湖北卷(理07)】由不等式⎪⎩⎪⎨⎧≤--≥≤020x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81B.41 C.43 D.87【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯.11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3)n ≥,从乙盒中随机抽取(1i i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1i i ξ=,2); (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1i p i =,2).则A.12p p >,12()()E E ξξ<B.12p p <,12()()E E ξξ>C.12p p >,12()()E E ξξ>D.12p p <,12()()E E ξξ<【答案】A 【解析】,,,所以P 1>P 2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以 ==,E (ξ1)﹣E (ξ2)=.故选A第II 部分13.【2014年辽宁卷(理14)】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1),∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积 S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
2014年全国高考理科数学试题分类汇编11:概率与统计一、选择题1某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B3某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D5如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是()A .14π-B .12π- C .22π-D .4π【答案】A6节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C错误!未指定书签。
浙江农林大学 2013 - 2014 学年第二学期考试卷(B卷)课程名称概率论与数理统计(A)课程类别:必修考试方式:闭卷注意事项:1、本试卷满分100分.2、考试时间120分钟.1.为使()x1 01p xx<=≥⎩成为某个随机变量X的概率密度,则c应满足(B).A.1+∞=⎰B.11-=⎰C.11=D.1+∞-=⎰2.随机变量X服从指数分布,参数( D )λ=时,2()XE=18A.3B.6C.16D.133.设随机变量~(,)nXB n p其中01,1,2,p n<<=,那么,对于任一实数x有limnP x→+∞⎧⎫⎪<⎬⎪⎭等于(A ).A.1222πe dttx--∞z B.0C.1222πe dtt--∞+∞z D.e dt t x--∞z224. 设12(,,,)nX X X是来自正态总体2(,)X Nμσ的样本,X为样本平均值,则下述结论不成立的是( C ).A. X与21()niiX X=-∑独立 B. 当i j≠时,i X与j X独立C.1niiX=∑与21niiX=∑独立 D. 当i j≠时,i X与2j X独立学院:专业班级:姓名:学号:装订线内不要答题5. 样本1X 来自总体~(1,)X B p ,其中参数01p <<,则下述结论正确的是( A ). A. 1X 是p 的无偏统计量 B. 1X 是p 的有偏统计量 C. 21X 是2p 的无偏统计量 D. 21X 是2p 的有效统计量 6. 在统计假设的显著性检验中,实际上是( B ). A.只控制第一类错误,即控制"拒真"错误B.在控制第一类错误的前提下,尽量减小此第二类错误(即受伪)的概率C.同时控制第一类错误和第二类错误D.只控制第二类错误,即控制"受伪"错误 7.下列关于方差分析的说法不正确的是( A ).A.方差分析是一种检验若干个正态分布的均值和方差是否相等的一种统计方法.B.方差分析是一种检验若干个独立正态总体均值是否相等的一种统计方法.C.方差分析实际上是一种F 检验.D.方差分析基于偏差平方和的分解和比较.8. 在线性模型01Y x ββε=++的相关性检验中,如果原假设01:0H β=被否定,则表明两个变量之间( D ). A .不存在任何相关关系 B .不存在显著的线性相关关系C .不存在一条曲线ˆ()Yf x =能近似描述其关系1.已知()0.75, ()0.65P A P B ==,(|)0.8P B A =,则()P AB =____0.8______.2.设~(100X B ,则Y a X b =+=1120-+2044Y X X =-或者可使()0,(E Y D Y ==3.设随机变量X 的概率密度为11()0xx p x ⎧-<⎪=⎨⎪⎩其它则()D X =__1/6__.4. 设12(,,,)n X X X 是来自正态总体2(,)XN μσ的样本,则Z =服从_______N(0,1)__分布.5. 