2016-2017年河北省保定市定州市八年级(上)数学期中试卷及参考答案
- 格式:pdf
- 大小:639.59 KB
- 文档页数:21
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
2016-2017学年河北省保定市定州市八年级(上)期中数学试卷一、选择题1.下列图形中不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(3,2) D.(﹣3,2)4.将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°5.判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等6.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)7.下列各图中,正确画出AC边上的高的是()A.B.C. D.8.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE9.等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A..15 B.20 C.25或20 D.2510.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°11.如图所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠C=30° D.∠DAE=40°12.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9二、填空题(每题3分,共24分)13.一个多边形的内角和等于1080°,这个多边形是边形.14.在Rt△ABC中,一个锐角为25°,则另一个锐角为度.15.等边△ABC的边长为5cm,AD⊥BC,垂足为D,则DC的长为.16.如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B 的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为.17.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.18.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.19.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为.20.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为.三、解答题(本题共7个小题,共60分)21.如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.22.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.23.如图,点D在△ABC的AB边上,且DC=DA.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由.24.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC 于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.25.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.26.如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF ⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.27.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C 重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.2016-2017学年河北省保定市定州市八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.2.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【解答】解:A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选A.3.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(3,2) D.(﹣3,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),可以直接得到答案.【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.4.将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【考点】三角形的外角性质.【分析】根据题意求出∠ACO,根据三角形的外角的性质计算即可.【解答】解:由题意得,∠ACO=∠ACD﹣∠BCD=15°,∴∠AOB=∠A+∠ACO=105°,故选:C.5.判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等【考点】直角三角形全等的判定.【分析】根据求证直角三角形全等对每个选项进行分析,即可解题.【解答】解:∵两条直角边对应相等,则斜边相等,故两三角形全等,∴A正确;∵斜边和一锐角对应相等,则另一锐角对应相等,根据角边角即可求证两三角形全等,∴B正确;∵斜边和一条直角边对应相等,则另一直角边对应相等,根据边边边即可求证两三角形全等,∴C正确;∵两锐角相等可证明两三角形相似,但无法证明两三角形全等,∴D错误.故选D.6.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.7.下列各图中,正确画出AC边上的高的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.8.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A 选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.9.等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A..15 B.20 C.25或20 D.25【考点】等腰三角形的性质;三角形三边关系.【分析】根据腰为5或10,分类求解,注意根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为5时,三边为5,5,10,5+5=10,三边关系不成立;当等腰三角形的腰为10时,三边为5,10,10,三边关系成立,周长为5+10+10=25.故选D.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【考点】等腰三角形的性质.【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.11.如图所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠C=30° D.∠DAE=40°【考点】全等三角形的判定与性质.【分析】此题需要结合已知条件与相关知识用排除法来对第一结论进行验证从而确定最终答案.【解答】解:A、正确,∵AD=AE,∴∠ADE=∠AED,∵BD=CE,∴BD+DE=CE+DE,即BE=CD,∴△ABE≌△ACD(SAS),B、正确,∵△ABE≌△ACD,∴AB=AC,∠B=∠C,∵BD=CE,∴△ABD≌△ACE(SAS),C、正确,∵∠BAE=70°,∴∠BAD=50°,∵∠ADB=∠AEC=100°∴∠B=∠C=30°,D、错误,∵∠ADB=∠AEC=100°,∴∠ADE=∠AED=80°,∴∠DAE=20°,故选D.12.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二、填空题(每题3分,共24分)13.一个多边形的内角和等于1080°,这个多边形是8边形.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.14.在Rt△ABC中,一个锐角为25°,则另一个锐角为65度.【考点】三角形内角和定理.【分析】根据在直角三角形中两个锐角互余.【解答】解:另一个锐角=90°﹣25°=65°.15.等边△ABC的边长为5cm,AD⊥BC,垂足为D,则DC的长为 2.5cm.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得DC=BC.【解答】解:∵等边△ABC中AD⊥BC,∴DC=BC,∵等边△ABC的边长为5cm,∴DC=×5=2.5cm.故答案为:2.5cm.16.