信号完整性分析--信号反射
- 格式:pdf
- 大小:244.92 KB
- 文档页数:10
现代通信系统中的信号完整性分析在当今高度数字化和信息化的时代,通信系统的性能和可靠性对于我们的日常生活和工作至关重要。
无论是手机通信、互联网数据传输,还是卫星通信、广播电视等领域,都依赖于高效、准确的信号传输。
而在这一过程中,信号完整性成为了一个关键的因素,它直接影响着通信的质量和稳定性。
信号完整性,简单来说,就是指信号在传输过程中保持其原有特性和质量的能力。
如果信号在传输过程中出现失真、衰减、反射、串扰等问题,就会导致通信系统的性能下降,甚至出现通信故障。
那么,是什么原因导致了这些信号完整性问题的出现呢?首先,传输线的特性是影响信号完整性的一个重要因素。
在现代通信系统中,信号通常通过各种传输线进行传输,如电缆、微带线、双绞线等。
这些传输线具有一定的电阻、电感和电容特性,当信号在其中传输时,会产生信号的衰减和失真。
特别是在高速传输的情况下,传输线的寄生参数会对信号产生更大的影响。
其次,信号的反射也是一个常见的问题。
当信号在传输线的终端遇到不匹配的阻抗时,就会发生反射。
反射信号会与原信号叠加,导致信号的波形发生畸变,从而影响信号的完整性。
为了减少反射,通常需要在传输线的终端进行阻抗匹配,以确保信号能够顺利传输。
串扰也是影响信号完整性的一个重要因素。
在通信系统中,往往存在着多条并行的传输线,当信号在其中一条传输线上传输时,会通过电磁场的耦合在相邻的传输线上产生干扰信号,这就是串扰。
串扰会导致信号的噪声增加,降低信号的质量。
为了减少串扰,需要合理地设计传输线的布局和间距。
除了上述因素外,电源噪声、时钟抖动等也会对信号完整性产生影响。
电源噪声会导致信号的电压波动,从而影响信号的准确性;时钟抖动则会导致时钟信号的不稳定,影响整个系统的同步性能。
为了分析和解决信号完整性问题,工程师们通常采用一系列的方法和技术。
其中,仿真分析是一种常用的手段。
通过建立通信系统的模型,利用专业的仿真软件对信号的传输过程进行模拟,可以预测可能出现的信号完整性问题,并采取相应的措施进行优化。
信号完整性之初识信号反射版本号更改描述更改人日期1.0 第一次撰稿 eco2013-10-19 E-mial:zhongweidianzikeji@ QQ:2970904654反射产生的原因在《和信号完整性有关的几个概念》中我们已经简单的介绍了“反射”这厮。
在下认为“信号反射”在电路中是不可避免的,不论是高速电路还是低速电路。
而我们只能用一些办法去优化电路,去优化PCB的布局布线,从而降低反射的大小或者在信号反射时避免对电路的操作。
为什么信号反射无法完全消除,在高速和低速电路中都会存在,在下鄙见如下:V = 3x10^8 / sqrξ 式1其中:V是带状线中信号传播的速度(m/s),3x10^8是光速(m/s),ξ是介电常数。
由式1可知,信号的传播速度只与物质的介电常数有关,在基材相同的情况下,不论在高速电路中还是在低速电路中信号都会以相同的速度传播。
在基材为FR4的电路板中,介电常数ξ一般为4左右,由式1我们可以计算出信号的传播速度V = 3x10^8 / sqr(4) =1.5x10^8 m/s,转换单位后约为6in/ns,这就是为什么很多资料上喊信号在FR4材料中的传播速度为6in/ns(注:1mil = 0.0254mm; 1inch = 25.4mm。
对于这个单位转化,感兴趣的人一定要自己计算计算,享受过程可以让你更快乐更智慧哦)。
1.5x10^8 m/s(6in/ns)速度极快了吧,设想山间小溪,小溪中的水流以1.5x10^8 m/s流动,流动中突遇一石头便会荡起无数涟漪,迸射无数水花。
溪中这块石头意味着阻抗失配。
综上所述,我们姑且把这水流现象近似看作电路中的信号反射。
为了给大家一个直观的感受,在下从网上找了两张图片,见图1、图2。
很多时候有些东西是说不清道不明的,关键看大家如何去想,如何去悟。
我建议大家应该看着这个水流冥想一下。
图1 这就是电流图2 请想象成电流I’m sorry,说的太远。
信号完整性:信号反射信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。
对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。
如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。
反射系数定义为:ρ= 1212Z Z Z Z +-。
其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。
