人教版第一册第一单元测试题
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
新人教版小学一年级数学上册单元测试题(全册)第一单元测试题姓名得分一、看图写数(9分)( ) ( ) ( )二、数数在内画○计数(18分)★★★★★★★★三、数一数,在横线上画出相应的“○”(5分)你家里有几口人?今年你几岁了?你这一小组有几个同学?你书包里有几本书?你喜欢上的课有几节?四、连一连(28分)1.2.(12分)五、把同样多的用线连起来(16分)○○○○○○○○○○○○○○○○六、小红今年上一年级,妈妈带她去买学习用品,应该买什么,请把它们圈起来好吗?(8分)七、数一数,在○里涂色(8分)○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○八、这些食物该分给谁才合适呢?把它们用线连一连(8分)九、提高题(10分,不计入总分)1.画○,○比△多3个。
2. 画△, △比□少4个。
△△△△□□□□□□□□□小学数学第一册第二单元测试题(2)姓名得分一、比长短(10分)1.长□√,短□○。
2.最长□√,最短□○。
二、比高矮(15分)1.最高□√,最矮□○。
2.重的画“√”轻的画“○”。
三、比远近(10分)1.小蚂蚁回家,走哪条路最近,在□里画“√”。
2.在最长的后面的“□”里画“√”。
四、实践能力题 (7分)把同样多的方糖放进下面的杯中,哪一杯水最甜,在( )里打√。
( ) ( ) ( )五、多□√,少□○(6分)六、1.比一比,大□√,小□○(10分)2.比一比,厚的画□√,薄的画□○。
□□□七、比一比(12分)1.最轻的画√,最重的画△。
□□□□2.最快的画√,最慢的画△。
② ③ ④ □ □ □ □八、 和 哪个重?重□√,轻□○(8分)。
九、找几个同学,从高到矮排排队。
(6分)十、两个杯里的水一样多,放进大小不同的石块后,哪个杯子里的水会变得更高?在更高□√。
(6分)①□ ②□ (杯子一样大)十一、比一比,哪一种水果最重?在最重□√。
(10分)①②③④□ □十二、益智题(10分,不计入总分)请同学们想一想,在一天中,大树是早晨的影子长,还是中午的影子长?早晨( ) 中午( )小学数学第一册第三单元测试题(3)姓名得分一、把同类的物体圈出来(8分)二、请把一类的东西涂成同一种颜色(8分)三、把应放在书包里的东西圈出来(8分)四、圈出一个不同类的东西(12分)(1)(2)(3)五、看图说一说,图1和图2怎样分的(8分) 1. 2.六、把□涂上红色, 涂绿色,△涂黄色 (8分)七、想一想,可以怎样分(10分)八、把下面物品的序号填在下面相应的圈里(10分)文具玩具服装鞋帽2.怎样放合适呢?(用线连一连 8分)九、数一数、分一分,你能想出几种分类方法(10分)十、下面这些动物你认识吗?它们各有几只脚?会游泳的是哪几个号?请把动物编号写在相应的圈内。
一、选择题1.若a 、b 是两个单位向量,其夹角是θ,则“32ππθ<<”是“1a b ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <35.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >7.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件D .充要条件12.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}二、填空题13.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.14.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.15.方程2210ax x 至少有一个正实数根的充要条件是________;16.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.17.设集合{1,2,3,4}I =,选择I 的两个非空子集A 和B ,使得A 中最大的数不大于B 中最小的数,则可组成不同的子集对(,)A B __________个. 18.已知命题p :∀x ∈R,2x >0,则p ⌝为__________.19.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案20.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.三、解答题21.解关于x 的不等式ax 2-2(a +1)x +4>0.22.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由; (2)判断p q ∨,p q ∧,()p q ∧⌝的真假.23.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 24.若集合A={x|x 2+5x ﹣6=0},B={x|x 2+2(m+1)x+m 2﹣3=0}. (1)若m=0,写出A ∪B 的子集; (2)若A∩B=B ,求实数m 的取值范围.25.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤>(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围. 26.已知非空集合(){}2230A x x a a x a =-++<,集合211xB xx ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)当实数a 为何值时,p 是q 的充要条件.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】求出1a b ->时θ的范围,然后由充分必要条件的定义判断. 【详解】由题意222()222cos a b a b a a b b -=-=-⋅+=-1>,则1cos 2θ<,∴,3πθπ⎛⎤∈ ⎥⎝⎦, 因此32ππθ<<时,满足,3πθπ⎛⎤∈⎥⎝⎦,但,3πθπ⎛⎤∈ ⎥⎝⎦时不一定满足32ππθ<<.应为充分不必要条件. 故选:A . 【点睛】本题考查充分必要条件的判断,实际上可以根据充分必要条件与集合包含之间的关系判断.命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.3.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.4.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.5.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.8.