如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B 的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为7cm.【考点】翻折变换(折叠问题).【分析】根据折叠性质得到DC=DE,BE=BC=6cm,则AE=2cm,再根据三角形周长定义得到△AED周长=AD+DE+AE,然后利用DC代替DE得到△AED周长═AD+DC+AE=AC+AE=5+2=7(cm).【解答】解:∵过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴DC=DE,BE=BC=6cm,∵AB=8cm,∴AE=AB﹣BE=2cm,∵△AED周长=AD+DE+AE=AD+DC+AE=AC+AE=5cm+2cm=7cm.故答案为7cm.17.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是3<AB<13.【考点】全等三角形的判定与性质;三角形三边关系.【分析】作出图形,延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE的取值范围,即为AB的取值范围.【解答】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=4,∴AE=4+4=8,∵8+5=13,8﹣5=3,∴3<CE<13,即3<AB<13.故答案为:3<AB<13.18.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE= 2.4cm.【考点】角平分线的性质.【分析】首先过点D作DF⊥BC于点F,由BD是∠ABC的平分线,DE⊥AB,根据角平分线的性质,可得DE=DF,然后由S△ABC=S△ABD+S△BCD=AB•DE+BC•DF,求得答案.【解答】解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC =S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.19.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为 4.5cm.【考点】轴对称的性质.【分析】由轴对称的性质可知:PM=MQ,PN=RN,先求得QN的长度,然后根据QR=QN+NR即可求得QR的长度.【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.20.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为64.【考点】等边三角形的性质;等腰三角形的性质.【分析】根据等腰三角形的性质以及平行线的性质,得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=32,据此得出答案.【解答】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,∴A6B6=32B1A2=64,故答案为:64.三、解答题(本题共7个小题,共60分)21.如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.【考点】三角形的外角性质.【分析】根据三角形的外角的性质求出∠BAC的度数,根据邻补角的性质求出∠EAC的度数,根据角平分线的定义计算即可.【解答】解:∵∠B=30°,∠ACD=100°,∴∠BAC=100°﹣30°=70°,∴∠EAC=180°﹣70°=110°,∵AD是△ABC的外角平分线,∴∠DAE=EAC=55°.22.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图﹣轴对称变换.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.=×5×3=(或7.5)(平方单位).【解答】解:(1)S△ABC(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).23.如图,点D在△ABC的AB边上,且DC=DA.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由.【考点】作图—基本作图.【分析】(1)利用尺规作∠BDC的角平分线即可.(2)结论:DE∥AC.只要证明∠BDE=∠A即可.【解答】解:(1)∠BDC的平分线DE如图所示:(2)结论:DE∥AC.理由:∵DE平分∠BDC,∴∠BDE=∠BDC,∵DC=DA∴∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.24.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC 于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.【考点】全等三角形的判定与性质.【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,继而可得出∠1=∠B;(2)通过判定△ABC≌△FBD(ASA),可得出AB=FB.【解答】解:(1)∠1=∠B理由:由∠ACB=90°,知∠1+∠F=90°又DF⊥AB,所以∠B+∠F=90°则∠1=∠B(2)AB=FB理由:在△ABC和△FBD中,∵∠ACB=∠FDB=90°,BC=BD,∠B=∠B,∴△ABC≌△FBD,∴AB=FB.25.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.【考点】全等三角形的判定与性质.【分析】(1)利用“角角边”证明△ABE和△DCE全等即可;(2)根据全等三角形对应边相等可得BE=CE,再根据邻补角的定义求出∠BEC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=CE,又∵∠AEB=70°,∴∠BEC=180°﹣∠AEB=180°﹣70°=110°,∴∠EBC===35°.26.如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF ⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.【解答】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.27.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C 重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.【考点】全等三角形的判定与性质.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC=DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.【解答】解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;2017年2月28日。
河北省保定市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·西城模拟) “瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A .B .C .D .2. (2分)(2017·江东模拟) 下列命题中,真命题是()A . 周长相等的锐角三角形都全等B . 周长相等的等腰直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的直角三角形都全等3. (2分)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A . 1B . 2C . 3D . 44. (2分) (2017八下·宁城期末) 如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A . 1B . 2C . 3D . 45. (2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A . BC=EC,∠B=∠EB . BC=EC,AC=DCC . BC=DC,∠A=∠DD . AC=DC,∠A=∠D6. (2分) (2017七下·昭通期末) 下列命题正确的是()A . 若a>b,b<c,则a>cB . 若a>b,则ac>bcC . 若a>b,则ac2>bc2D . 若ac2>bc2 ,则a>b7. (2分)如图,⊙O的半径为5,AB为⊙O的弦,OC⊥AB于点C.若OC=3,则弦AB的长为()A . 4B . 6C . 8D . 108. (2分)等腰三角形的两边分别为1和2,则其周长为()A . 5B . 4C . 4或5D . 无法确定9. (2分)两直角边分别为15和20的直角三角形的外接圆半径为()A . 