FLUENT中组分输运及化学反应(燃烧)模拟[1]
- 格式:ppt
- 大小:387.50 KB
- 文档页数:32
Fluent软件的燃烧模型介绍(精)Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适⽤于各种复杂情况下的燃烧问题,包括固体⽕箭发动机和液体⽕箭发动机中的燃烧过程、燃⽓轮机中的燃烧室、民⽤锅炉、⼯业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之⼀。
下⾯对Fluent软件的燃烧模型作⼀简单介绍:⼀、⽓相燃烧模型·有限速率模型这种模型求解反应物和⽣成物输运组分⽅程,并由⽤户来定义化学反应机理。
反应率作为源项在组分输运⽅程中通过阿累纽斯⽅程或涡耗散模型。
有限速率模型适⽤于预混燃烧、局部预混燃烧和⾮预混燃烧。
应⽤领域:该模型可以模拟⼤多数⽓相燃烧问题,在航空航天领域的燃烧计算中有⼴泛的应⽤。
PDF模型该模型不求解单个组分输运⽅程,但求解混合组分分布的输运⽅程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散⽕焰的模拟和类似的反应过程。
在该模型中,⽤概率密度函数PDF来考虑湍流效应。
该模型不要求⽤户显式地定义反应机理,⽽是通过⽕焰⾯⽅法(即混即燃模型或化学平衡计算来处理,因此⽐有限速率模型有更多的优势。
应⽤领域:该模型应⽤于⾮预混燃烧(湍流扩散⽕焰,可以⽤来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体⽕箭发动机中的复杂燃烧问题。
⾮平衡反应模型层流⽕焰模型是混合组分/PDF模型的进⼀步发展,从⽽⽤来模拟⾮平衡⽕焰燃烧。
在模拟富油⼀侧的⽕焰时,典型的平衡⽕焰假设失效。
该模型可以模拟形成Nox的中间产物。
应⽤领域:该模型可以模拟⽕箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专⽤于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被⽕焰⾯隔开。
通过求解反应过程变量来预测⽕焰⾯的位置。
湍流效应可以通过层流和湍流⽕焰速度的关系来考虑。
应⽤领域:该模型可以⽤来模拟飞机加⼒燃烧室中的复杂流场模拟、⽓轮机、天然⽓燃炉等。
fluent 相变和组分输运模型Fluent 相变和组分输运模型引言:在工业领域中,相变和组分输运模型是非常重要的研究课题。
相变是指物质由一种相态转变为另一种相态的过程,而组分输运是指不同物质组分在相变过程中的传输行为。
这两个模型被广泛应用于材料科学、能源领域和环境工程等各个领域,对于理解物质的性质和优化工艺具有重要意义。
一、相变模型1. 相变的定义相变是指物质由一种相态转变为另一种相态的过程。
常见的相变包括固态到液态的熔化、液态到气态的汽化、气态到液态的凝结和液态到固态的凝固等。
相变过程中,物质的性质会发生显著变化,如体积、密度、热容等。
相变模型的研究可以帮助我们了解相变的机制和规律。
2. Fluent 相变模型Fluent 是一种流体力学仿真软件,可以用于模拟相变过程。
在Fluent中,相变模型的建立是基于质量守恒、能量守恒和动量守恒等基本原理。
通过对物质的物理性质和相变过程的参数进行建模,可以模拟相变过程中的温度分布、相变界面的位置和形态等。
3. 相变模型的应用相变模型在材料科学、能源领域和环境工程等领域有着广泛的应用。
例如,在材料科学中,相变模型可以用于研究材料的相变动力学行为,优化材料的制备工艺。
在能源领域,相变模型可以用于设计高效的能源转换装置,如汽车发动机和太阳能电池等。
在环境工程中,相变模型可以用于模拟污染物的传输和转化过程,指导环境保护和治理工作。
二、组分输运模型1. 组分输运的定义组分输运是指不同物质组分在相变过程中的传输行为。
在相变过程中,物质的组分会随着时间和空间的变化而发生迁移和扩散。
组分输运模型的研究可以帮助我们了解不同组分之间的相互作用和传输机制。
2. Fluent 组分输运模型Fluent 软件提供了多种组分输运模型,包括质量输运、热输运和动量输运等。
这些模型可以用于模拟物质的扩散、传输和混合过程。
通过对物质的组分浓度和组分输运参数进行建模,可以模拟组分在相变过程中的传输行为。
第十三章 物质输送和有限速率化学反应FLUENT 可以通过求解描述每种组成物质的对流、扩散和反应源的守恒方程来模拟混合和输运,可以模拟多种同时发生的化学反应,反应可以是发生在大量相(容积反应)中,和/或是壁面、微粒的表面。
包括反应或不包括反应的物质输运模拟能力,以及当使用这一模型时的输入将在本章中叙述。
注意你可能还希望使用混合物成分的方法(对非预混系统,在14章介绍)、反应进程变量的方法(对预混系统,在15章介绍),或部分预混方法(在16章介绍)来模拟你的反应系统。
见12章FLUENT 中反应模拟方法的概述。