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.9.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.10.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.11.A解析:A 【解析】试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.12.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.二、填空题13.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.16.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.17.49【解析】分析:根据题意进行列举即可得出结果详解:①若则可以表示为共种若则可以表示为共种若则可以表示为共种若则可以表示为共种计种②若则可以表示为共种若则可以表示为共种则可以表示为共种则有种则有种则解析:49 【解析】分析:根据题意进行列举,即可得出结果详解:①若{}1A =,则B 可以表示为{}1,{}12,,{}13,,{}14,,{}123,,,{}124,,,{}134,,,{}1234,,,,{}2,{}23,,{}24,,{}234,,, {}3,{}34,,{}4,共15种 若{}2A =,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种 若{}3A =,则B 可以表示为{}3,{}34,,{}4,共3种 若{}4A =,则B 可以表示为{}4,共1种计1573126+++=种②若{}12A =,,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种若{}13A =,,则B 可以表示为{}3,{}34,,{}4,共3种 {}14A =,,则B 可以表示为{}4,共1种{}23A =,,则B 有3种 {}24A =,,则B 有1种{}34A =,,则B 有1种计73131116+++++=种③{}123A =,,,则B 有3种 {}124A =,,,则B 有1种 {}134A =,,,则B 有1种 {}234A =,,,则B 有1种计31116+++=种④若{}1234A =,,,,则B 有1种 综上所述,共有26166149+++=种 故答案为49种点睛:本题主要考查的知识点是排列组合的实际应用,本题解题的关键是理解题意,能够看懂A 中最大的数不大于B 中最小的数的意义,本题是一个难题也是一个易错题,需要认真解答18.【详解】根据全称命题的否定的概念可知p 为解析:00R,20xx ∃∈≤【详解】根据全称命题的否定的概念,可知⌝p 为00R,20x x ∃∈≤.19.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解解析:5 【解析】 【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数. 【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数, 所以同时参加田径比赛和球类比赛的有5人. 故答案为5. 【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题.20.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17【分析】用27C 减去4即得.【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=. 故答案为:17.【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .三、解答题21.答案见解析.【分析】二次项含参,先对a 分0,0,0a a a =><三类讨论,当0a =时,直接代入化简得到解集;当0a >时,不等式可化为(ax -2)(x -2)>0,其对方程两个根为2,2a,需比较两根大小,再分01a <<,1a =,1a >三类求出解集;当0a <时,原不等式可化为(-ax +2)(x -2)<0,直接判断两根大小,得到解集,最后综合,求得答案.【详解】解:(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2. ①当0<a <1时,2a >2,所以原不等式的解集为2{|x x a >或2}x <; ②当a =1时,2a =2,所以原不等式的解集为{x |x ≠2}; ③当a >1时,2a <2,所以原不等式的解集为2{|x x a<或2}x >. (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2, 则2a <2,所以原不等式的解集为2{|2}x x a<<.综上,a <0时,原不等式的解集为2{|2}x x a <<; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为2{|x x a >或2}x <; 当a >1时,原不等式的解集为2{|x x a<或2}x >. 【点睛】 本题考查了含参一元二次不等式的解法,对二次项系数分类讨论,在需要时对两根大小分类讨论,属于中档题.22.(1)p 为真,q 为假,理由见解析;(2)p q ∨为真,p q ∧为假,()p q ∧⌝为真.【分析】(1)由22x =有解知命题p 为真命题,22sin 1cos 2y x x ==-,在(,)62ππ-上先减后增.即命题q 为假命题;(2)由p 为真q 为假,结合复合命题的真假可得.【详解】(1)易知0x R ∃=,故p 为真.∵22sin 1cos2y x x ==-,且23x ππ⎛⎫∈-⎪⎝⎭,, ∴1cos2y x =-在,62ππ⎛⎫-⎪⎝⎭上先减后增,故q 为假. (2)∵p 真q 假,∴p q ∨为真,p q ∧为假,()p q ∧⌝为真.【点睛】本题考查了三角函数的单调性及复合命题的真假,属中档题.23.(1)()2,3:(2)324a ≤≤. 【分析】(1)先化简命题,p q ,再求集合的交集得解; (2)先求出p ⌝和q ⌝,再解不等式组243a a ≤⎧⎨≥⎩,即得解. 【详解】(1)命题p :实数x 满足()225400x ax a a -+<>, 所以4a x a <<,设{}4A x a x a =<<,命题q :实数x 满足2560x x -+<,解得23x <<,设{}23B x x =<<,1a =时,若p q ∧为真,则{}23A B x x ⋂=<<. 故x 的取值范围为()2,3;(2)(][):,4,p a a ⌝-∞⋃+∞,(][):,23,q ⌝-∞⋃+∞,若p ⌝是q ⌝的充分不必要条件,可得243a a ≤⎧⎨≥⎩,解得324a ≤≤, 故实数a 的取值范围为324a ≤≤. 