设(12(,,,)n X X X L )是抽自总体2(,)X N μσ:的随机样本,,a b 为常数,且0a b <<,则随机区间2211()()(,)nn i i i i X X b a μμ==--∑∑的长度的数学期望为2()n b a ab σ-.1.某厂生产的化纤强度2~(,0.85)X N μ,现抽取一个容量为25n =的样本,测定其强度,x (1)估计活动表中,总体标准差应填 0.85 ;(2) 这批化纤平均强度的0.95的置信区间为 (1.916806123, 2.583193877) . 2.一家房地产开发公司准备购进一批灯泡,公司管理人员对两家供货商提供的样品进行检测,检验甲乙两家供货商的灯泡使用寿命的方差是否有显著差异.用其数据得到实验结果如(1)问题的假设为 2222012112:,:H H σσσσ=≠;(2)由于(实验结果) 检验P 值为0.22*2=0.44 ,所以,在0.05的显著性水平,问题的结论为 接受原假设,认为两者方差没有明显区别 .3.进行农业实验,选择四个不同品种的小麦其三块试验田,每块试验田分成四块面积相等的(1)在方差分析表中,缺失的品种自由度为 3 ,缺失的试验田自由度为 2 .α0.05(2)由于(实验结果) P值为0.013364 ,所以,在显著性水平=下,小麦品种对收获量的影响显著(是否显著).4.随机调查10个城市居民的家庭平均收入x与电器用电支出Y情况得数据(单位:千元),利用Excel的数据分析功能得到的统计分析结果如下:(1)电器用电支出Y关于家庭平均收入x的回归方程为y= -1.39697+0.121212x;(2)收入回归系数的意义为收入每增加一千元,电器平均用电支出121元;(3)若某家庭平均收入30千元,估计其电器用电支出约为362.23 千元.1(6分).设有两台机床加工同样的零件,第一台机床出废品的概率为0.03,第二台机床出废品的概率为0.02,加工出来的零件混在一起,并且已知第一台机床加工的零件比第二台机床多一倍,求(1)任取一个零件是合格品的概率;(2)若任取一个零件经检验后发现是废品,则它是第二台机床加工的概率.解:(1)P=2/3*0.97+1/3*0.98=0.973(2)任取一个零件,是废品的概率为1-0.973=0.027由第二台机床加工的概率为(1/3*0.02)/0.027=0.252(7分).某工厂生产的固体燃料推进器的燃烧率服从正态分布),(2σμN ,40/cm s μ=,2/cm s σ=.现在用新方法生产了一批推进器,从中随机抽取25只,测得燃烧率的样本均值为41.25/x cm s =. 设在新方法下总体标准差仍为2cm/s ,在显著性水平0.05α=下,问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的改进?(0.05 1.645z =) 解:{}01:40,:40,25,41.25,2,0.053.125 1.65.H H n x x Z Z Z Z αμμσα=>=====>=>已知:检验统计量拒绝域计算得:所以拒绝原假设,即认为较以往生产的推进器的燃烧率有显著的改进1. 设二维随机变量(,)X Y 的联合密度函数为(),01,01(,)0,A x y x y p x y +≤≤≤≤⎧=⎨⎩其他.(1)验证常数1A =;(2)求概率{1/2}P X Y +≤;(3)求关于X 的边缘概率密度()X p x ;(4)判断X 与Y 是否独立,给出理由.()()110011-22001120112011,112 241/2 ,0 1 3()()/20 ,1/2 ,0 1 ()()/20 ,xX Y A x y dy dx A x y dy dx x x P x x y dy xy y y x P y x y dx xy x ⎡⎤+==⎢⎥⎣⎦⎡⎤+=⎢⎥⎣⎦+<<⎧⎡⎤=+=+=⎨⎣⎦⎩+<<⎧⎡⎤=+=+=⎨⎣⎦⎰⎰⎰⎰⎰⎰解:()因为所以()()其它其它,(4),()*(),X Y P x y P x P y X Y ⎩≠因为()所以与不独立。
2. 已知随机变量X 的密度函数为(1)(5)56()0x x p x θθ⎧+-<<=⎨⎩其他,其中0θ>为未知参数,12,,,n X X X L 为来自总体X 的样本.(1)求X 的数学期望()E X ;(2)求参数θ的矩估计值;(3)求关于参数θ的似然函数;(4)求参数θ最大似然估计值.()()()()()()()()()()()()()()()6151101212121()1-5(-5)5111552211ˆ2().1(3) 1515151555ln ln 1ln 555n n n n E X x x dx x t t t dtt t dt X E X X XL x x x x x x L n x x x θθθθθθθθθθθθθθθθθθθθθθθθ+=+==+++=++=++-==-=+-+-+-=+---=++---⎡⎤⎣⎦⎰⎰⎰L L L 解:()()()令()()()()() 令,解得()令()()()()()()()1212ln ln 5550ˆ.ln 555n n d L n x x x d nx x x θθθθ=+---=⎡⎤⎣⎦=----⎡⎤⎣⎦L L ,得。