七、八年级期中考试内容
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
2016-2017学年成都七中八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.在下列实数中:0,2.5,﹣3.1415,,,0.4343343334……(相邻两个4之间3的个数逐次加1),无理数有()A.1个B.2个C.3个D.4个2.估计﹣1在()A.5~6之间B.6~7之间C.7~8之间D.8~9之间3.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,234.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)5.下列等式正确的是()A.B.C.D.6.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定7.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b8.一个带盖的长方形盒子的长,宽,高分别是8cm,8cm,12cm,已知蚂蚁想从盒底的A点爬到盒顶的B点,则蚂蚁要爬行的最短行程是()A.28cm B.4C.4D.20cm9.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)10.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个二.填空题(每小题4分,共16分)11.3的平方根是.12.如果整数x>﹣2,那么使有意义的x的值是.(只填一个)13.点(3,﹣2)关于y轴的对称点的坐标是.14.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,则梯子顶端A下滑了米.三.解答题(共54分)15.(16分)(1)解方程:(x+1)2=25(2)计算:(2﹣)(3)计算:﹣+﹣(4)求代数式x2+xy+y2的值,其中x=+1,y=16.(6分)在如图所示的平面直角坐标系中,四边形OABC各顶点的坐标分别是O(0,0)、A(﹣4,10)、B(﹣12,8)、C(﹣14,0),求四边形OABC的面积.17.(6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1),这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.18.(8分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.19.(8分)如图,MN为我国领海海线,即MN以左为我国领海,以右为公海,我国反走私艇A发现正东方向有一走私艇C以每小时13海里的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B 密切注意,并告知:A、C两艇的距离是13海里,A、B两艇的距离是5海里,测得反走私艇B与C相距12海里,若走私艇C的速度不变,最快进入我国领海需要多少时间?20.(10分)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:如图①,若点P在线段AB上,且AC=,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为.(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=4,求的值(提示:请利用备用图进行探求).B卷(50分)一.填空题(每小题4分,共20分)21.已知m=1+,n=1﹣,且(m2﹣2m﹣a)(3n2﹣6n﹣4)=6,则a=.22.若xy=2,则x+y=.23.在直角三角形ABC中,∠C=90°,AD是∠BAC的平分线,且CD=,DB=,则AB=.24.如图,将边长为1的正方形OABP沿x轴正方向连续翻转,点P依次落在点P1,P2,P3,P4,…的位置,那么P2016的坐标是.25.如图,∠AOB=30°,M,Q在OA上,P,N在OB上,OM=1,ON=,则MP+PQ+QN的最小值是.二.解答题(共30分)26.(8分)观察下列各式及其验证过程:.验证:..验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并说明它成立.27.(10分)在平面直角坐标系中,已知点B(a,b),线段BA⊥y轴于A点,线段BC⊥x轴于C点,且(a+2)2+=0.(1)求A,B,C三点的坐标.(2)若点D是BC的中点,点E是线段OD上一动点,记点E的横坐标为m,请用含m的代数式表示△AEC 的面积.(3)在(2)的条件下,当点E运动到OD的中点处时,请在y轴上确定一点P,使得△AEP为等腰三角形,直接写出P点坐标.28.(12分)(1)如图,在直线l的同侧有A、B两点,在直线l上找点C、D.使AC+CB最小,DB﹣DA最大(保留作图痕迹)(2)平面直角坐标系内有两点A(﹣2,3),B(4,5),P是x轴上一动点,则PA+PB的最小值,PB﹣PA的最大值为.(3)根据前面两小问的处理经验,解决以下问题:已知a+b=5,求:①代数式的最小值;②代数式的最大值.参考答案与试题解析1.【解答】解:0,2.5,﹣3.1415,=2,,0.4343343334(相邻两个4之间3的个数逐次加1),无理数有0.4343343334……(相邻两个4之间3的个数逐次加1),无理数有1个.故选:A.2.【解答】解:∵,∴,∴.故选:C.3.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.4.【解答】解:点P的坐标为(3,﹣2).故选:A.5.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故选:D.6.【解答】解:∵A(2,3)、B(﹣4,3)的纵坐标都是3,∴直线AB平行于x轴.故选:A.7.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.8.【解答】解:有两种情形:如图1所示:AB==20(cm),如图2所示:AB==4(cm).∵20<4故爬行的最短路程是20cm.故选:D.9.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.10.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:C.11.【解答】解:∵()2=3,∴3的平方根是为.故答案为:±.12.【解答】解:∵整数x>﹣2,要使有意义,∴π﹣2x>0,则x<,∴x可以取:1,0,﹣1等整数,故答案为:0(答案不唯一).13.【解答】解:点(3,﹣2)关于y轴的对称点的坐标是(﹣3,﹣2).14.【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,∴AC===2.4米,在Rt△ECD中,AB=DE=2.5米,CD=1.3+0.7=2米,∴EC===1.5米,∴AE=AC﹣CE=2.4﹣1.5=0.9米.故答案为:0.9.15.【解答】解:(1)x+1=±5,所以x1=4,x2=﹣6;(2)原式=4﹣4+3+2﹣=9﹣5;(3)原式=﹣2+﹣=3﹣2+2﹣=+;(4)∵x=+1,y=,∴x+y=2,xy=1,∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣1=8﹣1=7.16.