本章中的分为以下章节:● 13.1 容积反应 ● 13.2 壁面表面反应和化学蒸汽沉积 ● 13.3 微粒表面反应 ● 13.4 无反应物质输运13.1 容积反应与容积反应有关的物质输运和有限速率化学反应方面的信息在以下小节中给出:● 13.1.1 理论● 13.1.2 模拟物质输运和反应的用户输入概述 ● 13.1.3 使能物质输运和反应,并选择混合物材料 ● 13.1.4 混合物和构成物质的属性定义 ● 13.1.5 定义物质的边界条件 ● 13.1.6 定义化学物质的其他源项● 13.1.7 化学混合和有限速率化学反应的求解过程 ● 13.1.8 物质计算的后处理● 13.1.9 从CHEMKIN 导入一个化学反应机理13.1.1 理论 物质输运方程当你选择解化学物质的守恒方程时,FLUENT 通过第i 种物质的对流扩散方程预估每种物质的质量分数,Y i 。
守恒方程采用以下的通用形式:()()i i i i i S R J Y v Y t++-∇=⋅∇+∂∂ρρ (13.1-1) 其中i R 是化学反应的净产生速率(在本节稍后解释),i S 为离散相及用户定义的源项导致的额外产生速率。
在系统中出现N 种物质时,需要解N-1个这种形式的方程。
由于质量分数的和必须为1,第N 种物质的分数通过1减去N-1个已解得的质量分数得到。
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
FLUENT软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
∙PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
∙非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。
∙预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
一、概述在化工生产中,甲烷是一种重要的化工原料,其输运和反应机理的研究对于化工行业具有重要意义。
在输运过程中,需要考虑到甲烷的流体力学特性以及物理化学特性,以保证安全可靠的输送。
在甲烷反应机理的研究中,需要了解其在不同条件下的反应机制,以实现高效的生产过程。
本文将针对fluent组分输运甲烷反应机理的设置进行探讨。
二、fluent组分输运甲烷反应机理设置1. 甲烷输运的流体力学特性甲烷是一种无色、无味、可燃的气体,在输运过程中具有一定的流体力学特性。
对于甲烷的输运,需要考虑其在管道中的流速、压力以及温度等参数。
由于甲烷的燃烧特性,还需要考虑其与空气或其他氧化剂的混合、燃烧产物的生成等情况。
2. 甲烷的物理化学特性甲烷具有一定的物理化学特性,如密度、粘度、燃烧热等。
这些特性对于输运和反应过程具有重要影响。
在fluent的模拟中,需要考虑到甲烷的这些特性,以保证模拟结果的准确性。
3. 甲烷反应机理的设置针对甲烷的反应机理,需要考虑到其在不同条件下的反应过程。
在高温条件下,甲烷可能发生热裂解生成乙烯等烃类产物;在氧化条件下,甲烷可能与氧气发生燃烧反应生成二氧化碳和水等产物。
在fluent中设置合适的反应机理对于模拟甲烷的反应过程具有重要意义。
4. 模拟结果的验证需要对fluent模拟的结果进行验证。
可以通过实验数据或者理论计算结果对模拟结果进行验证,以检验模拟的准确性,并对模拟过程进行调整和优化。
三、结论在fluent组分输运甲烷反应机理设置的过程中,需要考虑甲烷的流体力学特性、物理化学特性以及反应机理等因素。
通过合理设置和模拟,可以实现对甲烷输运和反应过程的准确模拟,为化工生产提供重要的参考依据。
随着fluent等模拟软件的不断发展,对于甲烷的输运和反应过程的研究也将更加深入和准确。
四、fluent组分输运甲烷反应机理设置的优化在进行fluent组分输运甲烷反应机理设置时,除了考虑甲烷的流体力学特性、物理化学特性和反应机理外,还需要对模拟过程进行优化。
FLUENT中燃烧模拟计算的步骤和原则6.7 FLUENT中燃烧模拟计算的步骤和原则, Start in 2D or 3D(1) 确定物理模型的应用范围,(2) 划分计算网格(必要时应根据初步计算结果调整网格疏密),(3) 确定求解量和计算收敛判据。
, Boundary conditions(4) 燃烧问题通常对进口边界条件十分敏感,利用已知的(或合理的)速度和标量分布作为边界条件是必要的,(5) 壁面传热对于整个计算也是很重要的,若已知,应指定壁面温度,而非指定边界条件中的内部对流、辐射等。
, Initial conditions(6) 尽管稳态问题的解不依赖于初始条件,但很差的初始条件会导致问题不能收敛(由于输运方程的数量和非线性),(7) 对一些燃烧问题,可先求解冷态问题,以此为初始条件求气相燃烧问题,再求解离散相问题,再求解有辐射的问题,(8) 对强旋流,应逐渐增加其涡旋度。