假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3150********=+-,信号有1/3被反射回源端。
如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。
纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
阻抗增加有限值:反射电压上面的例子已经计算过了。
这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。
阻抗减小有限值:仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。
此时反射点电压为3.3V+(-0.825V )=2.475V 。
开路:开路相当于阻抗无穷大,反射系数按公式计算为1。
即反射电压3.3V 。
反射点处电压为6.6V 。
可见,在这种极端情况下,反射点处电压翻倍了。
短路:短路时阻抗为0,电压一定为0。
电路板级的信号完整性问题和仿真分析摘要:今天随着电子技术的发展,电路板设计中的信号完整性问题已成为PCB设计者必须面对的问题。
信号完整性指的是什么?信号在电路中传输的质量。
由于电子产品向高速、微型化的发展,导致集成电路开关速度的加快,产生了信号完整性问题。
常见的问题有反弹、振铃、地弹和串扰等等。
这些问题将会对电路板设计产生怎样的影响?通过理论分析探讨,找到解决它们的一些途径。
传统的PCB设计是在样机中去测试问题,极大的降低了产品设计的效率。
使用EDA工具分析,可以将问题在计算机中进行暴露处理,降低问题的出现,提高产品的设计效率。
这里以Altium Designer 6.0工具为例,介绍分析解决部分信号完整性问题的方法。
关键词:信号完整性 Altium Designer 6.0 仿真分析[中图分类号] O59 [文献标识码] A [文章编号] 1000-7326(2012)04-0125-0320世纪初叶,科学家先后发明了真空二极管和三极管,它代表人类进入了电子技术时代。
随后半导体晶体管和集成电路的出现,将电子技术推向了一个新的时期。
特别是IC芯片的发展,使电子产品越来越趋向于小型化、高速化、数字化。
但同时却给电子设计带来一个新的问题:体积减小导致电路的布局布线密度变大,而同时信号的频率也在迅速提高,如何处理越来越快的信号。
这就是我们硬件设计中遇到的最核心问题:信号完整性。
为什么我们以前在学校学习和电子制作中没有遇到呢?那是因为在模拟电路中,采用的是单频或窄频带信号,我们关心的只是电路的信噪比,没有去考虑信号波形和波形畸变;而在数字电路中,电平跳变的信号上升时间比较长,一般为几个纳秒。
元件间的布线不会影响电路的信号,所以都没有去考虑信号完整性问题。
但是今天,随着GHz时代的到来,很多IC的开关速度都在皮秒级别,同时由于对低功耗的追求,芯片内核电压越来越低,电子系统所能容忍的噪声余量越来越小,那么电路设计中的信号完整性问题就突现出来了。
1.信号完整性:PCB走线中途容性负载反射很多时候,PCB走线中途会经过过孔、测试点焊盘、短的stub线等,都存在寄生电容,必然对信号造成影响。
走线中途的电容对信号的影响要从发射端和接受端两个方面分析,对起点和终点都有影响。
首先按看一下对信号发射端的影响。
当一个快速上升的阶跃信号到达电容时,电容快速充电,充电电流和信号电压上升快慢有关,充电电流公式为:I=C*dV/dt。
电容量越大,充电电流越大,信号上升时间越快,dt越小,同样使充电电流越大。
我们知道,信号的反射与信号感受到的阻抗变化有关,因此为了分析,我们看一下,电容引起的阻抗变化。
在电容开始充电的初期,阻抗表示为:这里dV实际上是阶跃信号电压变化,dt为信号上升时间,电容阻抗公式变为:从这个公式中,我们可以得到一个很重要的信息,当阶跃信号施加到电容两端的初期,电容的阻抗与信号上升时间和本身的电容量有关。
通常在电容充电初期,阻抗很小,小于走线的特性阻抗。
信号在电容处发生负反射,这个负电压信号和原信号叠加,使得发射端的信号产生下冲,引起发射端信号的非单调性。
对于接收端,信号到达接收端后,发生正反射,反射回来的信号到达电容位置,那个样发生负反射,反射回接收端的负反射电压同样使接收端信号产生下冲。
转载请注明出处:。
为了使反射噪声小于电压摆幅的5%(这种情况对信号影响可以容忍),阻抗变化必须小于10%。
那么电容阻抗应该控制在多少?电容的阻抗表现为一个并联阻抗,我们可以用并联阻抗公式和反射系数公式来确定它的范围。