【解答】解:如图,过点A作AE⊥x轴于点E,作BD⊥x轴于点D,则S四边形OABC=S△BCD+S梯形ABDE+S△OAE=×2×8+×(8+10)×8+×4×10=8+72+20=100.17.【解答】解:当n=1时,[()n﹣()n]=(﹣)=×=1;当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.18.【解答】解:∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.19.【解答】解:由题意可知MN⊥AC于D,AB=5,BC=12,AC=13在△ABC中∵AB2+BC2=52+122=169.AC2=132=169.∴AB2+BC2=AC2所以△ABC是直角三角形,且∠ABC=90°.…(2分)设走私艇C进入我国领海的最近距离CD=x,则易证△ABC∽△ADB.∴BD===,在Rt△BCD中,x===又÷13≈0.85(小时)…(8分)∴若走私艇C的速度不变,最快进入我国领海需要0.85小时.20.【解答】解:(1)①如图①.连接BQ,∵△ABC是等腰直角三角形,AC=,∴AB===2,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,∠ACP=∠BCQ,PC=CQ,∴△APC≌△BQC(SAS).∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=.故答案为:,;②由①知△PBQ为直角三角形,∴PB2+BQ2=PQ2,又∵BQ=AP,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2.(2)(1)中所猜想的结论仍然成立,如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2;(3)如图③:过点C作CD⊥AB,垂足为D.①当点P在线段AB上时,∵=4,∴设PA=4x,PB=x,则AB=5x,AD=CD=AB=x,∴PD=PA﹣AD=4x﹣x=x,∴PC===x,∵△ABC和△PCQ均为等腰直角三角形,∴PQ=PC=x,AC=AB=x,∴==;②如图④,当点P位于AB延长线上时.设PA=4x,PB=x,则AB=3x,∴AD=BD=CD=AB=x,则PD=PB+BD=x,∴PC===x,∵△ABC和△PCQ均为等腰直角三角形,∴PQ=PC=x,AC=AB=x,∴==;综上,的值为或.21.【解答】解:∵m=1+,n=1﹣,∴(m﹣1)2=3,(n﹣1)2=3,∴m2﹣2m+1=3,n2﹣2n+1=3,∴m2﹣2m=2,n2﹣2n=2,∵(m2﹣2m﹣a)(3n2﹣6n﹣4)=6,∴(2﹣a)(6﹣4)=6,∴a=﹣1,故答案为:﹣122.【解答】解:若x、y均大于0,则原式=x•+y•=2=2;若x、y均小于0,则原式=﹣x•﹣y•=﹣2=﹣2;综上,原式的值为±2.故答案为:±2.23.【解答】解:过D作DE⊥AB于E,∵∠C=90°,AD是∠BAC的平分线,∴CD=DE=,∵DB=,∴BC=BD+CD=2,∴BE===2,∵∠C=∠DEB=90°,∠B=∠B,∴△BDE∽△BAC,∴,∴=,∴AB=3,故答案为:3.24.【解答】解:根据规律P1(2,1),P2(3,0)=P3,P4(4,1),P5(6,1),P6(7,0)=P7,P8(8,1)…,每4个一循环,可以判断P2016在504次循环后与P4一致,坐标应该是(2016,1),故答案为:(2016,1).25.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,.故答案为2.26.【解答】解:(1)5=验证:5====;(2)n=,证明:n====.27.【解答】解:(1)∵(a+2)2+=0,∴a+2=0,2a+b=0,∴a=﹣2,b=4,∵线段BA⊥y轴于A点,线段BC⊥x轴于C点,∴A(0,4),B(﹣2,4),C(﹣2,0);(2)∵线段BA⊥y轴于A点,线段BC⊥x轴于C点,∴四边形OABC是矩形,AB=OC=2,OA=BC=4,∵点D是BC的中点,∴CD=BC=2,∴OC=CD,∴△OCD是等腰直角三角形,∴∠DOC=45°,∴OD平分∠AOC,∵E的横坐标为m,∴E的纵坐标为﹣m,设AC与OD的交点F,当点E在线段OF上时,如图1所示:S△AEC=S△AOC﹣S△OCE﹣S△AOE=×2×4﹣×2×(﹣m)﹣×4×(﹣m)=4+3m 当点E在线段FD上时,如图2所示:S△AEC=S△OEC+S△AEO﹣S△AOC=×2×(﹣m)+×4×(﹣m)﹣×2×4=﹣3m﹣4;(3)作EM⊥OA于M,如图3所示:∵四边形OABC是矩形,AB=OC=2,OA=BC=4,D是BC的中点,∴CD=2=OC,∴D(2,2),∵E是OD的中点,∴E(1,1),∴EM=OM=1,∴AM=OA﹣OM=3,∴AE==,分三种情况:①AE=AP时,点P的坐标为(0,4+)或(0,4﹣);②EA=EP时,AM=PM=3,∴OP=2,∴P(0,﹣2);③PA=PE时,点P在AE的垂直平分线上,设PA=PE=x,则PM=3﹣x,在Rt△PEM中,由勾股定理得:12+(3﹣x)2=x2,解得:x=,即PA=,∴OP=4﹣=,∴P(0,);综上所述,△AEP为等腰三角形时,P点坐标为(0,4+)或(0,4﹣)或(0,﹣2)或(0,).28.【解答】解:(1)①作点A关于直线m的对称点A′,连接A′B与直线l交于点C,此时AC+CB最小,点C如图所示.②延长BA交直线l于D,此时DB﹣DA最大,最大值为AB的长,点D如图所示.(2)点A关于x轴的对称点A′(﹣2,﹣3),直线A′B的解析式为y=x﹣,y=0时,x=,所以点P坐标(,0),PA+PB的最小值是=10.PB﹣PA的最大值=AB==2.故答案为:10,2.(3)①由题意知:b=5﹣a,∵=+=+,欲求的最小值,可以看作在x轴上找一点P,使得点P到(﹣3,2),(6,3)的距离之和最小,由(1)可知最小值==;②∵=﹣=﹣,欲求的最大值,可以看作在x轴上找一点Q,使得Q到A(6,3),B(﹣3,2)的距离之和最大,此时最大值==.。
云阳县初一中教育集团2023年上期期中考试八年级语文试题一、语文知识及运用(30分)1. 下列加点字的注音有误的一项是()(3分)A. 弥漫(mí)沙砾(lì)喧嚷(rǎnɡ)摇晃(huànɡ)B. 狩猎(shòu)凋零(diāo)蹼鹬(yù)瞄准(miáo)C. 缄默(jiān)盘旋(xuàn)赌注(dǔ)环颈雉(zhì)D. 雾霭(ǎi)沼泽(zhǎo)香蒲(pú)山麓(lù)2. 下列各组词语中,汉字书写全部正确的一项是()(3分)A. 悲愤诬篾箬篷不修边幅偷偷摸摸B. 暸望激变楔形销声匿迹海枯石烂C. 狡辩阻碍清冽草长莺飞名人逸事D. 枯燥枷锁腐蚀天衣无缝朝气篷勃3. 下面句中加点词语使用不恰当的一项是()(3分)A. 11月份南飞的鸟群,目空一切地从我们的头上高高飞过。
B. 乌鸦通常被认为是笔直飞行的,但与坚定不移地向南飞行200英里直达最近的大湖的大雁相比,它的飞行也就成了曲线。
C. 与秋天一样,我们的春雁每天都要去玉米地作一次旅行,但绝不是偷偷摸摸进行的。
D. 1943年的开罗会议上人们发现,各国之间的联合是不可估量的。
4. 下列句子中标点符号使用有误的一项是()(3分)A. 毫无疑问,6500万年前地球上曾经有过一次“大灭绝”,发生过一次“大劫难”。
B. “诗经”中的诗当初都是配乐的歌词,按所配乐曲的性质分成风、雅、颂三类。
C. 《大学》本身就说,格物致知的目的,是使人能达到诚意、正心、修身、齐家、治国的田地,从而追求儒家的最高理想——平天下。
D. 黄河博大宽厚,柔中有刚;挟而不服,压而不弯;不平则呼,遇强则抗;死地必生,勇往直前。