12.5B . 25C . 20D . 1010. (2分)下列说法:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的周长相等;(4)周长相等的两个三角形相等;(5)全等三角形的面积相等;(6)面积相等的两个三角形全等.其中不正确的是()A . (4)(5)B . (4)(6)C . (3)(6)D . (3)(4)(5)(6)二、填空题 (共6题;共6分)11. (1分)(2018·白银) 已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.12. (1分) (2016八上·桂林期末) 如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB 交于点D,则∠BCD的度数是________度.13. (1分)有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为________14. (1分)(2017·沭阳模拟) 如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)15. (1分)(2018·河南) 如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为________.16. (1分)如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3=________°.三、解答题 (共7题;共62分)17. (5分) (2016八下·云梦期中) 如图,一个长13米的梯子AB斜靠在墙上,这时梯子底端距墙底为5米,如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向也将滑动多少米?(精确到0.01米)18. (1分)如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC 和过点A且垂直于 AC的射线AX上运动,当AP=________时,才能使△ABC与△QPA全等.19. (10分)把下面的语句还原成图形:(1)⊙M的半径为1cm,AB是⊙M的一条弦(AB不经过M),AMB、∠ACB分别是劣所对应的圆心角和圆周角;(2)是⊙O中的一条弧,且 = .20. (15分)(2017·寿光模拟) 某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.21. (5分) (2017八下·磴口期中) 如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.22. (15分)(2017·成华模拟) 已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4 .BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF= ,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.23. (11分)(2017·徐州模拟) 如图1,直线l交x轴于点C,交y轴于点D,与反比例函数y= (k>0)的图像交于两点A、E,AG⊥x轴,垂足为点G,S△ADG=3(1)k=________;(2)求证:AD=CE;(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共62分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。
2016-2017学年河北省保定市定州市八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)若有意义,则x满足条件()A.x>2.B.x≥2 C.x<2 D.x≤2.2.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.3.(3分)已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm4.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°5.(3分)如图,▱ABCD中,BC=BD,∠C=72°,则∠ADB的度数是()A.18°B.26°C.36°D.72°6.(3分)下列三条线段不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=9,b=12,c=15C.a=9,b=40,c=41 D.a:b:c=2:3:47.(3分)下列变形中,正确的是()A.(2)2=2×3=6 B.=﹣C.=D.=8.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形9.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°10.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.16 B.12 C.8 D.411.(3分)如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O 作OE⊥BD交BC于点E,若△CDE的周长为6cm,则平行四边形ABCD的周长为()A.6cm B.8cm C.10cm D.12cm12.(3分)下列命题中:①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.真命题的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(3+)(3﹣)=.14.(3分)如图是一个含30°角的直角三角形,它的较长直角边的两个顶点分别放在平行四边形的一组对边上,若∠1=25°,则∠2=.15.(3分)已知x=﹣1,则代数式x2+2x﹣3的值=.16.(3分)如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是m2.17.(3分)如图,从数轴的原点O向右数出4个单位,记为点A,过点A作数轴的垂线并截取AB为1个单位长度,连接OB,以点O为圆心,以OB为半径画弧,交数轴的正半轴于点C,则点C所表示的实数为.18.(3分)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为.三、解答题(本大题共8小题,共66分)19.(8分)计算题(1)(2).20.(8分)先化简,再求值,其中a=,b=.21.(8分)如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B 与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?22.(8分)已知,如图所示,△ABC中,AD是角平分线,E、F分别是AB、AC 上的点,且DE∥AC,DF∥AB,试说明四边形ABDF是菱形.23.(8分)观察下列等式:①==﹣1;②==;③==﹣;…回答下列问题:(1)利用你观察到的规律:化简:=;(2)计算:+++…+.24.(8分)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,求线段DE的长.25.(8分)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?26.(10分)如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当∠AOF=90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,AF与CE总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时∠AOF度数.2016-2017学年河北省保定市定州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2015春•黄陂区期末)若有意义,则x满足条件()A.x>2.B.x≥2 C.x<2 D.x≤2.【分析】根据二次根式中的被开方数必须是非负数,即可得到关于x的不等式组,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)(2016春•嘉祥县期末)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、,是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误.故选:B.【点评】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.3.(3分)(2017春•北流市期中)已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm【分析】正方形的边长和对角线组成一个直角三角形,再根据勾股定理求解即可.