【点睛】方法点睛:利用集合法分析判断充分必要条件,首先分清条件和结论;然后化简每一个命题,建立命题p q 、和集合A B 、的对应关系.:{|()p A x p x =成立},:{|()q B x q x =成立};最后利用下面的结论判断:(1)若A B ⊆,则p 是q 的充分条件,若A B ⊂,则p 是q 的充分非必要条件;(2)若B A ⊆,则p 是q 的必要条件,若B A ⊂,则p 是q 的必要非充分条件;(3)若A B ⊆且B A ⊆,即A B =时,则p 是q 的充要条件.24.(1)A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1}(2)m 的取值范围是(﹣∞,﹣2].【分析】(1)由x 2+5x ﹣6=0得6,1x x =-=或,所以{1-6}A =,,当0m =时,化简{}1,3B =-,求出A ∪B {}6,3,1=--,写出子集即可(2)由A B B ⋂=知B A ⊆,对判别式进行分类讨论即可.【详解】(1)根据题意,m=0时,B={1,﹣3},A ∪B={﹣6,﹣3,1};∴A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1},(2)由已知B ⊆A , •①m <﹣2时,B=Φ,成立‚②m=﹣2时,B={1}⊆A ,成立ƒ③m >﹣2时,若B ⊆A ,则B={﹣6,1};∴⇒m 无解,综上所述:m 的取值范围是(﹣∞,﹣2].【点睛】本题主要考查了集合的并集运算,子集的概念,分类讨论的思想,属于中档题. 25.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.26.(1)1001-⋃(,)(,);(2)1a =-. 【分析】(1)解出集合B ,由题意得出A B ,可得出关于实数a 的不等式组,即可求得实数a 的取值范围;(2)由题意可知A B =,进而可得出1-和1是方程()2230x a a x a -++=的两根,利用韦达定理可求得实数a 的值.【详解】(1)解不等式211x x <-,即101x x +<-,解得11x -<<,则{}11B x x =-<<. 由于p 是q 的充分不必要条件,则A B ,()(){}20A x x a x a=--<, ①当2a a =时,即当0a =或1a =时,A =∅,不合题意;②当2a a <时,即当0a <或1a >时,{}2A x a x a =<<, A B ,则211a a ≥-⎧⎨≤⎩,解得10a -≤<, 又当1a =-,{}11A x x B =-<<=,不合乎题意.所以10a -<<;③当2a a <时,即当01a <<时,A B ,则211a a ⎧≥-⎨≤⎩,此时01a <<.综上所述,实数a 的取值范围是1001-⋃(,)(,); (2)由于p 是q 的充要条件,则()1,1A B ==-, 所以,1-和1是方程()2230x a a x a -++=的两根, 由韦达定理得2301a a a ⎧+=⎨=-⎩,解得1a =-. 【点睛】本题考查利用充分不必要条件、充要条件求参数,考查运算求解能力,属于中等题.。
人教版小学语文第一册第一二单元测试题
班级:姓名:
一、我会拼,我会写。
mùmǎbái tiān sān gèrén shàng chē
fēi niǎo shítiān mén kǒu huǒchē
二、读一读,连一连。
z zh c ch 亻户尸广
真足春草屋座们房
青青的月儿白白的云朵蓝蓝的船
弯弯的小草高高的大树小小的天
三、我会数:把笔画数相同的字填在一起。
子长见电口出
三画:四画:
四、我会圈:把正确的读音圈出来。
一座(zuò zòu )桥雨伞(sǎn shǎn )
金(jīnɡjīn )子天( tiānɡtiān)上
田野(yěi yě)拍皮球(qíu qiú)
五、照样子,试着加一笔变成另一个字。
如:二→ (土)口→()了→ ()人→ ()日→ ()木→()
六、背一背,填一填
床前明光,疑是地霜。
Sī
举望明月,低思故乡。
七、请把“鸟儿唱,鱼儿游”画一画吧。
人教版高一英语第一册 Unit 1 单元测试卷(含答案)(考试时间:90分钟满分:120分)第一部分阅读理解(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
ATeenage life around the worldAshaI'm from Tanzania. Like most teenagers, I start my day early and end it late. After school, I study at a night school to prepare for the university entrance exam. When I have time off, I prefer to be outdoors. I love nature and animals. I'm quite upset about how we treat the environment, so I do my best to help. I volunteer to plant trees and I'm a member of our school's Nature Club.SamikaI'm 15. I wish I were a student, but I'm not. I had to leave school when I was 13 so that I could get a job and help my family. I work in a garment. It's unbelievably hard work and the days are so long. Although everyone works hard, we still find time to play and laugh together. At times like these, the world feels like a wonderful place.FriederI'm 16 and I go to a high school in Munich. I'm not crazy about school — listening to a teacher isn't my thing — but I know I have to get an education. It's very difficult for young people to find a job in Europe, so I worry a lot about the future. Oh, and I'm a gaming nerd. I love Internet games so much that I have started a gaming club at my