5.仿照下面的画线句,续写两个句子。
(4分)八年级语文课本就像一个导游,让我们跟随作者游历了世界各地奇山美景。
世界这么大,我想去看看。
我想走近壶口瀑布,感受那浊浪翻滚的雄壮气势;我想登临勃朗峰,欣赏那巍峨庄严的奇幻美景;____________________ ;__________________________。
四川省成都七中育才学校2022-2023学年八年级上学期期中考试物理试题一、单选题1.下列估测与事实最接近的是()A.完整播放一遍我国国歌的时间约为150sB.一本八年级物理课本的长度约为25dmC.职业短跑运动员奔跑的速度约为36km/hD.“PM2.5”是指大气中直径不大于2.5mm的细颗粒物2.在学校运动会中测量跳高成绩时,应选取合适的测量工具是A.分度值是1cm、量程为5m的皮卷尺B.分度值是1mm的1.5m钢卷尺C.分度值是1mm的米尺D.自制一根分度值是1cm、量程为3m的硬杆长尺3.如图所示,2022年4月16日,神舟十三号载人飞船返回舱成功着陆。
根据图片提供的信息,下列对返回舱的高度估测更接近实际的是()A.1.5m B.2.5m C.4.5m D.5.5m4.每天早晨,班主任老师都要手拿课本,赶在早读前乘坐电梯走到教室,对于这一现象的分析,下列说法正确的是()A.电梯运行时,以电梯为参照物,老师是静止的B.电梯运行时,以老师为参照物,手中的课本是运动的C.无论以什么物体作为参照物,同学们都是静止的D.以教室为参照物,同学们是运动的5.下列关于测量误差的说法中正确的是A.误差就是实验操作中的错误B.对同一物体多次测量取平均值,可以减小误差C.只要有精密的测量仪器,测量方法正确,就不会产生误差D.误差和错误都是可以避免的6.对一个匀速直线运动来说,下列说法正确的是:A.速度与通过的路程成正比B.速度与运动时间成反比C.路程与运动时间成正比D.速度既与通过的路程成正比,又运动时间成反比7.如图,图甲是小车甲运动的s-t图像,图乙是小车乙运动的v-t图像,由图像可知正确的是()A.0~5s甲车匀速运动B.0~5s乙车速度为2.0m/sC.5s~6s甲车匀速运动D.5s~6s乙车静止8.如图所示,用抽气机从玻璃罩里向外抽气的过程中,电铃的铃声逐渐减弱,据此现象可推理得出()A.电铃在真空中无法振动B.抽气机能减弱电铃的振动C.铃声不能在真空中传播D.铃声在真空中音调变低9.关于声现象,下列说法中正确的是A.可以采用回声测距的办法用超声波测量地球和月球之间的距离B.只有主人说出暗语时才能打开“声纹锁”,“声纹锁”辨别声音的主要依据是音色C.摩托车加消声器属于在传播过程中减弱噪声D.只要物体振动,我们就能听到声音10.物理上常通过声波的波形图来反映声波的特点。
各年级期中考试题型及考查范围七年级第一学期期中检测七年级语文试题本试题满分120分,考试时间为90分钟,共22个题。
考试中请仔细审题,认真答卷。
做到字迹美观....(一律用钢笔或签字笔书写)............、卷面整洁....、文笔优美....、谢绝空题....。
一、全卷文面分(6分)评分标准:共6分,分四个等级打分。
一等文面(字迹美观得6分),二等文面(字迹工整得4分;字迹工整但太小得3分),三等文面(字迹清晰但不够工整得2分),四等文面(书写无法辨认得0分)。
作文45分,不含文面分。
二、积累与运用(15分)1.下列词语中加点字的读音完全正确....的一项是( )(2分) 2. 下列词语的字形有错误...的一项是( )(2分) 3.请根据提示用正楷字工整地......默写相应的诗文名句。
(共7分) 4.阅读下面这段文字,按要求作答。
(共2分)⑴文段B 处画“ ”线的句子有语病,请选用恰当的修改符号在原句上...修改。
(1分) 换用号增补号 删除号 调位号⑵在A 处横线上填写恰当的语句,使它与前面的句子语意连贯,句式大致相同。
(1分) 5.名著阅读。
(2分)上述文字选自冰心的《繁星·春水》,请用“读了这首小诗,我仿佛看到……”的句式,2013.11写下你的阅读感受。
50字左右。
(2分)二、古诗文阅读(24分)阅读下面的古诗文,分别回答问题。
(一)课内诗歌鉴赏:考查主旨句、思想感情、物象(二) 课内古文8.解释下列句子中加点的词。
(6分)9.根据要求,用“/”给下列句子划分朗读节奏。
(只画一处)(2分)10.把下面句子翻译成现代汉语,然后回答问题。
(4分)从上面两则《论语》中任选一句....,结合你的生活体验,谈谈你对这句话的看法。
(三)课外古文《古文学苑》11.解释下列句子中加点的词。
(源自文中加点字、注释中常用词语) (4分)12.下列句子与“”中“之”的意义相同的一项是()(1分)13.主问题理解三、现代文阅读(30分)阅读下面的两篇文章,分别回答文后的问题。
初二语文八年级上册期中考试试卷(含答案)试卷满分:150分考试时间:150分钟一、基础知识与运用(共 23 分)阅读下面一段文字,完成1—4题目。
(15分)人的美主要体现为人的美好德行,善良、宽容、顽强、悲悯等等美好的德行,如同那美丽的花朵,永不diāo xiè;如同那燃烧的火焰,永不熄灭;,。
作为当代中学生,我们要从这些美德中提升精神养料,用以táo yě我们的情操,净化我们的心灵,提升我们的境界,让我们的人生永远yáng yì美德的馨香。
1.根据拼音在田字格内用正楷写出相应的汉字。
(3分)2.根据上句,在文中横线上仿写恰当的句子。
(2分)3. 画线句子有语病,请写出修改意见。
(1分)4. 春晖中学拟举行“弘扬美德”系列活动,请你参加并完成以下任务。
(9分)(1)尊老敬老,弘扬美德。
11月5日下午,初二(1)班全体学生来到南通市敬老院,陪老人们聊天,并为老人们表演了精心准备的节目,使老人们感受到了快乐和温馨。
敬老院的工作人员对同学们的行为十分赞赏,请你以敬老院的名义向春晖中学校团委写一封表扬信。
(5分)表扬信(2)阅读书籍,传承美德。
请结合《钢铁是怎样炼成的》相关故事情节,说一说主人公保尔·柯察金身上有哪些美好的精神品质值得我们传承。
(4分)5. 用课文原句填空。
(8分)⑴五岭逶迤腾细浪,。
(毛泽东《七律长征》)⑵,夜泊秦淮近酒家。
(杜牧《泊秦淮》)⑶,铁马冰河入梦来。
(陆游《十一月四日风雨大作》)⑷落红不是无情物,。
(龚自珍《己亥杂诗》)⑸杜甫《春望》中的语句“,”以花鸟之物表达了诗人强烈的感时伤世的情感。
⑹文天祥在《过零丁洋》中表达“舍生取义”的思想,抒发浩然正气的千古名句是:“,。
”二、阅读理解(共62 分)(一)阅读《送沈子福之江东》,回答 6— 7题。
( 6分)送沈子福之江东(唐)王维杨柳渡头行客稀,罟师①荡桨向临沂②。
惟有相思似春色,江南江北送君归。
八年级语文期中考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个字是形声字?A. 明B. 禾C. 早D. 休2. 下列哪个词属于名词?A. 跑步B. 快乐C. 书桌D. 美丽3. 下列哪个句子是陈述句?A. 你去哪?B. 今天天气真好!C. 你能借我一支笔吗?D. 这本书是谁的?4. 下列哪个选项是正确的句子结构?A. 主语-谓语-宾语B. 谓语-主语-宾语C. 宾语-谓语-主语D. 宾语-主语-谓语5. 下列哪个词属于动词?A. 大海B. 奔跑C. 漂亮D. 红色二、判断题(每题1分,共5分)1. 汉字是表音文字。
()2. “春天”是一个名词。
()3. “他吃饭去了”是一个疑问句。
()4. 句子“这本书是我的”中,“这本书”是宾语。
()5. “慢慢走”是一个副词短语。
()三、填空题(每题1分,共5分)1. “______”是表示动作的词。
2. 汉字“明”由“日”和“月”组成,其中“日”是______部分。
3. “他正在吃饭”是一个______句。
4. “春天来了”中,“春天”是______。