【解答】解:∵正方形的边长为2cm,∴对角线长为=2cm.故选D.【点评】本题考查了正方形的知识,本题主要利用正方形的四个角都是直角和勾股定理,需要熟练掌握.4.(3分)(2014•重庆)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【分析】根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.【点评】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.5.(3分)(2017春•北流市期中)如图,▱ABCD中,BC=BD,∠C=72°,则∠ADB 的度数是()A.18°B.26°C.36°D.72°【分析】根据平行四边形的性质可知:AD∥BC,所以∠C+∠ADC=180°,再由BC=BD 可得∠C=∠BDC,进而可求出∠ADB的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠ADC=180°,∵∠C=72°,∴∠ADC=108°,∵BC=BD,∴∠C=∠BDC=72°,∴∠ADB=108°﹣72°=36°,故选:C.【点评】本题考查了平行四边形的性质:对边平行以及等腰三角形的性质,属于基础性题目,比较简单,熟记平行四边形的各种性质是解题的关键.6.(3分)(2017春•定州市期中)下列三条线段不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=9,b=12,c=15C.a=9,b=40,c=41 D.a:b:c=2:3:4【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、因为82+152=172,故A能组成直角三角形;B、因为92+122=152,故B能组成直角三角形;C、因为92+402=412,故C能组成直角三角形;D、不满足勾股定理的逆定理,故D不能组成直角三角形.故选D.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.7.(3分)(2008•钟山区校级模拟)下列变形中,正确的是()A.(2)2=2×3=6 B.=﹣C.=D.=【分析】根据二次根式的性质,可得答案.【解答】解;A、(2)2=12,故A错误;B、=,故B错误;C、=5,故C错误;D、=,故D正确;故选:D.【点评】本题考查了二次根式性质与化简,利用了二次根式的性质.8.(3分)(2015•诏安县校级模拟)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.9.(3分)(2010•眉山)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.【点评】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.10.(3分)(2017春•定州市期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.16 B.12 C.8 D.4【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AB的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOB为直角三角形.∵OE=2,且点E为线段AB的中点,∴AB=2OE=4.C菱形ABCD=4AB=4×4=16.故选:A.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AB=4.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.11.(3分)(2017春•定州市期中)如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为6cm,则平行四边形ABCD的周长为()A.6cm B.8cm C.10cm D.12cm【分析】利用平行四边形对角线互相平分,再结合线段垂直平分线的性质得出BE=DE,则可得出BC+DC的值,进而求出答案.【解答】解:∵四边形ABCD是平行四边形,∴BO=DO,又∵OE⊥BD,∴BE=DE,∵△CDE的周长为6cm,∴DE+EC+DC=BE+EC+DC=BC+DC=6cm,∴平行四边形ABCD的周长为:12cm.故选:D.【点评】此题主要考查了平行四边形的性质以及线段垂直平分线的性质,正确得出BE=DE是解题关键.12.(3分)(2017春•文安县期末)下列命题中:①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.真命题的个数是()A.1 B.2 C.3 D.4【分析】利用正方形的判定定理、菱形的判定定理、矩形的判定定理、平行四边形的判定及性质分别判断后即可确定正确的选项.【解答】解:①两条对角线互相平分且相等的四边形是矩形,故错误;②菱形的一条对角线平分一组对角,正确,为真命题;③顺次连结四边形各边中点所得的四边形是平行四边形,正确,为真命题;④两条对角线互相平分的四边形是平行四边形,错误,为假命题;⑤平行四边形对角线相等,错误,为假命题,正确的有2个,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、菱形的判定定理、矩形的判定定理、平行四边形的判定及性质,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2016春•阿荣旗期末)(3+)(3﹣)=2.【分析】利用平方差公式直接计算即可.【解答】解:原式=9﹣7=2.故答案为:2.【点评】本题考查的是二次根式的混合运算,掌握平方差公式是解决问题的关键.14.(3分)(2017春•定州市期中)如图是一个含30°角的直角三角形,它的较长直角边的两个顶点分别放在平行四边形的一组对边上,若∠1=25°,则∠2= 115°.【分析】先根据∠1=25°求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:如图所示:∵∠1=25°,∴∠3=90°﹣25°=65°.∵平行四边形的两条对边互相平行,∴∠2=180°﹣65°=115°.故答案为:115°.【点评】本题考查的是平行四边形的性质、平行线的性质,用到的知识点为:两直线平行,同旁内角互补.15.(3分)(2017春•定州市期中)已知x=﹣1,则代数式x2+2x﹣3的值=1.【分析】根据配方法先把x2+2x﹣3化为(x+1)2﹣4,再代入计算即可.【解答】解:原式=(x+1)2﹣4,=(﹣1+1)2﹣4,=5﹣4=1,故答案为1.【点评】本题考查了二次根式的化简求值,掌握配方法是解题的关键.16.(3分)(2012秋•仪征市校级期末)如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是240m2.【分析】ABCD是矩形,则AF∥EC,又AF=CE,进而可判断四边形AECF的形状,继而面积可以利用底边长乘以高进行计算.【解答】解:在矩形ABCD中,AF∥EC,又AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).故答案为:240.【点评】熟练掌握平行四边形的性质及判定,掌握矩形的性质及勾股定理.17.(3分)(2017春•定州市期中)如图,从数轴的原点O向右数出4个单位,记为点A,过点A作数轴的垂线并截取AB为1个单位长度,连接OB,以点O 为圆心,以OB为半径画弧,交数轴的正半轴于点C,则点C所表示的实数为.【分析】根据勾股定理计算即可.【解答】解:OB==,∴点C所表示的实数为,故答案为:.【点评】本题考查的是勾股定理的应用、数轴与实数的关系,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.18.(3分)(2017春•定州市期中)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP 是等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4)或(2.5,4).【分析】分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.【解答】解:∵B的坐标是(10,4),四边形OCBA是矩形,∴OC=AB=4,∵D为OA中点,∴OD=AD=5,∵P在BC上,∴P点的纵坐标是4,以O为圆心,以OD为半径作弧,交BC于P,如图1所示:此时OP=OD=5,由勾股定理得:CP=3,即P的坐标是(3,4);由勾股定理得:CP=3,即P的坐标是(3,4);以D为圆心,以OD为半径作弧,交BC于P、P′,如图2所示:此时DP=OD=DP′=5,由勾股定理得:DM=DN=3,即P的坐标是(2,4),P′的坐标是(8,4);③作OD的垂直平分线交BC于P,如图3所示:此时OP=DP,P的坐标是(2.5,4);故答案为:(2,4)或(3,4)或(8,4)或(2.5,4).【点评】本题考查了矩形性质和勾股定理,坐标与图形性质的应用,注意一定要进行分类讨论.