school.JoeI'm a student from London. The online world is a big part of my life. I've been using the computer since I was a kid. I do various things online. Besides doing all my schoolwork, I chat with friends, play computer games, watch films, read the daily news and shop online. My parents are worried. They keep telling me to drag myself away from the online world.1.What does Asha care about most?A. School life.B. Exams.C. Environment.D. Outdoor activities.2.Which of the following can best describe Samika?A. Her life is hard but she is happy.B. She is poor but can afford school.C. She is out of job and stressful.D. She is out of school and annoyed.3.What do Frieder and Joe have in common?A. They worry about their future.B. They are addicted to the Internet.C. They prefer to make friends online.D. They attend the computer club at school.BEveryone has "down days". Maybe it's because of the bad weather, or the poor grade on a difficult test, and some days teenagers just act uninterested in life or school. But these symptoms(症状) often pass quickly, as teens move on to new school subjects, or meet friends, preventing themselves from thinking what troubles them at the moment. But if a teenager displays symptoms of sadness for more than two weeks, it might point to something serious.As teenagers develop, they push new boundaries(边界), complain about rules and look for more free rights from their parents. According to the online Health Guide on Adolescent Development, parents must be lasting figures in their teenagers' life, providing safe boundaries for teens to grow, even if the teenagers act like these boundaries are unwanted.Parents need to provide rules, while also remaining flexible(灵活的) and respectful of the growing teens' need for freedom. For example, teenagers will often feel frustrated, embarrassed, and even angry that though they want freedom, they still need to ask their parents for agreement to go to a friend's house, or need their mothers to take them to school.The US Department of Education says that parents should respect(尊重) and support their teens' choices as long as those choices won't have long-term harmful effects. For example, even if a parent doesn't prefer the music his or her teen listens to, it's unlikely that the choice of music will prevent that teen from entering a good college, or lead to health problems. However, if that teen is drinking alcohol and driving, parents must get through strict punishments to teach him/her that there are bad results of poorchoices that come with increased freedom.4.Why do teens' feelings of bad days usually disappear quickly?A.Their teachers help them.B.They take some medicine.C.Their parents talk with them.D.They shift their attention.5.What does the example in Paragraph 3 show?A.Freedom must be given at any time.B.Teens are mad about being controlled.C.Teens need both freedom and proper rules.D.Rules must be absolutely strict for teens.6.What should parents do about their teens' choices?A.Support their helpful