5. “这本书很______”中,“很”是一个______词。
四、简答题(每题2分,共10分)1. 简述汉字的基本笔画。
2. 简述名词和动词的区别。
3. 简述句子的基本成分。
4. 简述疑问句的特点。
5. 简述副词的作用。
五、应用题(每题2分,共10分)1. 请用“跑”字组成一个词,并用这个词造句。
2. 请用“书”字组成一个词,并用这个词造句。
3. 请用“大”字组成一个词,并用这个词造句。
4. 请用“快”字组成一个词,并用这个词造句。
5. 请用“美”字组成一个词,并用这个词造句。
六、分析题(每题5分,共10分)1. 请分析下列句子的结构:“他正在吃饭。
”2. 请分析下列句子的结构:“这本书是谁的?”七、实践操作题(每题5分,共10分)1. 请用下列词语造句:“跑”、“书”、“大”、“快”、“美”。
四川省成都市七中育才学校2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.16的平方根是()A .4B .4±C .2D .2±2.下列数中,2.134,0,117-,π无理数的个数是()A .1个B .2个C .3个D .4个3.下列各组数据中的三个数作为三角形的边长,能构成直角三角形的是()A .2,3,4B .6,8,10C .9,12,13D .8,24,254.下列计算正确的是()A B .2-=C 4=D 4=5.下列二次根式中,属于最简二次根式的是()A BC D 6.点()3,2A m -在第二象限的角平分线上,则m 的值为()A .5B .5-C .1D .1-7.下列说法中正确的是()A .点()2,3P -在第四象限B .两个无理数的和还是无理数C .8-没有立方根D .平方根等于本身的数是0或18.在第三象限内,点(),P m n 到x 轴距离为5,到y 轴的距离为2,则点P 坐标为()A .()5,2B .()2,5C .()2,5--D .()5,2--二、填空题9.若()23232a a x y --+=是关于x ,y 的二元一次方程,则a =.10.满足1<<x 的整数x 是.11.如图所示的是一个圆柱,底面圆的周长是12cm ,高是5cm ,现在要从圆柱上点A 沿表面把一条彩带绕到点B ,则彩带最短需要cm .12.已知点A 坐标()2,3-,在点A 左侧有一点B 坐标(),3m ,若4AB =,则m =.13.如图,在Rt ABC △中,90BAC ∠=︒,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连接AD .若16AB =,10AD =,则AC 的长为.三、解答题14.(1)计算:()12202412--+--.(2)解方程组231045x y x y +=⎧⎨+=⎩15.已知21a +的算术平方根是24=,c 3的整数部分.(1)求a ,b ,c 的值.(2)求42a b c +-的立方根.16.在正方形网格中,每个小正方形的边长为1,如图所示建立平面直角坐标系,在ABC V 中,点()4,5A -,()1,3B -,()3,1C -.(1)若点H 与点A 关于x 轴对称,则点H 的坐标是______;(2)作出ABC V 关于y 轴对称的图形DEF ;(点A 对应点为点D ,点B 对应点为点E ,点C 对应点为点F )(3)连接BD ,BF ,求BDF V 的面积.17.四川的人民渠(利民渠、幸福渠、官渠堰)是都江堰扩灌工程之一,也是四川省建成的第一座大型水利工程,有“巴蜀新春第一渠”之称.现为扩建开挖某段干渠,如图,欲从干渠某处A 向C 地、D 地、B 地分流(点C ,D ,B 位于同一条直线上),修三条笔直的支渠AC ,AD ,AB ,且AC BC ⊥;再从D 地修了一条笔直的水渠DH 与支渠AB 在点H 处连接,且水渠DH 和支渠AB 互相垂直,已知6km AC =,10km AB =,5km BD =.(1)求支渠AD 的长度.(结果保留根号)(2)若修水渠DH 每千米的费用是0.7万元,那么修完水渠DH 需要多少万元?18.如图1,平面直角坐标系中有矩形OABC ,点A 坐标为()0,a ,点C 坐标为(),0c ,点D 在OC 边上,13OD =,点P 在OA 边上,将矩形OABC 沿直线PD 翻折,点O 落在AB 边上的点E 处.若实数a ,c 满足120a -=.(1)点B 的坐标为______,点E 的坐标为______;(2)如图2,若点M 从点D 出发以每秒2个单位的速度沿折线D C B E →→→的方向匀速运动,当M 与点E 重合时运动停止;设点M 的运动时间为t 秒,以点D 、E 、M 为顶点的三角形的面积记为S ,请用含t 的式子表示S ;(3)在(2)的条件下,当DEM △为等腰三角形时,请直接写出点M 的坐标.四、填空题19.已知8b =+,则a b -为.20.若方程组31331x y a x y a +=+⎧⎨+=-⎩的解满足1x y +=,则a 的值为.21.如图,在ABC V 中,CD AB ⊥于点D ,E 在AD 上,连接CE ,AE CE =.若6AD =,5BC =,3BD =,则DE 长为.22.学习了平面直角坐标系后,初二(1)班的同学组成了数学课外小组,为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,1111255k k k k x x k k y y --=+⎧⎪--⎨⎡⎤⎡⎤=+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎩,其中[]a 表示非负实数a 的整数部分,例如:[]2.62=,[]0.50=.按此方案,第6棵树种植点6P 为;第2024棵树种植点2024P 为.23.如图,在ABC V 中,45ABC ∠=︒,75BAC ∠=︒,2AC =,点E 与点D 分别在射线BC 与射线AD 上,且AD BE =,则AE BD +的最小值为,AE ED +的最小值为.五、解答题24.如图,正方形ABCD 中,2AB =,数轴上点A 表示的数为3,以点A 为圆心,AC 为半径作圆,与数轴相交于点E 和F ,点E 表示的数记为x ,点F 表示的数记为y ;(1)x =______,y =______;(2)化简求值:223x xy y ++;(3)若1a x=,求265a a -+的值.25.给出如下定义:在平面直角坐标系xOy 中,已知平面内一定点(),A a b ,若对于一点(),P c d ,有点T 与点(),P c a d '+关于点A 对称,即A 为线段P T '的中点,则称点T 为点P 关于点A 的完美对称点.例如:若已知定点()1,0A ,则对于点()1,1P ,有()2,1P ',因为点P '与点T 关于点A 对称,则可得P 关于A 的完美对称点()0,1T -.(1)若定点()1,0A ,点()4,0P -,则P 关于点A 的完美对称点T 的坐标为______;(2)在(1)的条件下,若点()1,3C ,在直线CT 上有一点M 使得12TOM TOC S S =△△,求点M 的坐标;(3)已知定点(),0A m ,对任意的点(),1P n n +关于定点A 的完美对称点为T .①T 的坐标为______,②连接PT ,若PT 的最小值为m 的值为______.。
人教版八年级上册语文期中语文考试试题及答案第一学期八年级期中语文考试试题及答案一、基础知识与运用(17分)1、根据拼音完成下列词语(4分)墓集()炫丽故弄()玄虚失魂落()2、下列句中加点词语使用不当的一项是()(2分)A.被子有了阳光的味道,睡着真舒服,不一会儿我就酣然入梦了。
B.刚过完20岁生日的XXX突然查出患了白血病,已是风烛残年了。
C.XXX每次考试都是年级第一,真不愧是老师的得意门生。
