现场总线报告CAN
- 格式:ppt
- 大小:4.99 MB
- 文档页数:64
can总线实验报告
《CAN总线实验报告》
一、实验目的
本实验旨在通过对CAN总线的实验研究,掌握CAN总线的基本原理、工作方式和应用领域,提高学生对CAN总线技术的理解和应用能力。
二、实验内容
1. CAN总线基本原理的学习和理解
2. CAN总线的工作方式和通信协议的研究
3. CAN总线在汽车电子控制系统中的应用实例分析
4. CAN总线通信协议的实验验证
三、实验步骤
1. 通过文献资料和教材学习CAN总线的基本原理和工作方式
2. 使用CAN总线开发板进行实验,验证CAN总线的通信协议
3. 分析汽车电子控制系统中CAN总线的应用实例
4. 结合实际案例,对CAN总线通信协议进行实验验证
四、实验结果
通过本次实验,我们深入了解了CAN总线的基本原理和工作方式,掌握了CAN总线通信协议的实验验证方法,并对CAN总线在汽车电子控制系统中的应用有了更深入的了解。
实验结果表明,CAN总线作为一种高可靠性、高性能的通信协议,在汽车电子控制系统中具有广泛的应用前景。
五、实验结论
通过本次实验,我们对CAN总线的基本原理、工作方式和应用领域有了更深入
的了解,提高了对CAN总线技术的理解和应用能力。
同时,我们也认识到了CAN总线在汽车电子控制系统中的重要作用,为今后的学习和研究打下了坚实的基础。
综上所述,本次实验取得了良好的实验效果,为我们进一步深入研究CAN总线技术奠定了坚实的基础。
希望通过今后的学习和实践,能够更好地应用CAN总线技术,为汽车电子控制系统的发展做出更大的贡献。
CAN总线数据通讯[实验项目]CAN总线数据通讯[实验目的]基于SJA1000 CAN总线控制器和单片机系统完成CAN总线数据收发实验、掌握CAN总线波特率设置、消息ID和接收滤波器配置,完成两个以上节点的数据通讯。
[实验仪器设备]SJA1000 CAN接口模块单片机最小系统板串行下载线(USB转TTL电平串口线)USB转DC5.5mm供电线杜邦线[实验原理]1、CAN通信板原理图复位电路TJA1050T外围电路振荡电路2、单片机板原理图单片机最小系统主要包括3部分:电源,晶振和复位电路。
晶振采用11.0592MHz,复位采用RC电路。
由于单片机P0口开漏输出,需要外接10K的上拉电阻。
3、原理简述SJA1000通过并行总线与MCU连接,包括地址/数据线、读/写控制信号、片选、中断等十多根信号线。
通过对单片机进行编程,来控制CAN节点的初始化、帧的发送和接受等。
初始化流程:数据发送流程:中断接收流程:查询接收流程:[实验内容](1)硬件连接1、单片机和SJA1000的连接使用杜邦把CAN模块的P0口连接到单片机开发板的P0扩展口上;把ALE,WR,RD,INT0,CS,KEY分别对应连接到单片机的ALE,P3.6,P3.7,P3.2,P2.0和P2.5上;把5V和GND分别对应接到单片机的电源接口上。
2、SJA1000节点间的连接将两个SJA1000节点的CAN_H,CAN_L对应连接,即高接高,低接低,即可完成通信线路的连接。
3、单片机与下载器的连接按如下图所示的接线方式连接下载器(即USB转TTL电平串口)和51单片机系统板。
其中5V、3.3V电源线不接,只连接GND并交叉连接RX和TX,即TX接单片机的P3.0,RX接单片机的P3.1。
可三根采用杜邦线将下载器的三个引脚接至51系统板的排插相应引脚上。
(2)软件编程1、在KeilC开发环境下编写STC89C52程序,测试程序的下载和运行。
2、编写STC89C52串行通讯程序,能够通过串口向PC机发送字符,显示程序运行状态。
现场总线实验报告现场总线实验报告引言:现场总线(Fieldbus)是一种用于工业自动化领域的通信协议,它将传感器、执行器和控制器等设备连接在同一条总线上,实现设备之间的数据交换和控制指令传输。
