人教版八年级数学下册 数据的波动程度 初中数学ppt课件教案共46页文档
- 格式:ppt
- 大小:3.35 MB
- 文档页数:23
数学人教版八年级下册20.2数据的波动程度(1).pptx1、八年级下册20.2 数据的波动程度〔1〕八年级马上就要县抽考了,八年级的同学数学成果都很棒,由于有人数限定,甲乙两名同学只能从中选择一个参与。
为此,老师特意把两名同学本学期五次测验的成果列表如下甲8590909095乙9585958590你能帮我解决问题吗〔2〕现要选择一名同学参与竞赛,若你是老师,你认为选择哪一位比较合适?为什么?〔1〕为了更直观的看出甲乙两名同学成果的分布状况,我们先来依据这两名同学的成果在下坐标系中画出折线统计图;依据统计图你能说说甲乙两名同学成果的波动状况吗?012345考试次数80859095100成果〔分〕从图中看到2、的结果能否用一个量来刻画呢?甲同学成果与平均成果的偏差的和:乙同学成果与平均成果的偏差的和:〔85-90〕+〔90-90〕+〔90-90〕+〔90-90〕+〔95-90〕=0〔95-90〕+〔85-90〕+〔95-90〕+〔85-90〕+〔90-90〕=0怎么办?你能找到缘由吗?这种波动状况,应以什么数据来衡量?甲同学成果与平均成果的偏差的平方和:乙同学成果与平均成果的偏差的平方和:找到啦!有区分了!〔85-90〕2+〔90-90〕2+〔90-90〕2+〔90-90〕2+〔95-90〕2=50〔95-90〕2+〔85-90〕2+〔95-90〕23、+〔85-90〕2+〔90-90〕2=100想一想上述各偏差的平方和的大小与考试的次数有关吗?——与考试次数有关!所以以后我们就可以用各数据与他们的平均数的差的平方的平均数来衡量一组数据的波动大小甲同学的成果的波动状况可以用:[〔85-90〕2+〔90-90〕2+〔90-90〕2+〔90-90〕2+〔95-90〕2]÷5=10乙同学的成果的波动状况可以用:[〔95-90〕2+〔85-90〕2+〔95-90〕2+〔85-90〕2+〔90-90〕2]÷5=20S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n方差就是各数据与它们的平均4、数的差的平方的平均数.方差公式文字表达式:方差用来衡量一组数据的波动大小.(即这组数据偏离平均数的大小).设一组数据x1、x2、…、xn中,各数据与它们的平均数的差的平方分别是(x1-x)2、(x2-x)2、…(xn-x)2,那么我们可以用平方是为了在表示各数据与其平均数的偏离程度时,防止正偏差与负偏差的互相抵消.取各个数据与其平均数的差的肯定值也是一种衡量数据波动状况的统计量,但方差应用更广泛.整体的波动大小可以通过对每个数据的波动大小求平均值得到.小结方差越大,数据的波动越大,越不稳定.方差越小,数据的波动就越小,越稳定例1在一次芭蕾舞竞赛5、中,甲、乙两个芭蕾舞团表演了舞剧《天鹅湖》,参与表演的女演员的身高(单位:cm)分别是甲团163164164165165165166167乙团163164164165166167167168哪个芭蕾舞团女演员的身高更整齐?解:甲、乙两团演员的平均身高分别是1、计算以下各组数据的方差:比一比:看谁算的快〔3〕3336999;〔2〕3346899;〔1〕5566677;2、方差的作用是〔〕〔A)表示数据的平均水平〔B〕表示数据的集中趋势〔C〕表示数据的位置〔D〕表示数据的波动大小D3、在学校,小明本学期五次测验的数学成果和英语成果分别如下〔单位:分 6、〕数学7095759590英语8085908585计算出小明两科成果的平均成果与方差,你能对小明提出什么建议吗?平均数:都是85方差:①数学110;②英语10建议:英语较稳定但要提高;数学不够稳定有待努力进步!〔1〕方差怎样计算?〔2〕你如何理解方差的意义?方差越大,数据的波动越大;方差越小,数据的波动越小.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来推断它们的波动状况.课堂小结作业:习题20.2的第1,2两题.第5页。
人教版数学八年级下册20.2《数据的波动程度》教案4一. 教材分析《数据的波动程度》是人教版数学八年级下册第20.2节的内容,主要介绍了方差、标准差的概念及其计算方法,目的是让学生理解数据的波动程度,并掌握用方差、标准差来衡量数据的稳定性。
本节内容是在学生已经掌握了数据的收集、整理、描述的基础上进行的,为后续学习概率和统计奠定了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于数据的收集、整理和描述有一定的了解。
但是,对于方差、标准差的概念及其计算方法可能较为陌生,需要通过实例来引导学生理解和掌握。
此外,学生可能对于抽象的概念理解存在困难,需要教师通过具体的数据和实例来帮助学生理解。