D.XXX运用调虎离山之计,巧妙地摆脱了敌人的围追堵截。
3、课文写真。
对课文内容表述不正确的一项是()(2分)A.《枣核》作者是XXX,《最后一课》作者是XXX,法国小说家。
虽然这两篇文章体裁不同,但我们阅读作品时仍倾听到作品中人物抒发出相同的爱国主义心声。
B.《七律长征》是一篇威武雄壮、气势磅礴的革命史诗,它热情歌颂了XXX不畏艰险、英勇顽强的革命英雄主义和乐观主义精神。
C.《背影》这篇叙事散文的抒情气氛是很浓的,语言朴实,但充满着溢于言表的深挚感情。
D.《送杜少府之任蜀川》是“初唐四杰”XXX的一首律诗,表达了对友人的惜别之情,基调凄苦缠绵。
4、选出下列句子中没有语病的一项()(3分)A.新形势下的教育就应该培养学生善于观察、善于思考、善于创造的能力。
B.读了此文,我懂得了“学而不思则罔,思而不学则殆”的道理。
C.通过这次作文评比,使她的自信心增强了。
D.能否取得好的成绩,关键就在于要勇于克服困难,充满自信。
5、仿写句子。
(2分)母爱是什么,母爱是春日里的一片花海;母爱是什么,母爱是夏日里的一片凉荫;母爱是什么,母爱是秋日里的一缕阳光;母爱是什么,母爱是冬日里的一碗温水。
6、专题(4分)本学期,我们研究了《长城》专题,知道了长城在春秋战国时期就开始修筑了,明代也曾大规模地修建过长城,那你知道有关长城的一些知识吗?1)请写出与长城有关的两个成语。
(2分)2)长城有哪些价值?(至少写出两种)(2分)二、积累与阅读(29分)一)诗歌默写(7分)1.(1),乌蒙磅礴走泥丸。
宁波七中教育集团2023学年第二学期初二数学期中质量评估试题(2024.4)本试题卷分选择题和非选择题两部分,共6页,满分为110分,考试时间为90分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色笔迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
选择题部分一、选择题(本题共10小题,每小题3分,共30分)1. 下列无理数中,大小在3与4之间的是().A. B. C. D.【答案】C【解析】【分析】根据无理数的估算可得答案,熟练掌握无理数的估算方法是解题的关键【详解】解:∵,,∴大小在3与4,故选:C.2. 下列图案是一些国产新能源车的车标,其中既是轴对称图形又是中心对称图形的是()A. B. C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念,对选项逐个判断即可.【详解】解:A、该图形既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B、该图形不是中心对称图形,是轴对称图形,故此选项不合题意;C、该图形既是中心对称图形,也是轴对称图形,故此选项符合题意;3=4==91316<<D 、该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形的概念,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,是解答本题的关键.3. 正九边形的每一个外角的度数是( )A. B. C. D. 【答案】B【解析】【分析】根据正n 多边形的每一个外角的度数为,进行求解即可.【详解】解:正九边形的每一个外角的度数是,故选:B .4. 用反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A. 每一个内角都大于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 有一个内角小于60°【答案】A【解析】【分析】本题考查的是反证法的运用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判定.【详解】解:反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中每一个内角都大于60°.故选:A .5. 2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为,则可列方程为( )A. B. C. D. 180︒30︒40︒60︒135︒360n ︒360409︒=︒x 600(12)2850x +=2600(1)2850x +=2600600(1)600(1)2850x x ++++=22850(1)600x -=【答案】C【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6. 八年级某班甲、乙、丙、丁四位同学准备选一人参加学校“跳绳”比赛.经过三轮测试,他们的平均成绩都是每分钟个,方差分别是,你认为派哪一个同学去参赛更合适( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差越小,成绩越稳定,进行判断即可.【详解】∵甲、乙、丙、丁四位同学的平均成绩相同,方差分别是,∴方差最小的为丁,∴派丁同学去参赛更合适.故选:D .【点睛】本题考查利用方差作决策.熟练掌握方差越小,成绩越稳定是解题的关键.7. 如图,在四边形中,,添加下列条件,不能判定四边形是平行四边形的是( )A. B. C. D. 【答案】A【解析】2600600(1)600(1)2850x x ++++=180222265,56.5,53,50.5S S S S ====甲乙丁丙222265,56.5,53,50.5S S S S ====甲乙丁丙ABCD BC AD ∥ABCD AB CD=AB CD A C ∠=∠BC AD=【分析】本题主要考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键.【详解】解;添加条件,再由,不能根据一组对边相等,另一组对边平行证明四边形是平行四边形,故A 符合题意;添加条件,再由,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故B 不符合题意;添加条件,由得到,进而得到,则,能根据两组对边分别平行的四边形是平行四边形,证明四边形是平行四边形,故C 不符合题意;添加条件,再由不能根据一组对边平行且相等的四边形是平行四边形,证明四边形是平行四边形,故D 不符合题意;故选;A .8. 已知关于的方程,下列说法正确的是( )A. 当时,方程无解B. 当时,方程有一个实数解C. 当时,方程有两个相等实数解D. 当时,方程总有两个不相等的实数解【答案】C【解析】【分析】根据一元二次方程根的判别式求解即可.【详解】解:当时,方程为一元一次方程有唯一解,.当时,方程为一元二次方程,解的情况由根的判别式确定:∵,∴当时,方程有两个相等实数解,当且时,方程有两个不相等的实数解.综上所述,说法C 正确.故选:C .【点睛】此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.的的AB CD =BC AD ∥ABCD AB CD BC AD ∥ABCD A C ∠=∠BC AD ∥180A B ∠+∠=︒180C B ∠+∠=︒AB CD ABCD BC AD =BC AD ∥ABCD x ()2110kx k x +--=0k =1k =1k =-0k ≠()()()221411k k k ∆=--⋅⋅-=+0k =10x -=1x =0k ≠()()()221411k k k ∆=--⋅⋅-=+1k =-0k ≠1k ≠-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-9. 