三、解答题(本大题共8小题,共66分)19.(8分)(2017春•定州市期中)计算题(1)(2).【分析】(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.【解答】解:(1)=3﹣2+﹣3=﹣;(2)=4××=.【点评】本题考查的是二次根式的混合运算,掌握二次根式乘法、除法及加减法运算法则是解题的关键.20.(8分)(2005•南通)先化简,再求值,其中a=,b=.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:=;因为a=,b=;所以原式=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.尤其要注意的是最后结果要分母有理化.21.(8分)(2015春•信丰县期末)如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?【分析】在直角三角形ABC中,根据勾股定理得:AC=2米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理得CE=1.5米,所以AE=0.5米,即梯子的顶端下滑了0.5米.【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.【点评】本题主要考查了勾股定理的实际应用,此题中主要注意梯子的长度不变,分别运用勾股定理求得AC和CE的长,即可计算下滑的长度.22.(8分)(2017春•西华县期末)已知,如图所示,△ABC中,AD是角平分线,E、F分别是AB、AC上的点,且DE∥AC,DF∥AB,试说明四边形ABDF是菱形.【分析】先证明四边形AEDF是平行四边形,再证明AF=DF即可证明.【解答】证明:如图,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵DF∥AB,∴∠ADF=∠BAD,∴∠CAD=∠ADF,∴AF=DF,∴四边形AEDF是菱形.【点评】本题考查菱形的判定和性质、等腰三角形的判定和性质,熟练掌握菱形的判定是解决问题的关键,属于基础题,中考常考题型.23.(8分)(2017春•定州市期中)观察下列等式:①==﹣1;②==;③==﹣;…回答下列问题:(1)利用你观察到的规律:化简:=﹣;(2)计算:+++…+.【分析】(1)分子分母同时乘以(﹣)进行化简;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【解答】解:(1)原式==﹣;故答案是:﹣;(2)+++…+,=﹣1+﹣+2﹣+…+﹣=﹣1=9.【点评】此题的关键是分母有理化,得出规律:=﹣是解题的关键.24.(8分)(2017春•定州市期中)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,求线段DE的长.【分析】根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.25.(8分)(2017春•定州市期中)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?【分析】(1)由正方形的性质可得出AB⊥BC、∠B=90°,根据EF⊥AB、EG⊥BC 利用“垂直于同一条直线的两直线互相平行”,即可得出EF∥GB、EG∥BF,再结合∠B=90°,即可证出四边形BFEG是矩形;(2)由正方形的周长可求出正方形的边长,根据正方形的性质可得出△AEF为等腰直角三角形,进而可得出AF=EF,再根据矩形的周长公式即可求出结论;(3)由正方形的判定可知:若要四边形BFEG是正方形,只需EF=BF,结合AF=EF、AB=10cm,即可得出结论.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.【点评】本题考查了正方形的判定与性质、矩形的判定与性质、平行线的判定、等腰直角三角形的性质以及矩形的周长,解题的关键是:(1)根据平行线的判定定理找出EF∥GB、EG∥BF;(2)根据正方形的性质找出AF=EF;(3)熟练掌握正方形的判定定理.26.(10分)(2017春•定州市期中)如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当∠AOF=90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,AF与CE总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时∠AOF度数.【分析】(1)根据两组对边分别平行的四边形是平行四边形即可证明.(2)只要证明△AOF≌△COE即可.(3)结论:四边形BEDF可能是菱形.根据菱形的对角线互相垂直即可解决问题.【解答】(1)证明:当∠AOF=90°时,AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形.(2)证明:∵四边形ABEF是平行四边形,∴AO=CO,AF∥EC,∴∠FAO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE,∴AF=CE.(3)解:结论:四边形BEDF可能是菱形.∵△AOF≌△COE,∴OE=OF,∴EF与BD互相平分,∴四边形BEDF是平行四边形,∴当EF⊥BD时,四边形BEDF是菱形,在Rt△ABC中,AC==2,∴OA=1=AB,∵AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴当四边形BEDF是菱形时,∠AOF=45°.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
CAD BE2016-2017学年第一学期期中教学质量检测卷八年级 数学试卷(时间100分钟,总分100分)得分:一、选择题(本题共10小题,每小题3分,共30分) 1、下列各数中是无理数的是( )ABCD 2、在△ABC 中AB=1、、BC=2则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 3、设1a =,a 在两个相邻整数之间,则这两个数是( ) A .1和2B .2和3C .3和4D .4和54、函数y kx =的图象经过点P (3,-1)则k 的值为( )A .3B .-3C .13D .13-5)A .12±B .12C .D 6、面积为9㎝2的正方形以对角线为边长的正方形面积为( )A .18㎝2B .20㎝2C .24㎝2D .28㎝27、若点A (2,m )在x 轴上,则点B (m-1,m+1)在( )A .第一象限B.第二象限C .第三象限D .第四象限8、下列计算正确的是( )A=B=C4=D =9、函数已知一次函数y kx b =+,y 随x 的增大而减小,且kb <0则在直角坐标系内大致图象是(A B C D10、“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是( )A B C D 二、填空题(本大题8小题,每小题3分共24分)11、在电影院5排3号用(5,3)表示,那么6排2号可表示为。
12= ;= 。
13、一次函数21y x =-的图象经过点(a ,3),则a = 。
14、已知x 轴上的点P 到y 轴的距离为3,则P 点坐标为 。
152(3)0b +=,则M (,)a b 关于x 轴对称的点的坐标为 。
16、写出一个图象不经过第二象限的一次函数表达式 。
17、已知过点A (52,2)a a -+,B (1,4)a a --的直线与y 轴平行,则a 的值为 。
2016—2017学年八年级第一学期期中考试数学试卷(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、 题号 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 答案 B A C A BA C D D A D DBCD D 二、17.5cm 18.2 19.18°;在 三、20.解:(1)证明略;【精思博考:∵AD ∥EF ,∴∠ADB=∠E. 易得△ABD ≌△CFE 】(2)∠BAD 的度数为52°.21.解:(1)如图;(2)点M ′在△A ′B ′C ′的内部. 22.解:(1)如图;(2)OA=2OD ;理由略.【精思博考:易得AB=OB=OD 】23.解:(1)证明略;【精思博考:∵△ABE ≌△CAF ,∴∠E=∠F 】(2)△ABC 是轴对称图形.【精思博考:由(1)易得AB=AC. 易得△ABD ≌△ACD 】 24.解:(1)甲同学的说法对,n 的值为4;乙同学的说法不对,理由:630°不能被180°整除;(2)x 的值为2.25.解:(1)证明略;【精思博考:易得△ABC ≌△ADC 】(2)∠ADC 的度数为80°;(3)证明略.【精思博考:∵∠CBE=∠ABD ,∴∠ABE=∠DBC. 易证△ABE ≌△DBC 】26.解:(1)∠F 的度数为30°;【精思博考:在△AFC 中,∠F=∠ACE-∠FAC. 易得2∠ACE= ∠ACP ,2∠FAC=∠BAC ,∴∠F=21∠ACP-21∠BAC=21(∠ACP-∠BAC )=21∠ABP 】 (2)∠F 的度数为45°;(3)∠F 的度数为65°;(4)∠F 的度数为21α°.初中数学试卷金戈铁骑制作。