hobbies.B.Tell them which college to attend.C.Cancel their extra-curricular activities.D.Get them away from singing pop songs.7.What is the best title for the text?A.How to Be with Growing TeensB.Causes of Teens' SadnessC.Teens' Worries About Strict RulesD.The Importance of Making Friends with TeensCThe Internet plays a big part in human life. We use it for work and pleasure. We use it to learn a new language. We find advice on it. We use it to connect with family and friends. We use it to stay in touch with events we care about. The list goes on and on.As far as the Internet being a part of our lives, well, that train has left the station. There is no going back to an Internet-free life. But can using the Internet too much be bad for our health? It might be, say researchers. A new study finds that heavy Internet use may be connected to high blood pressure in a young group: teenagers.The study results show that teens who spend at least 14 hours a week only online may cause high blood pressure, which makes their hearts and blood vessels (血管) work too hard. Over time, this extra pressure increases the risk of a heart attack. High blood pressure can also cause heart and other diseases.The Henry Ford Hospital in Detroit, Michigan did the study. 335 young people, from 14 to 17 years old, took part in it. 134 of the teens were described as H heavy Internet users". And researchers found that out of these 134 teens, 26 had high bloodpressure. The researchers said the study was the first to connect heavy Web use with high blood pressure.The lead researcher is Andrea Cassidy-Bushrow. She says, "Using the Internet is part of our daily life, but il shouldn't ruin (毁坏)us. "Ms. Cassidy-Bushrow adds that it is important for teens to stop to have a rest regularly (有规律地)from their computers or smartphones and do some kind of physical activity. She also suggests that parents shouldn’t let their children use the Internet for more than two hours a day, five days a week.8. What does the underlined part ,"that train has left the station" mean in Paragraph 2?A. The train has changed its course.B. The Internet has improved peopled life.C. Life without the Internet is nowhere to be found.D. The Internet brings great changes to people's life.9. What can we know about the study according to Paragraph 4?A. Over half of the teens in the study were heavy Internet users.B. Most of the young people had high blood pressure.C. Adult people aged above 17 took part in the study.D. There was no similar study like it before.10. Which of the following would Andrea Cassidy-Bushrow probably agree with?A. That teenagers shouldn't use the Internet.B. That the Internet will ruin human life in the future.C. That smartphones are more harmful than computers.D. That regular breaks are necessary when using the Internet.11. What does the text mainly talk about?A. Heavy Internet users are mostly teenagers.B. How to prevent teenagers from using the Internet.C. Too much Internet use may be bad for teenagers.D. Every