如图,平行四边形的对角线相交于点的平分线与边相交于点是中点,若,则的长为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查了平行四边形的性质,三角形中位线定理,根据平行四边形的性质可得,再根据平分,可得,从而可得,可得,进一步可得,再根据三角形中位线定理可得,即可求出的长.【详解】解:在平行四边形中,,∴,∵平分,∴,∴,∴,∵,∴,∵E 是中点,∴.故选:B .10. 如图,在中,,斜边,分别以的三边长为边任上方作正方形,分别表示对应阴影部分的面积,则()ABCD AC BD 、,O ADC ∠AB ,P E PD 12,16AD CD ==EO CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==4BP =EO ,,AB DC AB CD OD OB ==∥CDP APD ∠=∠DP ADC ∠CDP ADP ∠=∠APD ADP ∠=∠12AP AD ==16AB CD ==4BP =PD 122OE BP ==Rt ABC △60CBA ∠=︒2AB =ABC AB 12345,,,,S S S S S 12345S S S S S ++++=A. 2B. C. 4 D. 【答案】B【解析】【分析】本题考查勾股定理的应用和全等三角形的判定,根据题意过作于,连接,进而结合全等三角形的判定与性质得出进行分析计算即可.【详解】解:在中,,斜边,,,过作于,连接,在和中,,,同理,,,,,,,四边形是平行四边形,D DN BF ⊥N DI 123454ABC S S S S S S ++++= Rt ABC △60CBA ∠=︒2AB =BC ∴=121AB =AC==D DN BF ⊥N DI ACB BND 90ACB BND CAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS ACB BND ∴ ≌Rt MND Rt OCB ≌MD OB ∴=DMN BOC ∠=∠EM DO ∴=DN BC CI ∴== DN CI ∥∴DNCI,四边形是矩形,,、、三点共线,,,,图中,,在和中,,,同理,,.故选:B .非选择题部分二、填空题(本题共8小题,每小题3分,共24分)11.的取值范围是________.【答案】##【解析】【分析】本题考查二次根式有意义的条件,根据题中二次根式列出不等式求解即可得到答案,熟记二次根式有意义的条件是解决问题的关键.【详解】解:有意义,90NCI ∠=︒ ∴DNCI 90DIC ∴∠=︒D ∴I H 90F DIO ∠=∠=︒ EMF DMN BOC DOI ∠=∠=∠=∠()AAS FME DOI ∴ ≌ 2Rt DOI BOC MND S S S S ==, ∴243ABC ABC S S S S S +==. Rt AGE Rt ABC AE AB AG AC =⎧⎨=⎩()Rt Rt HL AGE ACB ∴ ≌Rt Rt DNB BHD ≌∴12345S S S S S ++++13245()S S S S S =++++4ABCS = 1412=⨯⨯=x 3x ≥-3x-≤,解得,故答案为:.12. 若一组数据,,,,的众数是,则这组数据的方差是______.【答案】####【解析】【分析】首先根据众数的定义求出的值,进而利用方差公式得出答案.【详解】解:,,,,的众数是,,,,故答案为.【点睛】此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.13. 若a 是一元二次方程的一个根,则的值是______.【答案】8【解析】【分析】本题考查了一元二次方程的根的定义,整体思想的应用是本题的关键.根据一元二次方程解的定义可得,再整体代入求代数式即可.【详解】解:∵a 是一元二次方程的一个根,把代入得,,即,∴,故答案为:8.14. 已知菱形的周长为,其相邻两内角的度数比为,此菱形的面积为______.【答案】【解析】【分析】本题考查菱形性质,含度角的直角三角形的性质;根据相邻两内角的度数比为:,可求出一个角,根据周长为,求出菱形的边长,根据直角三角形里角的性质求出高,从而求出面积.【详解】解:作于点,的∴30x +≥3x ≥-3x ≥-02-81x 2-13.63135685x 02-81x 2-2x ∴=-1(02812)15x =-++-=2222221[(01)(21)(81)(11)(21)]13.65S =-+--+-+-+--=13.62240x x +-=224a a +224a a +=2240x x +-=x a =2240a a +-=224a a +=()222422248a a a a +=+=⨯=ABCD 241:518301530︒2430︒AE BC ⊥E其相邻两内角的度数比为:,,菱形的周长为,..菱形的面积为:.故答案为:.15. 如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.【答案】105°【解析】【分析】根据四边形ABCD 是正方形,可得AB =AD ,∠BAD =90°,△ABE 为等边三角形,可得AE =BE =AB ,∠EAB =60°,从而AE =AD ,∠EAD =30°,进而求得∠AED 的度数,再根据平角定义即可求得∠DEF 的度数.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∵△ABE 为等边三角形,∴AE =BE =AB ,∠EAB =60°,∴AE =AD ,∠EAD =∠BAD ﹣∠BAE =30°,∴∠AED =∠ADE=(180°﹣30°)=75°,∴∠DEF =180°﹣∠AED =180°﹣75°=105°.故答案为105°. 15180B ∴∠=︒⨯115+30=︒ ABCD 24AB BC ∴==14246⨯=AE ∴=1263⨯=∴6318BC AE ⨯=⨯=1812【点睛】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.16. 如图,有5个形状大小完全相同的小矩形构造成一个大矩形(各小矩形之间不重叠且不留空隙),图中阴影部分的面积为16,且每个小矩形的宽为1,则每个小矩形的长为______.【解析】【分析】本题考查了一元二次方程的应用,结合图形建立方程是解题的关键.设小矩形的长为x ,根据“阴影部分的面积为16”列出方程求解.【详解】解:设小矩形的长为x ,根据题意,得,解得(负值舍去),故答案.17. 如图,点是平行四边形的对称中心,是边上的点,,是边上的点,且.若分别表示和的面积,则______.【答案】##【解析】【分析】本题考查了平行四边形的性质,连接,根据点是平行四边形的对称中心得到点是线段的中点,且,再由,进而可求解,熟练掌握平行四边形的性质是解题的关键.为(21)(2)516x x x ++-=x =O ABCD ,,AD AB E F >AB G H BC 42,79EF AB GH BC ==12,S S EOF GOH 12S S =18718:7,AC OB O ABCD O AC 14AOB BOC ABCD S S S ==平行四边形 47EF AB =29GH BC =【详解】解:如图,连接,点是平行四边形的对称中心,点是线段的中点,且,令 , ,,,故答案为:.18. 如图,在矩形中,,点是的中点,将沿折叠后得到延长交射线于点,若,则的值为______.或【解析】【分析】本题考查了全等三角形的判定及性质、折叠的性质、勾股定理,连接,由折叠和线段中点的性质可得,,利用可得,可得,分两种情况:当点在线段上时,当点在的延长线上时,利用勾股定理即可求解,找准点的位置是解题的关键.