本实验旨在通过对现场总线的实际应用进行研究和探索,了解其原理和优势。
一、现场总线的基本原理现场总线是一种基于串行通信的网络协议,它使用单根通信线路连接各个设备,通过总线控制器实现数据的传输和设备的控制。
其基本原理是将各个设备连接在同一条总线上,通过总线控制器进行数据的传输和设备的控制,实现实时监测和控制。
二、现场总线的应用领域现场总线广泛应用于工业自动化领域,包括制造业、能源、交通等行业。
它可以实现设备之间的实时通信和数据交换,提高生产效率和质量。
例如,在制造业中,现场总线可以用于机器人控制、生产线监测和设备故障诊断等方面,实现自动化生产和智能制造。
三、现场总线的优势与传统的点对点通信方式相比,现场总线具有以下优势:1. 灵活性:现场总线可以连接多个设备,方便设备的添加和移除,减少了布线和维护的成本。
2. 实时性:现场总线能够实现设备之间的实时通信和数据交换,提高了生产过程的响应速度和准确性。
3. 可靠性:现场总线采用冗余设计和错误检测机制,能够保证数据的可靠传输和设备的可靠运行。
4. 扩展性:现场总线支持多种通信协议和设备接口,可以满足不同设备的需求,便于系统的扩展和升级。
四、实验过程和结果本次实验选取了一台工业机器人和几个传感器作为实验对象,通过现场总线连接它们,并利用总线控制器进行数据的传输和设备的控制。
实验过程中,我们使用了现场总线配置工具对设备进行初始化和参数设置,然后通过编程控制总线控制器发送指令和接收数据。
实验结果显示,通过现场总线,我们能够实时监测机器人的运动状态和传感器的数据,并能够远程控制机器人的动作。
同时,现场总线还能够实现故障诊断和报警功能,及时发现并处理设备故障,保证生产过程的稳定性和安全性。
第1章现场总线CAN-bus1.1 从“罐头”说起我们知道英文单词“can”有一个意思是罐头,那我们就借题发挥从“罐头”说起吧。
很多人小时候都自制过一种叫传声筒的玩具,就是在两个罐头的底部打孔后,用一根绳子将两个罐头系起来。
一旦绳子绷紧后,对这一个罐头喊话,另一罐头就可以传出声音。
它的原理很简单,对着喊话的那个罐头把声波产生的振动传导到绷紧的绳子上,绳子再将这种振动传导到另一个罐头上,这个罐头又把这种振动传导给空气形成声波。
这样就可以实现一侧说话一侧听了。
图1.1 童年的传声筒因为声音在传声筒中是以振动波的形式传递的,我们可以设想,如果要一人说话多人听那该怎么办呢?这很容易实现,只要在绳子上系上更多的传声筒,让振动波可以传到更多的罐头里,自然可以就可以实现“多方通话”了。
当然,因为声波能量有限,绳子上系的罐头越多,每个罐头分配到的能量就越少,收听到的声音也就越小。
其实本章要介绍的现场总线和传声筒这种原始通信工具的原理是相通的。
只不过电电缆取代了绳子,电信号取代了振动波,电路板取代了罐头,喊话的内容则由各种需要传递的数据取代了。
典型的现场总线应用如图1.2所示,和上面的传声筒是不是很相似呢?图1.2 现代的现场总线1.2 通信的层次通信是分层的,这个概念应该贯彻在我们学习任何通信系统的整个过程中。
我们仍以上面的传声筒游戏为例,假如小男孩想表达“你好”的意思,那他不会关心声音如何让罐头振动,更不会关心“你好”在绳子上是以横波还是纵波传输的,他关心的是自己表达的意思对方能不能理解。
在通信层次划分上来说,两个小朋友就处于“应用层”。
很显然,应用层是整个通信系统存在的唯一目的,任何通信系统都是为应用层服务的。
相对于“你好”这个想法,说出“你好”这个词就有很多种表达方法了,可以是中文、英文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.文、日文等等。
can现场总线的基本原理-回复CAN(Controller Area Network,控制器局域网络)现场总线是一种广泛应用于汽车和工业领域的串行通信协议。