三. 教学目标1.了解方差、标准差的概念,理解它们的意义。
2.学会计算方差、标准差。
3.能够运用方差、标准差来衡量数据的波动程度,判断数据的稳定性。
四. 教学重难点1.重点:方差、标准差的概念及其计算方法。
2.难点:对于方差、标准差的理解和运用。
五. 教学方法采用讲授法、案例教学法、小组合作法等多种教学方法,引导学生通过观察、思考、讨论、操作等活动,理解和掌握方差、标准差的概念及其计算方法,提高学生的数学思维能力和实践能力。
六. 教学准备1.准备相关的数据资料。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾数据的收集、整理、描述的过程,为新课的学习做好铺垫。
2.呈现(15分钟)展示一组数据,引导学生观察数据的波动情况。
然后,介绍方差、标准差的概念,并通过计算实例让学生感受方差、标准差在衡量数据波动程度方面的作用。
3.操练(15分钟)让学生分组进行练习,计算给定数据的方差、标准差。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)通过填空、选择题等形式,让学生巩固方差、标准差的概念和计算方法。
5.拓展(10分钟)引导学生思考:如何运用方差、标准差来判断数据的稳定性?举例说明。
八年级数学人教版下册课件:20.2 数据的波动程度第1课时.ppt1、20.2数据的波动程度〔第1课时〕第二十章数据的分析人教版八年级下册复习旧知1.平均数的计算要用到全部的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大.2.当一组数据中某些数据多次重复出现时,众数往往是人们关怀的一个量众数不受极端值的影响,这是它的一个优势.3.中位数只需很少的计算,不受极端值的影响,这在有些状况下是一个优点.学习目标:1.经受方差的形成过程,了解方差的意义;2.把握方差的计算方法并会初步运用方差解决实际问题.学习重点:方差意义的理解及应用.学习目标引入新课问题1 农科院打算为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关怀的问题.为了解甲、乙两种甜玉米种子的相关状况,农科2、院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量〔单位:t〕如下表:甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.537.447.497.527.587.467.537.49依据这些数据估计,农科院应当选择哪种甜玉米种子呢?讲授新课讲授新课〔1〕甜玉米的产量可用什么量来描述?请计算后说明.说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.可估计这个地区种植这两种甜玉米的平均产量相差不大.甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.537.447.497.527.587.467.537.49产量波动较大产量波动较小〔2〕 3、如何考察一种甜玉米产量的稳定性呢?①请设计统计图直观地反映出甜玉米产量的分布状况.甲种甜玉米的产量乙种甜玉米的产量讲授新课②统计学中常采纳下面的做法来量化这组数据的波动大小:设有n个数据x1,x2,…,xn,各数据与它们的平均数的差的平方分别是,我们用这些值的平均数,即用来衡量这组数据的波动大小,称它为这组数据的方差.方差越大,数据的波动越大;方差越小,数据的波动越小.讲授新课③请利用方差公式分析甲、乙两种甜玉米的波动程度.两组数据的方差分别是:讲授新课③请利用方差公式分析甲、乙两种甜玉米的波动程度.据样本估计总体的统计思想,种乙种甜玉米产量较稳定.明显>,即说明甲种甜玉米的波动较大,这与我们从产量分布图看到的结果一致.甲7.654、7.507.627.597.657.647.507.407.417.41乙7.557.567.537.447.497.527.587.467.537.49讲授新课甲团163164164165165166166167乙团163165165166166167168168 哪个芭蕾舞团女演员的身高更整齐?例在一次芭蕾舞竞赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参与表演的女演员的身高〔单位:cm〕分别是:讲授新课强化训练练习1 计算以下各组数据的方差:〔1〕6666666;〔2〕5566677;〔3〕3346899;〔4〕3336999.练习2 如图是甲、乙两射击运动员的10次射击训练成果的折线统计图.观看图形,甲、乙这10次射击成5、绩的方差哪个大?成果/环次数甲乙10119876021345678910 甲乙强化训练课后小结〔1〕方差怎样计算?〔2〕你如何理解方差的意义?方差越大,数据的波动越大;方差越小,数据的波动越小.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来推断它们的波动状况.课后作业作业:教科书P128习题20.2第1、2题.第3页。