coin has two sides — so does the Internet.DA teenager needs to have a sense of independence in their life to feel secure(安全的). To some teenagers independence means a lot to them, and I think that some parents don't allow their teenagers enough independence.Independence has something to do with freedom. Some kids are not allowed to goanywhere alone, and the only thing their schedule includes is going to school, coming home, going to sleep, and repeating the process the next day. Parents tend to be afraid that their kids can get hurted if they go outside into the world. But if parents control their kids too much, they may never learn to live on their own. The best way for a teenager to learn lesson is through experience. I think it is beneficial for teenagers to have freedom.Teenagers' lack of freedom can also stop them from having good friendship at school. Some might say that this is a good thing, because it helps them focus more on their school work. I argue that this can only discourage them not to do their school work. Some parents do not allow their children to be around their friends outside the school, thinking that this will get them into trouble. But I don't think so. Instead, isn't this a good reason for parents to get their children a cellphone? Cellphones allow teenagers to stay in touch with their parents, and communicate better with their friends.Privacy is another issue between parents and their teenagers. Teenagers tend to enjoy relaxation by themselves in their own room. This also gives them a sense of independence. It often annoys teenagers when their parents enter their room when they are not home. I know that my mom always goes in my room when I'm not home, and this has brought me to the point where I have asked many times to get a lock on my door.12.What is the main idea of the second paragraph?A.Kids know how to live independently.B.Some parents allow their kids no freedom.C.It benefits teenagers to have freedom.D.Kids have a dull routine every day13.In the opinion of the author, ___________.A.parents should make it easy for kids to communicate with their friendsB.good friendships between kids harm their school workC.it is unnecessary for a kid to have a cellphoneD.kids should focus on the school work14.How do teenagers usually feel when their parents enter their rooms in their absence?A.DisappointedB.LuckyC.AngryD.Calm15.The author hopes to have her door locked in order to ______________.A.keep her father from reading her dairyB.prevent her mother entering her roomC.Protect herself from any harmD.Stop thieves from going in第二节(共5小题;每小题2.5分,满分12.5分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
人教版一年级初级语文第一单元测验题及
参考答案
一、选择题
1. 下列哪个字表示“水”的意思?(A)
A. 水
B. 火
C. 木
答案:A
2. 下列哪个字表示“山”的意思?(B)
A. 水
B. 山
C. 木
答案:B
3. 下列哪个字表示“人”的意思?(A)
A. 人
B. 火
C. 木
答案:A
二、填空题
1. (空)+(空)=(空)答案:一 + 一 = 二
2. (空)+(空)=(空)答案:二 + 一 = 三
3. (空)-(空)=(空)答案:四 - 一 = 三
三、阅读理解
阅读下面的短文,回答问题。
《小猪快跑》
有一天,小猪在农场里玩耍,突然看到了一只狡猾的狼。
小猪害怕极了,决定逃跑。
小猪跑啊跑,跑到了一座山上。
狼追啊追,但是追不上了。
最后,小猪成功逃脱了狼的追赶。