, Underrelaxation Factors(9) 松弛的效果是针对高度非线性问题的,, Decrease the diverging residual URF in increments of 0.1, 使用混合物分数PDF模型时应松弛密度(0.5), 对高浮力流应松弛速度, 对高速流动应松弛压力(10) 一旦获得稳定解,应尝试增加所有量的松弛因子以尽可能地接近默认值。
, Discretization(11) 首先以一阶精度的方法离散控制方程,收敛后再以二阶精度离散以提高计算结果的精度,(12) 对三角形或四边形网格,二阶离散是尤为必要的。
, Discrete Phase Model为增强计算的稳定性,应(13) Increase number of stochastic tracks (or use particle cloud model)(14) Decrease DPM URF and increase number of gas phase iterations per DPM, Magnussen model(15) 为有限速率/涡耗散方法(Arrhenius/Magnussen) 的默认方法,, 对非预混(扩散)火焰,应关闭有限速率方法选项, 预混火焰需要Arrhenius项,因此反应物早期不燃烧(16) 可能需要高温初始化/补丁(initialization/patch),(17) 使用依赖于温度的等压比热C以减少高温时的不合理性。
导入网格2 定义求解器3 开启能量方程4 操作工况参数operating conditions1操作压力的介绍关于参考压力的设定,首先需了解有关压力的一些定义。
ANSYS FLUENT中有以下几个压力,即Static Pressure(静压)、Dynamic Pressure(动压)与Total Pressure(总压);Absolute Pressure(绝对压力)、Relative Pressure(参考压力)与Operating Pressure(操作压力)。
这些压力间的关系为,Total Pressure(总压)=Static Pressure(静压)+Dynamic Pressure(动压);Absolute Pressure(绝对压力)=Operating Pressure(操作压力)+Gauge Pressure(表压)。
其中,静压、动压和总压是流体力学中关于压力的概念。
静压是测量到的压力,动压是有关速度动能的压力,是流动速度能量的体现。
而绝对压力、操作压力和表压是FLUENT引入的压力参考量,在ANSYS FLUENT中,所有设定的压力都默认为表压。
这是考虑到计算精度的问题。
2操作压力的设定设定操作压力时需要注意的事项如下:●对于不可压缩理想气体的流动,操作压力的设定直接影响流体密度的计算,因为对于理想气体而言,流动的密度由理想气体方程获得,理想气体方程中的压力为操作压力。
●对于低马赫数的可压缩流动而言,相比绝对静压,总压降是很小的,因此其计算精度很容易受到数值截断误差的影响。
需要采取措施来避免此误差的形成,ANSYS FLUENT通过采用表压(由绝对压力减去操作压力)的形式来避免截断误差的形成,操作压力一般等于流场中的平均总压。
●对于高马赫数可压缩流动的求解而言,因为此时的压力比低马赫可压缩流动的大得多,所以求解过程中的截断误差的影响不大,可以不设定表压。
由于ANSYS FLUENT中所有需输入的压力都为表压,因此此时可以将操作压力设定为0(这样可以最小化由于压力脉动而引起的误差),使表压与绝对压力相等。
Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
fluent模拟设置一、模型1、能量方程:开启能量方程2、湍流模型:选用Realizable k-ε湍流模型和标准壁面函数Standard Wall Fn3、辐射模型,采用离散坐标辐射(DO)模型模拟炉内辐射传热,并设置每进行两次迭代计算后更新一次辐射场,以加快计算收敛速度4、组分输运+涡耗散化学反应模型(ED),对于碳氢化合物燃烧系统,燃烧反应可能包含有上百个中间反应,其计算工作量大,不便于工程应用。
为满足工程问题的需要,目前常采用两步反应系统和四步反应系统。
本文中研究的是甲烷燃烧,选用EDM模拟由燃烧引起的传热传质,考虑两步反应,即:2CH+3O=2CO+4H O4222CO+O=2CO22按不可压缩理想气体性质确定气体密度,不考虑分子扩散和气体内部的导热影响,选用分段线性比定压热容。
二、混合物及其构成组分属性在化学反应模拟过程中,需要定义混合物的属性,也需要对其构成成分的属性进行定义。
重要的是在构成成分的属性设置前对混合物的属性进行定义,因为组分特性的输入可能取决于用户所使用的混合物数学定义方式。
对于属性输入,一般的顺序是先定义混合物组分、化学反应,并定义混合物的物理属性,然后定义混合物中组分的物理属性。