它是由德国公司Bosch在20世纪80年代开发的,目的是为了满足汽车领域的通信需求,如实时性、可靠性和高效率等。
CAN现场总线的基本原理包括物理层、数据链路层和应用层。
下面我们一步一步来了解CAN现场总线的基本原理。
首先,我们来了解CAN现场总线的物理层。
CAN现场总线使用两根线,分别为CAN-High(CAN高线)和CAN-Low(CAN低线)。
这两根线通过终端电阻连接,形成一个环形拓扑网络。
CAN-High和CAN-Low线上的电压差被定义为CAN总线的状态,分别表示逻辑“0”和逻辑“1”。
这种差分方式的传输可以有效抵抗噪声和干扰,提高了通信的可靠性。
此外,CAN现场总线还采用了非归零编码(Non-Return-to-Zero,NRZ)和数据位定时技术,确保了数据的准确传输。
接下来,我们探讨CAN现场总线的数据链路层。
CAN现场总线使用了一种基于事件的优先级访问协议,即仲裁机制。
每个节点都有一个唯一的标识符(Identifier),用于表示其消息的优先级。
当多个节点同时发送消息时,根据仲裁机制决定哪个节点可以优先发送。
仲裁机制基于标识符的比较,较小标识符的节点优先级更高。
通过这种方式,CAN现场总线可以有效地处理多节点并发通信的问题。
在仲裁过程中,标识符的位数越多,节点的优先级越高。
在仲裁机制之后,节点可以开始发送数据帧。
数据帧由四个部分组成:帧起始符(SOF)、标识符(ID)、数据域(Data)和校验(CRC)。
帧起始符标志着帧的开始,标识符用于区分不同的消息类型,数据域存放实际的数据,校验用于检测数据的完整性。
数据帧的长度可以根据需要进行调整,最大长度为8字节。
此外,CAN现场总线还支持远程帧(Remote Frame),用于请求节点发送数据。
现场总线can原理与应用技术嘿,朋友!想象一下这样一个场景,在一个繁忙的工厂车间里,机器轰鸣,工人们紧张而有序地忙碌着。
各种设备仿佛有了生命一般,有条不紊地运行着,而在这背后,有一种神奇的技术在默默发挥着作用,那就是现场总线 CAN 。
CAN ,这个听起来有点神秘的名字,其实就像是一个超级厉害的“信息快递员”。
它能让不同的设备之间快速、准确地交流和共享信息。
先来说说 CAN 的原理吧。
它就像是一个高效的交通指挥系统。
想象一下,在一条宽阔的马路上,车辆来来往往,如果没有交通规则和指挥,那肯定会乱成一团。
而 CAN 呢,给这些设备之间的数据传输制定了一套清晰明确的规则。
它通过一种独特的方式发送和接收数据。
每个设备都能像一个聪明的“发言人”和“倾听者”,在适当的时候发言,又能认真倾听别人的话。
而且,CAN 还特别“坚强”,不会轻易被干扰和出错。
就算出现了一些小问题,它也能迅速自我修复,继续保证信息的准确传递。
那 CAN 到底有啥应用呢?这可就多啦!比如说在汽车领域,它就像是汽车的“神经中枢”。
车辆的各种部件,像发动机、制动系统、仪表盘等等,都通过 CAN 总线紧密相连。
这样一来,车辆的运行状态就能实时被监测和控制,大大提高了安全性和性能。
再看看工业自动化领域,CAN 总线让各种生产设备能够协同工作,就像是一支训练有素的交响乐团。
每个乐器(设备)都能在正确的时间奏出美妙的音符(发挥作用),共同演奏出高效生产的乐章。
在智能家居中,CAN 也有出色的表现。
想象一下,当你回到家,灯光自动亮起,空调调整到舒适的温度,这背后说不定就有 CAN 总线在默默工作呢。
你可能会问,这 CAN 总线就这么完美吗?当然不是啦!就像人无完人一样,CAN 总线也有它的局限性。
比如在传输距离和速度上,就会受到一定的限制。
但这并不妨碍它在很多领域大显身手。
总之,现场总线 CAN 技术就像是一个默默无闻的幕后英雄,在我们的生活中发挥着重要的作用。