数学人教版八年级下册20.2数据的波动程度(1)课件.ppt1、八年级下册20.2 数据的波动程度〔1〕内蒙古通辽市奈曼旗张立杰甲、乙、丙三名射击手现要选择一名射击手参与竞赛.若你是教练,你认为选择哪一位比较适合?教练的苦恼?甲、乙、丙三名射击手的测试成果统计如下:第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068丙命中的环数96587我们已经学过描述一组数据的集中趋势的统计量,他们分别是什么?请你设计一种简洁易行的选拨方案第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068甲,乙两名射击手的测试成果统计如下:⑴请分别计算两名射手的平均成果;教练的苦恼?=8〔环〕=8〔环〕甲x学习目标:1、理解方差的意义;2、把握方差的计算公式;3、会初步运2、用方差解决实际问题。
自学探究、合作沟通:自学课本124页—125页例1以上内容,回答以下问题:1、当平均数相差不大时,你能否用一个量来刻画一种甜玉米的稳定性呢?2、什么叫做方差?3、方差的计算公式是什么?4、看哪个小组能解决教练的苦恼?问题1 农科院打算为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关怀的问题.为了解甲、乙两种甜玉米种子的相关状况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量〔单位:t〕如下表:生活中的数学生活中的数学甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.537.447.497.5273、.587.467.537.49依据这些数据估计,农科院应当选择哪种甜玉米种子呢?反馈点拨:1、当平均数相差不大时,你能否用一个量来刻画一种甜玉米的稳定性呢?2、什么叫做方差?3、方差的计算公式是什么?4、看哪个小组能解决教练的苦恼?方差越大,说明数据的波动越大,越不稳定.方差用来衡量一批数据的波动大小.(即这批数据偏离平均数的大小).方差:各数据与它们的平均数的差的平方的平均数.概括:你能解决教练的苦恼了吗?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画4、出折线统计图;教练的苦恼?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画出折线统计图;⑶现要选择一名射击手参与竞赛,若你是教练,你认为选择哪一位比较适合?为什么?教练的苦恼?归纳方差的计算公式:设一组数据x1、x2、…、xn中,各数据与它们的平均数的差的平方分别是(x1-x)2、(x2-x)2、…(xn-x)2,那么我们用它们的平均数,即用S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n计算方差的步骤可概括为“先平均,后求差,平方后,再平5、均”.第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成果统计如下:成果〔环〕射击次序⑴请分别计算两名射手的平均成果;⑵请依据这两名射击手的成果在下列图中画出折线统计图;⑶现要选择一名射击手参与竞赛,若你是教练,你认为选择哪一位比较适合?为什么?教练的苦恼?甲团163164164165165166166167乙团163165165166166167168168 哪个芭蕾舞团女演员的身高更整齐?应用新知例在一次芭蕾舞竞赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参与表演的女演员的身高〔单位:cm〕分别是:稳固新知练习1 计算以下各6、组数据的方差:〔1〕6666666;〔2〕5566677;〔3〕3346899;〔4〕3336999.稳固新知练习2 如图是甲、乙两射击运动员的10次射击训练成果的折线统计图.观看图形,甲、乙这10次射击成果的方差哪个大?成果/环次数甲乙10119876021345678910〔1〕方差怎样计算?计算规律:先平均,后求差,平方后,再平均〔2〕你如何理解方差的意义?方差越大,数据的波动越大;方差越小,数据的波动越小.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来推断它们的波动状况.课堂小结感谢再见。