【详解】解:由矩形的性质可知,,则,,AC OB O ABCD ∴O AC 14AOB BOC ABCD S S S ==平行四边形 AOB BOC S S S == 47EF AB = 29GH BC =47EOF S S =∴ 29GOH S S = 124187279S S ∴==187ABCD ,2AB m BC ==E AD ABE BE GBE BG DC F 2CD CF =m EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒HL Rt Rt EGF EDF △≌△DF GF =①F CD ②F DC F AB CD m ==1122CF CD m ==连接,如图:由折叠和线段中点的性质可得 ,,,(公共边),,,分两种情况:如图(1),当点在线段上时,易知,,,在中,由勾股定理得,,解得:或(舍去),如图(2),当点在的延长线上时, 易知,,,在中,由勾股定理,得,EF ,EG AE DE BG AB m ====90BGE A ∠=∠=︒90EGF D ∴∠=∠=︒EF EF = ()Rt Rt HL EGF EDF ∴ ≌DF GF ∴=①F CD 12GF DF CF m ===1322BF BG GF m m m ∴=+=+=Rt BCF 22213222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭m=②F DC 12CF m =1322GF DF m m m ==+=3522BF BG GF m m m ∴=+=+=Rt BCF 22215222m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭解得:或(舍去),综上所述,,.三、解答题(19、20、21每题6分,22题8分,23、24每题10分,共46分)19. 计算.(1;(2).【答案】(1)(2)1【解析】【分析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)先化简二次根式并合并同类二次根式,再按照二次根式的除法进行即可.【小问1详解】;【小问2详解】解:.【点睛】本题考查了二次根式的加减运算及混合运算,关键是化为最简二次根式.20.解方程:m=m+÷6=-+=÷=-÷=÷1=(1)(2)【答案】(1)(2)【解析】【分析】本题考查了解一元二次方程;(1)根据直接开平方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【小问1详解】解:∴∴解得:【小问2详解】解:∴∴解得:,21. 如图,在的正方形网格中,小正方形的顶点叫做格点已知两点是格点仅用无刻度的直尺分别按下列要求画图保留画图痕迹,不写画法(1)如图,以线段为边长作菱形;(2)如图,以线段为边作一个面积为的正方形.2280x -=()2240x x -+=122,2x x =-=124,2x x ==-2280x -=228x =24x =122,2x x =-=()2240x x -+=228=0x x --()()420x x -+=124,2x x ==-106⨯.A B ,.(.)1AB ABCD 2AB 10【答案】(1)见解析(2)见解析【解析】【分析】(1)作一个边长为的菱形即可;(2的正方形即可.【小问1详解】如图所示,菱形即为所求;或【小问2详解】如图所示,正方形即为所求.【点睛】本题考查作图应用与设计作图,勾股定理,菱形的判定以及正方形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.22. 每年的月日是我国全民国家安全教育日.某中学在全校七、八年级各名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分分,分及以上为合格)八年级抽取的学生的竞赛成绩:.七年级抽取的学生的竞赛成绩条形统计图七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级5ABCD ABC -415500201064466667778888889991010,,,,,,,,,,,,,,,,,,,平均数中位数众数合格率根据以上信息,解答下列问题:(1)填空:______;______;______.(2)估计该校八年级名学生中竞赛成绩不合格的人数;(3)在这次“国家安全法”知识竞赛中,你认为哪个年级的学生成绩更优异?请说明理由.【答案】(1),,(2)人(3)八年级的学生成绩更优异,理由见解析【解析】【分析】()根据平均数、中位数、众数的定义即可求解;()用乘以不合格率即可求解;()根据平均数、中位数、众数比较即可判断;本题考查了条形统计图和统计表,平均数、中位数、众数,看懂统计图表是解题的关键.【小问1详解】解:由题意可得,,,,故答案为:,,;【小问2详解】解:(人),答:估计该校八年级名学生中竞赛成绩不合格的人数为人;【小问3详解】解:八年级学生成绩更优异,理由:七、八年级的平均分一样,但是八年级的中位数,众数和合格率都的a7.4b 87c 85%90%=a b =c =5007.47.58501250034152617685941017.420a ⨯+⨯+⨯+⨯+⨯+⨯+⨯==787.52b +==8c =7.47.58()500190%50⨯-=50050高于七年级的,所以八年级“国家安全法”知识竞赛的学生成绩更优异.23. 根据以下销售情况,解决销售任务.销售情况分析总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,它们的销售情况如下:店面甲店乙店日销售情况每天可售出20件,每件盈利40元.每天可售出32件,每件盈利30元.市场调查经调查发现,每件衬衫每降价1元,甲、乙两家店一天都可多售出2件.情况设置设甲店每件衬衫降价元,乙店每件衬衫降价元.任务解决任务1甲店每天的销售量 (用含的代数式表示).乙店每天的销售量 (用含的代数式表示).任务2当,时,分别求出甲、乙店每天的盈利.任务3总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和为2244元.【答案】任务1:件,件;任务2:甲店每天的盈利为1050元,乙店每天的盈利为1040元;任务3:11元【解析】【分析】任务1,由题意即可得出结论;任务2,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【详解】解:任务1,根据题意得:甲店每天的销售量为件,乙店每天的销售量为件,故答案为:件,件;任务2,当时,甲店每天的盈利为(元);a b a b 5a =4b =()202a +()322b +m ()202a +()322b +()202a +()322b +5a =()()40520251050-⨯+⨯=当时,乙店每天的盈利为(元);任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,由题意得:,整理得:,解得:,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.【点睛】本题考查了一元二次方程的应用、列代数式、有理数的混合运算,找准等量关系,正确列出一元二次方程是解题的关键.24. 已知平行四边形为边上的中点,为边上的一点.(1)如图1,连接并延长交的延长线于点,求证:;(2)如图2,若,求;(3)如图3,若为的中点,为的中点,,求线段的长.【答案】(1)见解析(2) (3【解析】【分析】(1)证明,即可得证;(2)连接并延长交的延长线于点,易得,进而得到,利用,得到,即可得解;(3)连接并延长交的延长线于点,易得,进而得到,从而得到,再利用勾股定理进行求解即可.