2017学年第一学期八年级期中考试数学试卷(答题时间:90分钟满分:100分)一、 CAABD DBBCB二、(11) 120,60︒︒ (12) 〈 (13)(3,2) ( 14)4 (15)36三、(16)解:16、①解:原式=24222+-····················2分=25····················4分②解:原式=12+···················2分=3+··················4分 ③解:原式=4)3()7(22--····················2分 =437--····················3分=0····················4分④解:原式=3333632-⨯+····················2分 =333232-+····················3分=3····················4分(17)略(18)过程略(每个1.5分)A (0,BCD ( 19、(答案不唯一)答:是平行四边形···················1分 理由:如图,连接DB ,与AC 交于O 点。
正定县2016~2017学年度第一学期期中检测八年级数学参考答案一、选择题(每小题2分,共32分) 二、填空题(每小题3分,共12分):(17) ±3, 13- (18) BD (19) -3 (20) a >﹣1且12a ≠- 三、解答题:21.(10分)解:(1)解:+=3去分母得:x ﹣2=3x ﹣3,…………………………………2分解得:x=12, ……………………………………………4分 经检验x=12是分式方程的解 ……………………………5分解:(2)原式=()()()2x 1x 12x x 1x x 1x+-++÷- =()2x 1xx x 1++………………………………………………2分 =1x1+ ………………………………………………………4分 当-1时,原式=2……………………5分22.(8分)证:∵BE=CF∴BE+EC=CF+EC即 BC=EF …………………………………………………2分 在△ABC 和△DEF 中⎪⎩⎪⎨⎧===EFBC DFAC DE AB∴△ABC ≌△DEF(SSS)………………………………………6分 ∴∠B=∠DEF∴AB ∥DE ……………………………………………………8分23.(8分)解:由题意得:2,23a b a b -=-=,……………………2分∴1,1a b==-,……………………………4分 ∴A = 又∵3B =,∴9A B +=,………………………………6分 ∴A B +的平方根是3±………………… 8分24.(10分) (1)a b ,a m b m++…………………………………………2分 (2)证明:,………………6分因为b >a ,所以a-b <0,所以,…………………8分因此,……………………………………………………10分25.证明:(1)∵D 是BC 的中点,∴BD=CD ………………………………………………1分 在⊿ABD 和⊿ACD 中∵⎪⎩⎪⎨⎧===AD AD AC AB CDBD∴ ⊿ABD ≌⊿ACD(SSS)………………………………4分∴∠BAD =∠CAD即:∠BAE =∠CAE ……………………………………5分 在⊿ABE 和⊿ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AE CAE BAE AC AB∴△ABE ≌△ACE (SAS )………………………………9分 ∴BE =CE ………………………………………………10分26. 解:设共有x 个小伙伴,依题意,得3602x -×0.6=36072x -……………………………………5分.解得x=8. …………………………………………………8分经检验,x=8是原方程的解,且符合题意. ………………9分 答:共有8个小伙伴 ………………………………………10分。
河北省保定市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·准格尔旗模拟) 在实数π、、、sin30°,无理数的个数为()A . 1B . 2C . 3D . 42. (2分) (2017九上·河东期末) 如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A . 3cmB . 4cmC . 5cmD . 6cm3. (2分) (2016八上·绍兴期末) 满足下列条件的△ABC不是直角三角形的是()A . BC=1,AC=2,AB=B . BC:AC:AB=3:4:5C . ∠A+∠B=∠CD . ∠A:∠B:∠C=3:4:54. (2分) (2018九上·黑龙江月考) 边长为4的等边三角形的面积是()A . 4B . 4C . 4D .5. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3。
以点A为圆心、AB长为半径画弧交数轴负半轴于点B1 ,则点B1所表示的数是A . -2B . -2C . 1-2D . 2-16. (2分) (2017七下·蓟州期中) 已知点P(m,1)在第二象限,则点Q(﹣m,﹣3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分) (2017九上·深圳期中) 在同一坐标系中,函数和的图像大致是()A .B .C .D .8. (2分)如图,在长方形ABCD中,AB=3厘米.在CD边上找一点E,沿直线AE把△ABE折叠,若点D恰好落在BC边上点F处,且△ABF的面积是6平方厘米,则DE的长为()A . 2cmB . 3cmC . 2.5cmD . cm9. (2分) (2017八下·宜兴期中) 如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A . ﹣12+8B . 16﹣8C . 8﹣4D . 4﹣210. (2分)下列一次函数中,y随x增大而减小的是().A . y=3xB . y=3x-2C . y=3x+2xD . y=-3x-2二、填空题 (共6题;共6分)11. (1分)若点P(1,n),Q(3,n+6)在正比例函数y=kx的图象上,则k=________ .12. (1分) (2018·苏州模拟) 如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为________.13. (1分) (2016七下·会宁期中) 若|2a+3|+(3b﹣1)2=0,则ab=________.14. (1分) (2017八上·郑州期中) 化简二次根式的结果是________.15. (1分) (2017八上·上城期中) 在直角三角形中,两条直角边的长分别是和,则斜边上的中线长是________.16. (1分) (2020九上·平度期末) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1 ,E1 , E2 , C2 , E3 , E4 ,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2020B2020C2020D2020的边长为________。
河北省保定市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·丽江期末) 下列图形中,既是轴对称图形,又是中心对称图形的是()A . 平行四边形B . 等边三角形C . 梯形D . 圆2. (2分) (2019八上·普兰店期末) 已知△ABC的三条边长都是整数,其中两条边长分别为则第三条边长等于()A . 1B . 2C . 3D . 1或23. (2分)如图所示,△ABC中,∠C=90°,AB的垂直平分线交BC于点D,连接AD,若∠CAD=20°,则∠B =()A . 20°B . 30C . 35°D . 40°4. (2分) (2018七下·深圳期末) 如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有()A . ①③⑤B . ①③④⑤D . ①②③④⑤5. (2分)在△ABC和△DEF中,已知∠C=∠D,∠B=∠E要判定这两个三角形全等,还需条件()A . AB=EDB . AB=FDC . AC=FDD . ∠A=∠E6. (2分) (2017八上·台州期中) 如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A . BC=EFB . AC=DFC . AC∥DFD . ∠A=∠D7. (2分) (2019八下·太原期中) 如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为()A . 90°B . 95°C . 105°D . 110°8. (2分)如图所示,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()B . 