对于这种并联阻抗,我们希望电容阻抗越大越好。
假设电容阻抗是PCB走线特性阻抗的k 倍,根据并联阻抗公式得到电容处信号感受到的阻抗为:阻抗变化率为:,即,也就是说,根据这种理想的计算,电容的阻抗至少要是PCB特性阻抗的9倍以上。
实际上,随着电容的充电,电容的阻抗不断增加,并不是一直保持最低阻抗,另外,每一个器件还会有寄生电感,使阻抗增加。
因此这个9倍限制可以放宽。
信号完整性分析---信号反射及阻抗匹配信号反射产生的原因,当信号从阻抗为Z0 进入阻抗为ZL 的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。
如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。
反射的影响:如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。
实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲/下冲以及振荡等信号失真的现象。
过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。
下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。
过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。
如果过冲过大我们可以采用阻抗匹配的方式消除过冲,方法很简单如下所示:效果如下:震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期内,信号反复的过冲下冲我们称之为信号震荡。
震荡是消除电路多余能量的一种方式。
通过震荡的信号,可以将反射而产生的多余能量给消耗掉。
欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。
(PS:不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路中信号的衰减速度,Q值越高衰减越慢。
可以通过单位时间电路储存的能量与丢失的能量比值来衡量)Q<1/2的时候就不存在过冲或者振荡。
Q值的计算方法为: L是导线的平均电感,C是接收端的负载电容,Rs 是驱动端的输出电阻。
阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。
反射系数公式:P=(Z1-Z0)/(Z1+Z0)阻抗匹配端接技术汇总单电阻端接经总结:串联电阻匹配一般适用于单个负载的情况。
现代电路设计中的信号完整性分析在当今高度数字化和集成化的电子世界中,电路设计的复杂性日益增加。
信号完整性已经成为确保电子系统可靠运行的关键因素之一。
简单来说,信号完整性指的是信号在传输过程中保持其准确性、完整性和时序特性的能力。
如果信号完整性出现问题,可能会导致系统性能下降、数据错误、甚至系统崩溃。
那么,为什么信号完整性在现代电路设计中如此重要呢?随着电子设备的工作频率不断提高,信号的传输速度也越来越快。
在高速情况下,信号的行为不再像在低速时那样简单和可预测。
例如,信号在传输线上可能会出现反射、串扰、衰减等现象,这些都会影响信号的质量。
反射是信号完整性中的一个常见问题。
当信号在传输线的终端遇到阻抗不匹配时,就会发生反射。
这就好像声音在一个封闭的房间里反射一样,会产生回声。
在电路中,反射会导致信号的失真和叠加,可能会引起误码或者时序错误。
串扰则是另一个需要关注的问题。
当相邻的传输线之间存在电磁场耦合时,就会发生串扰。
一条线上的信号可能会干扰到相邻线上的信号,导致信号的噪声增加,影响系统的性能。
衰减也是不可忽视的。
信号在传输过程中会因为电阻、电容和电感等因素而损失能量,导致信号的幅度减小。
如果衰减过大,可能会使接收端无法正确识别信号。
为了确保信号完整性,电路设计师需要在设计阶段就进行充分的分析和优化。
首先,要合理选择传输线的类型和参数。
不同类型的传输线,如微带线、带状线等,具有不同的特性,适用于不同的应用场景。
同时,传输线的阻抗、长度、宽度等参数也需要根据信号的频率和特性进行精心设计。
其次,布局和布线也是至关重要的。
在电路板上,元件的布局应该尽量减小信号传输的路径长度,减少反射和串扰的可能性。
布线时,要遵循一定的规则,如保持传输线之间的间距、避免直角转弯等。
电源和地的设计也会影响信号完整性。
稳定的电源供应是保证电路正常工作的基础,而良好的接地可以减少噪声和干扰。
在进行信号完整性分析时,通常会使用一些专业的工具和技术。