1. 小猪为什么会害怕?(答案:因为看到了狡猾的狼)
2. 小猪跑到了哪里?(答案:小猪跑到了一座山上)
四、写作
请用你学过的词语,写一篇关于“我的家人”的短文。
答案:略
以上就是人教版一年级初级语文第一单元测验题及参考答案,希望对您有所帮助。
如有任何疑问,欢迎随时提问。
(人教版2019)生物必修第一册第一章《走进细胞》单元测试题一、选择题(每小题2分,共40分)1.细胞学说、达尔文的进化论及孟德尔遗传定律被认为是现代生物学的三大基石。
下列有关叙述正确的是( )A.细胞学说是由施莱登和施旺两人创立并完善的B.细胞学说认为细胞分为原核细胞和真核细胞C.“细胞通过分裂产生新细胞”是对细胞学说的重要补充D.细胞学说揭示了生物界的统一性和多样性2.下列有关细胞和细胞学说的说法,错误的是( )A.施莱登与施旺运用了不完全归纳的方法得出了所有的动植物都是由细胞构成的,这一结论是不可靠的B.原核细胞和真核细胞均有细胞膜、细胞质,且均以DNA作为遗传物质C.细胞学说使动植物结构统一于细胞水平,有力地证明了生物之间存在亲缘关系D.理论和科学实验的结合促进了细胞学说的建立和完善3.下列说法正确的是( )A.病毒没有完整的结构B.所有生命活动离不开细胞C.细菌本身不能单独完成各种生命活动D.多细胞生物单个细胞能单独完成各种生命活动4.下列不属于生命系统的是( )A.池塘中的一条鲤鱼B.鲤鱼的肌肉C.肌肉细胞里的核酸D.湖中的所有生物5.下列选项中生命系统结构层次由简单到复杂的正确顺序是( )A.细胞—组织—器官—系统—生物体—种群—群落—生物圈—生态系统B.细胞—组织—器官—生物体—系统—种群—群落—生物圈—生态系统C.细胞—组织—器官—系统—生物体—种群—群落—生态系统—生物圈D.细胞—组织—器官—系统—种群—生物体—群落—生态系统—生物圈6.下列属于同一生命系统结构层次的是( )A.草履虫;培养皿中的大肠杆菌菌落;乌龟B.一片竹林;草坪中的所有杂草;共青湖的所有鲤鱼C.卧龙自然保护区;凤凰山;共青湖D.血液;心肌组织;皮肤7.下列关于细胞与生命活动关系的叙述,正确的是( )A.眼虫是一种多细胞生物,其生命活动离不开细胞B.多细胞生物体内的各类细胞均可以完成各项生命活动C.引起新型冠状病毒肺炎的病原体无细胞结构,其生命活动与细胞无关D.膝跳反射和缩手反射的完成需要多种分化的细胞密切配合8.生命系统存在着从细胞到生物圈各个不同的结构层次。
人教版高一语文第一册 Unit 1 单元测试题(含答案)大单元思维知识整合一、重点单词1.teenage adj.十几岁的(指13至19岁);青少年的→ teenager n.(13至19岁之间的)青少年2.ballet n.芭蕾舞3.volunteer n.志愿者→ voluntary adj.自愿的;志愿的4.debate n.辩论;争论vt.&vi.辩论;争论5.prefer vt.较喜欢→ preference n.偏爱6.content n.内容;主题adj.满意的;满足的vt.使满意7.movement n.动作;运动;活动→ move vt.&vi.移动;搬动vi.行动;搬家;进展;(机器等)活动8.greenhouse n.温室;暖房9.suitable adj.合适的;适用的→ suit vt.&vi.适合;合身;适宜n.西装;套装10.actually adv.事实上;的确→ actual adj.实际的;真实的11.challenge n.挑战;艰巨任务vt.怀疑;向……挑战12.title n.(书、诗歌等的)名称;标题;职称;头衔13.topic n.话题;标题14.confusing adj.难以理解的;不清楚的→ confused adj.糊涂的;迷惑的→ confuse vt.使糊涂;使迷惑15.fluent adj.(尤指外语)流利的;熟练的→ fluently adv.流利地;流畅地16.graduate vt.&vi.毕业;获得学位n.毕业生→ graduation n.毕业17.recommend vt.建议;推荐;介绍18.advanced adj.高级的;高等的;先进的→ advance n.前进;发展vi.前进;发展vt.发展;促进19.literature n.文学;文学作品20.extra adj.额外的;附加的21.obviously adv.显然;明显地→ obvious adj.明显的;显而易见的22.quit vt.&vi.停止;戒掉;离开(工作职位、学校等)23.responsible adj.负责的;有责任的→ responsibility n.责任;义务24.solution n.解决方法;答案→ solve v.解决;解答25.schedule n.工作计划;日程安排vt.安排;预定26.adventure n.冒险;奇遇27.youth n.青年时期;青春28.expert n.专家;行家adj.熟练的;内行的;专家的29.behavior n.行为;举止→ behave v.表现得体;表现30.generation n.一代(人)31.attract vt.吸引;引起……的注意(或兴趣)→ attraction n.吸引力;喜欢→ attractive adj.有吸引力的;引人入胜的;诱人的32.focus vt.&vi.集中(精力、注意力等);(使)调节焦距n.中心;重点;焦点33.addicted adj.有瘾的;上瘾的;入迷的→ addict n.对……入迷的人;吸毒成瘾的人v.使上瘾→ addiction n.入迷;上瘾34.adult n.成年人adj.成年的;成熟的二、重点短语1.be interested in ...对……感兴趣2.clean up 打扫干净3.be suitable for ...对……适合的4.prepare for ...为……做准备5.think about... 考虑......6.sign up (for sth.)报名(参加课程)7.be good at... 擅长......8.on one's own独自地;独立地;靠自己的力量9.so that 以便;为了;结果10.hand out 取出;把……拿出来;分发;施舍11.get used to... 习惯于;适应12.be responsible for... 对……负责13.be worried about ...担心;为……忧虑14.keep up with 跟上;赶上15.deal with... 处理;对待;对付16.do well in... 擅长;在……方面做得好17.try out for... 参加……的选拔;争取成为(团队等的一员)18.make a fire生火19.give a speech发表演讲20.have fun 玩得开心21.be attracted to... 喜爱22.focus on 集中;特别关注23.encourage sb. to do sth.鼓励某人干某事三、重点句型1.Going from junior high school to senior high school is a really big challenge.从初中到高中真是一项巨大的挑战。