带②去C . 带③去D . ①②③都带去9. (2分) (2019八下·锦江期中) 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A . 30°B . 45°C . 50°D . 75°10. (2分)(2018·龙东模拟) 如图,在△ABC中,BC的垂直平分线交AC于点E,交BC于点D,且AD=AB,连接BE交AD于点F,下列结论:①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DA E,其中结论正确的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共10分)11. (1分)已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.12. (1分)根据下面每幅图中的横线和竖线,把你想到的成语写在横线上________ ,________ ,________ ,________13. (1分)如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是________.14. (1分)如图,△ABC≌△A′B′C′,若BC′=9,B′C=2,则BB′的长度是________.15. (1分)如图,正方形ABCD的顶点C在直线a上,且点B,D到a的距离分别是1,2.则这个正方形的面积是________.16. (1分) (2016九上·温州期末) 如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB 于B,PB交AC于E,若AB=4,BE=2,则PE的长为________.17. (1分) (2017八上·无锡开学考) 已知n边形的内角和是一个五边形的外角和的2倍,则n=________.18. (1分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为________.19. (1分)(2017·南充) 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 ,其中正确结论是________(填序号)20. (1分) (2017七下·苏州期中) 已知a+b=3,,则=________三、解答题 (共7题;共41分)21. (5分)(2019·南陵模拟) 如图,在由边长为1个单位长度的小正方形组成的12×2网格中,给出了格点△ABC和直线l.(1)画出△ABC关于直线l对称的格点△A′B′C;(2)在直线l上选取一格点,在网格内画出格点△DPE,使得△DPE∽△ABC,且相似比为2:1.22. (5分)求证:三角形的外角和等于360° .一般地,n边形的外角和等于360°23. (5分) (2018九上·晋江期中) 如图△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,DF交BC于点H.(1) PH=________cm.(2)△ABC与△DEF重叠部分的面积为________cm2.24. (5分)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.25. (5分)(2017·成都) 问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D 为BC的中点,∠BAD= ∠BAC=60°,于是 = = ;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.(1)①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;(2)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.26. (5分)(2017·西安模拟) 如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.27. (11分) (2016八上·泸县期末) 综合题探究发现(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为________;②线段AD,BE之间的数量关系为________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共41分) 21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、26-1、27-1、27-2、。
2016-2017学年河北省保定市定州市八年级(上)期中数学试卷一、选择题1.(3.00分)下列图形中,不是轴对称图形的是()A.B. C.D.2.(3.00分)下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83.(3.00分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(3,2) D.(﹣3,2)4.(3.00分)将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°5.(3.00分)判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等6.(3.00分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)7.(3.00分)下列各图中,正确画出AC边上的高的是()A.B.C. D.8.(3.00分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE9.(3.00分)等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A..15 B.20 C.25或20 D.2510.(3.00分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°11.(3.00分)如图所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠C=30° D.∠DAE=40°12.(3.00分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9二、填空题(每题3分,共24分)13.(3.00分)一个多边形的内角和等于1080°,这个多边形是边形.14.(3.00分)在Rt△ABC中,一个锐角为25°,则另一个锐角为度.15.(3.00分)等边△ABC的边长为5cm,AD⊥BC,垂足为D,则DC的长为.16.(3.00分)如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC 的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为.17.(3.00分)在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.18.(3.00分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.19.(3.00分)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为.20.(3.00分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为.三、解答题(本题共7个小题,共60分)21.(6.00分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.22.(8.00分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C (﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.23.(8.00分)如图,点D在△ABC的AB边上,且DC=DA.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由.24.(8.00分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.25.(10.00分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.26.(10.00分)如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.27.(10.00分)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.2016-2017学年河北省保定市定州市八年级(上)期中数学试卷参考答案与试题解析一、选择题1.(3.00分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.