【小问1详解】证明:四边形是平行四边形,,4b =()()30432241040-⨯+⨯=m ()()()()40202303222244m m m m -++-+=2221210m m +=-1211m m ==,ABCD E BC F AB FE DC G =FE GE ,36FB AB DF EDC +=∠=︒AFD ∠,FE DE P =AF Q FD 4,AQ DP ==BE 72︒FEB GEC ≌△△FE DC G =FE GE EDC EDF ∠=∠AB DC 2AFD FDC EDC ∠=∠=∠FE DC M FE DE ME ==90FDM EDF EDM ∠=∠+∠=︒90AFD FDM ∠=∠=︒ ABCD AB DC ∴,为边上的中点,,;【小问2详解】解:四边形是平行四边形,,连接并延长交的延长线于点,由(1)可得,∴,,即,∴;【小问3详解】解:连接并延长交的延长线于点,由(1)可得,,EFB EGC B ECG ∴∠=∠∠=∠E BC ,BE CE ∴=()AAS FEB GEC ∴ ≌FE GE ∴= ABCD AB DC ∴=FE DC G FEB GEC ≌△△FB GC =,FB AB DF += GC DC BF AB ∴+=+DG DF=,FE GE = EDC EDF ∴∠=∠,36AB DC EDC ︒∠= ∥272AFD FDC EDC ∠︒=∠=∠=FE DC M FE ME =,,为直角三角形,为的中点,为的中点,设,,,【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理.熟练掌握平行四边形的性质,通过添加辅助线,证明三角形全等,是解题的关键.附加题部分25. 若,则的值为_______.【答案】【解析】【分析】根据换元法以及一元二次方程的解法即可求出答案.【详解】,,FE DE = ,FE DE ME ∴==,EFD EDF EDM EMD ∴∠=∠∠=∠180,EFD EDF EDM EMD ∠+∠+∠+∠=︒ 90FDM EDF EDM ︒∴∠=∠+∠=,AB DC 90,AFD FDM ∠=∠=︒∴,DF AB AFD ∴⊥△P AF Q FD ∴,AP FP x FQ DQ y ====222222,,4,PF DF DP AF FQ AQ AQ DP +=+=== ()()22222224,2x y x y ∴+=+=2210x y ∴+=222224440AD AF FD x y ∴=+=+=AD ∴=22BC AD BE ∴===2250a ab b +-=a b 52-±2250a ab b +-=.令,,,,.故答案为:【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟练应用一元二次方程的解法,本题属于中等题型.26. 实数满足,且则______.【答案】##0.5【解析】【分析】本题考查了因式分解的应用,根据和可整理得,再进行因式分解得,进而可求得a 、b 、c 的值,则可求解,熟练掌握因式分解的方法是解题的关键.【详解】解:,,,,,22510a a b b∴+-=a tb =2510t t ∴+-=22529544t t ∴++=252924t ⎛⎫∴+= ⎪⎝⎭52t ∴=-52-±,,a b c 2a b =+25204ab c c +++=bc a =122a b =+25204ab c c +++=(()2122104b b c c ++++=()221102c ⎫+++=⎪⎭2a b =+ 25204ab c c +++=(()2122104b bc c ∴+++++=()2212104b c ⎛⎫∴+++= ⎪⎝⎭()221102c ⎫∴+++=⎪⎭10,102c +=+=,,,故答案为:.27. 如果菱形有一条对角线等于它的边长,那么称此菱形为“完美菱形”.如图,已知“完美菱形”的边长为是它的较短对角线,点分别是边上的两个动点,且,点为的中点,点为边上的动点,则的最小值为______.【答案】##【解析】【分析】本题考查轴对称最短路线问题,菱形的性质,勾股定理,用一条线段的长表示两线段和的最小值是解题的关键.连接,,易知,因为,所以求的最小值只要求出的最小值,然后减去1即可,再利用将军饮马模型构造出的最小值时的线段,利用勾股定理求出即可.【详解】解:设与的交点为,连接,,四边形是菱形,,,1b c ∴==-2a ∴=+=12bc a ∴==12ABCD 8,BD ,E F ,AC BD 4EF =G EF P AB PD PG +2-2-+-OG OP 122OG EF ==OG PG OP +≥PD PG +PD PO +PD PO +BD AC O OG OP ABCD BD AC ∴⊥122OG EF ∴==,的最小值为,作点关于的对称点,延长交于点,连接,,,,,的最小值为,四边形是菱形,,,四边形是“完美菱形”,∴菱形的边只能和较短对角线相等,∵的边长为8,,,,,,,由对称性和菱形的性质,知,,OG PG OP +≥ PG ∴2OP -O AB O 'O O 'CD H OP O P 'O D 'PO PO ∴'=222PD PG PD PO PD PO O D ∴+≥+-=+'-≥'-PD PG ∴+2O D '- ABCD O O AB '⊥O H CD ∴'⊥ ABCD ABCD 8AD AB BD ∴===4OD =60ODH ABD ∴∠=∠=︒30DOH ∠=︒122DH OD ==OH ==3O H OH '==O D '===的最小值为,故答案为:.PD PG ∴+22-。
2014—2015上学期七、八年级期中考试事宜
一、试题时间90分钟,分值120分。
二、题型
总体思路:随着学习的进展,要越来越注重对语用能力的考查、对英语思维能力的考查。
不同的阶段,题型会有所变化,体现不同阶段的能力要求。
本次考试题型:
七年级
第I卷(选择题,共70分)
一、听力测试(每小题1分,满分30)
二. 语音知识(每小题1分,满分10)
三、单项选择(每小题1分,满分10分)
三、阅读理解(每小题2分,满分20分)
第II卷(非选择题,共50分)
五.默写(10分)
六、补全对话,选择相应的选项。
(共10小题;每小题1.5分,满分15分)
七、完成句子。
(共10空;每空1分,满分10分)
八、写作(15分)
八年级
第I卷(选择题,共75分)
一、听力测试(每小题1分,满分20)
二. 单项选择(每小题1分,满分15)
三、完形填空(每小题1分,满分10分)
四、阅读理解(每小题2分,满分30分)
第II卷(非选择题,共45分)五.单词拼写(每小题1分,满分10分)
六、汉译英(每小题2分,满分10分)
七、动词填空(每小题1分,满分10分)
八、写作(15分)。
八年级期中考试内容
语文:考完1—15课及21—23课
数学:考完第六单元A部分P82(共154页)
外语:考完第六单元A部分P46(共10单元)
物理:考完第八章《电功率》(共五章元)P60(共五章元)
政治:考完第六课《终身受益的权利》P66(共10课)
历史:考完14课《有中国特色的社会主义道路》P74(共24课)
地理:考完第八单元第2课《香范、澳门特别行政区》P54(共7单元)103页
生物:考完第三季第一节《地球上生命的起源》P52(共六章)100页
七年级期中考试内容
语文:考完18课《竹影》和课外古诗词考前5首(共30诗)
数学:应考完第八章第三节《实际问题与二元一次方程组》P110(共六章)外语:考完第七单元P46(共12单元)
政治:考完第三单元第五课《让挫折丰富我们的人生》第一框P64(共8课)
历史:考完13课《宋元的科学技术》P64(共24课)
地理:考完第八单元第7课《拉丁美洲》P55(共三个单元22课)
生物:考完第四章第三节《输送血液的泵——心脏》P75(共七章121页)。