1、定义混合物中的组分2、定义化学反应3、定义混合物的物理属性4、定义混合物中组分的物理属性三、边界条件在仿真中需要设置每个组分的入口质量分数,另外在出口出现回流情况下,对于压力出口用户应该设置组分质量分数。
1、内/外环火孔出口为燃气与一次空气混合气入口,采用速度进口边界条件,重庆燃气的低热值为36.75MJ/m3,理论空气需要量为9.537m3/m3,实测燃气流量为0.42m3/h,实测一次空气系数为0.674,圆形火孔的总面积面积为453mm2,得到火孔出口流速大小为1.913m/s,速度方向垂直于边界。
混合气温度为288K,混合气体发射率,各组分体积分数:甲烷13.06%,氧气18.18%,其余为氮气。
fluent组分输运模拟混煤燃烧之前用组分输运做过一些混煤燃烧的工作,因为自己一开始接触组分输运的时候也遇到很多困难,用组分输运做混煤模拟更是一无所知,后来在之前课题组基础上,加上自己的摸索,对用组分输运做混煤模拟的套路大概了解了,所以就把这个“套路”总结了一下写了出来,希望可以帮到有需要的朋友。
当然,下面的内容更多的是做混煤模拟的一个过程的描述,具体里面的有些参数的设置我也不是太懂,尤其是一些涉及到化学反应的参数,所以这篇文章只是告诉大家设置的“套路”,具体的参数还是要大家查阅相关文献或书籍。
另外大家也没必要死搬硬套我这个套路,我这篇文章只是希望能给想做混煤模拟的朋友一些启发,大家应当在我这个文章的基础上多去琢磨,搞清楚每一步的设置都是在做什么,这样自己遇到一些我文中没有提到的问题时也能自己解决。
文中若有什么错误或未描述清楚的地方,欢迎互相交流。
1.打开species面板,选择species transport(组分输运),Reactions勾选上Volumetric,表示组分输运在某体积内有化学反应,Turbulence-Chemistry Interaction点选Finite-Rate/Eddy-Dissipation,表示化学反应是有限反应速率的,反应速率受化学反应本身与湍流混合二者共同控制。
2.点Finite-Rate/Eddy-Dissipation后,下面会出现coal calculator,用于对煤的反应进行计算,点coal calculator,弹出如下界面,根据煤质分析结果,填入相应数据,这里假设有两种煤,一种中等挥发份,取名为coal-mv,一种为高挥发份,取名为coal-hv,相应结果如下图。
3.点完Apply后点OK,会弹出如下界面。
4.这样coal-hv就设置好了,然后继续点coal-calculator,以同样的方法设置coal-mv。
再后面的设置比较复杂,我尽量说清楚。
第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
【关键字】化学第十三章物质输送和有限速率化学反应FLUENT可以通过求解描述每种组成物质的对流、扩散和反应源的守恒方程来模拟混合和输运,可以模拟多种同时发生的化学反应,反应可以是发生在大量相(容积反应)中,和/或是壁面、微粒的表面。
包括反应或不包括反应的物质输运模拟能力,以及当使用这一模型时的输入将在本章中叙述。
注意你可能还希望使用混合物成分的方法(对非预混系统,在14章介绍)、反应进程变量的方法(对预混系统,在15章介绍),或部分预混方法(在16章介绍)来模拟你的反应系统。
见12章FLUENT中反应模拟方法的概述。
本章中的分为以下章节:●13.1 容积反应●13.2 壁面表面反应和化学蒸汽堆积●13.3 微粒表面反应●13.4 无反应物质输运13.1 容积反应与容积反应有关的物质输运和有限速率化学反应方面的信息在以下小节中给出:●13.1.1 理论●13.1.2 模拟物质输运和反应的用户输入概述●13.1.3 使能物质输运和反应,并选择混合物材料●13.1.4 混合物和构成物质的属性定义●13.1.5 定义物质的边界条件●13.1.6 定义化学物质的其他源项●13.1.7 化学混合和有限速率化学反应的求解过程●13.1.8 物质计算的后处理●13.1.9 从CHEMKIN导入一个化学反应机理13.1.1 理论物质输运方程当你选择解化学物质的守恒方程时,FLUENT通过第种物质的对流扩散方程预估每种物质的质量分数,Yi。
守恒方程采用以下的通用形式:(13.1-1)其中是化学反应的净产生速率(在本节稍后解释),为离散相及用户定义的源项导致的额外产生速率。
在系统中出现N种物质时,需要解N-1个这种形式的方程。
由于质量分数的和必须为1,第N种物质的分数通过1减去N-1个已解得的质量分数得到。
为了使数值误差最小,第N种物质必须选择质量分数最大的物质,比如氧化物是空气时的N2。
层流中的质量扩散在方程13.1-1中,是物质的扩散通量,由浓度梯度产生。
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。