(3.00分)下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8【解答】解:A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选:A.3.(3.00分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(3,2) D.(﹣3,2)【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.4.(3.00分)将一副常规的直角三角尺(分别含30°和45°角)按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【解答】解:由题意得,∠ACO=∠ACD﹣∠BCD=15°,∴∠AOB=∠A+∠ACO=105°,故选:C.5.(3.00分)判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等【解答】解:∵两条直角边对应相等,则斜边相等,故两三角形全等,∴A正确;∵斜边和一锐角对应相等,则另一锐角对应相等,根据角边角即可求证两三角形全等,∴B正确;∵斜边和一条直角边对应相等,则另一直角边对应相等,根据边边边即可求证两三角形全等,∴C正确;∵两锐角相等可证明两三角形相似,但无法证明两三角形全等,∴D错误.故选:D.6.(3.00分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.7.(3.00分)下列各图中,正确画出AC边上的高的是()A.B.C. D.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.8.(3.00分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A 选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.9.(3.00分)等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A..15 B.20 C.25或20 D.25【解答】解:当等腰三角形的腰为5时,三边为5,5,10,5+5=10,三边关系不成立;当等腰三角形的腰为10时,三边为5,10,10,三边关系成立,周长为5+10+10=25.故选:D.10.(3.00分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.11.(3.00分)如图所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠C=30° D.∠DAE=40°【解答】解:A、正确,∵AD=AE,∴∠ADE=∠AED,∵BD=CE,∴BD+DE=CE+DE,即BE=CD,∴△ABE≌△ACD(SAS),B、正确,∵△ABE≌△ACD,∴AB=AC,∠B=∠C,∵BD=CE,∴△ABD≌△ACE(SAS),C、正确,∵∠BAE=70°,∴∠BAD=50°,∵∠ADB=∠AEC=100°∴∠B=∠C=30°,D、错误,∵∠ADB=∠AEC=100°,∴∠DAE=20°,故选:D.12.(3.00分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个(包括两个等腰直角三角形);②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二、填空题(每题3分,共24分)13.(3.00分)一个多边形的内角和等于1080°,这个多边形是8边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.14.(3.00分)在Rt△ABC中,一个锐角为25°,则另一个锐角为65度.【解答】解:另一个锐角=90°﹣25°=65°.15.(3.00分)等边△ABC的边长为5cm,AD⊥BC,垂足为D,则DC的长为2.5cm.【解答】解:∵等边△ABC中AD⊥BC,∵等边△ABC的边长为5cm,∴DC=×5=2.5cm.故答案为:2.5cm.16.(3.00分)如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC 的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为7cm.【解答】解:∵过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴DC=DE,BE=BC=6cm,∵AB=8cm,∴AE=AB﹣BE=2cm,∵△AED周长=AD+DE+AE=AD+DC+AE=AC+AE=5cm+2cm=7cm.故答案为7cm.17.(3.00分)在△ABC中,AC=5,中线AD=4,则边AB的取值范围是3<AB <13.【解答】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∵AD=4,∴AE=4+4=8,∵8+5=13,8﹣5=3,∴3<CE<13,即3<AB<13.故答案为:3<AB<13.18.(3.00分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE= 2.4cm.【解答】解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴S△ABC∴DE=2.4(cm).故答案为:2.4.点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为4.5cm.【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.20.(3.00分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为64.【解答】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,∴A6B6=32B1A2=64,故答案为:64.三、解答题(本题共7个小题,共60分)21.(6.00分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.【解答】解:∵∠B=30°,∠ACD=100°,∴∠BAC=100°﹣30°=70°,∴∠EAC=180°﹣70°=110°,∵AD是△ABC的外角平分线,∴∠DAE=EAC=55°.22.(8.00分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C (﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【解答】解:(1)S=×5×3=(或7.5)(平方单位).△ABC(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).23.(8.00分)如图,点D在△ABC的AB边上,且DC=DA.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由.【解答】解:(1)∠BDC的平分线DE如图所示:(2)结论:DE∥AC.理由:∵DE平分∠BDC,∴∠BDE=∠BDC,∵DC=DA∴∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.24.(8.00分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB的垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.【解答】解:(1)∠1=∠B(1分)理由:由∠ACB=90°,知∠1+∠F=90°(2分)又DF⊥AB,所以∠B+∠F=90°(3分)则∠1=∠B(4分)(2)AB=FB(5分)理由:在△ABC和△FBD中,∵∠ACB=∠FDB=90°,BC=BD,∠B=∠B,∴△ABC≌△FBD,∴AB=FB.25.(10.00分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,(2)当∠AEB=70°时,求∠EBC的度数.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=CE,又∵∠AEB=70°,∴∠BEC=180°﹣∠AEB=180°﹣70°=110°,∴∠EBC=(180°﹣∠BEC)=(180°﹣110°)=35°.26.(10.00分)如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.【解答】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.27.(10.00分)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.【解答】解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;。