一、选择题1.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .102.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R4.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④6.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④7.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件8.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x <9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤B .–11a ≤<C .–11a <<D .11a -<≤11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.设U =R ,集合2{|320}A x x x =++=, ()2{|10}B x x m x m =+++=,若UA B,则m =__________.14.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.15.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知命题31:01x p A xx ⎧⎫-=≤⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.若命题q 是p 的必要不充分条件,则m 的取值范围是____; 18.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.19.已知集合{}12A =,,{}12B =-,,则A B =______.20.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.三、解答题21.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围. 22.在“①AB B =,②RB A ⊆,③A B =∅”这三个条件中任选一个,补充在下面横线上,求解下列问题.问题:已知集合{}24120A x x x =-++>,集合{5}B x m x m =<<+.(1)若2m =,求AB ,()R A B ;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.已知集合(){}223120A x x a x a a =--+-<,集合{}2430B x x x =-+<.(1)当2a =时,求A B ;(2)命题P :x A ∈,命题Q :x B ∈,若P 是Q 的充分条件,求实数a 的取值范围. 24.集合(){}21|,A x y y x mx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.25.已知集合{}1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17S =,集合{}128,,,X x x x =是集合S 的一个含有8个元素的子集.(1)当{}1,2,5,7,11,13,16,17X =时,设,(1,8)i j x x X i j ∈≤≤, ①写出方程3i j x x -=的解(,i j x x );②若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值;(2)证明:对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.26.设全集是实数集R ,集合{}13A x x =-<<,{}22B x m x m =-<<+. (1)若AB =∅,求实数m 的取值范围;(2)若2B ∈,求A B .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解. 所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y }[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.4.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.5.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集. 故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.6.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.7.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.8.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤, 故选:D . 【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的; 反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.1或2【详解】解方程可得因为所以当m=1时满足题意;当即m=2时满足题意故m=1或2解析:1或2 【详解】{|21}A x x x ==-=-或,解方程()210x m x m +++=可得1x x m =-=-或因为UA B ,所以B A ⊆,当1m -=-即m =1时,满足题意;当2m -=-,即m =2时,满足题意,故m =1或2.14.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩k ≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈.整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意. 当1k =时,2210a a +-=,解得a N ∉,舍去. 当2k =时,220a a +=,解得a N ∉,舍去. 综上1k =-. 故答案为:1- 【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.15.【分析】根据是的必要不充分条件得到计算得到答案【详解】即;即是的必要不充分条件故得到解得故答案为:【点睛】本题考查了根据必要不充分条件求参数意在考查学生的推断能力 解析:102-<≤a【分析】根据p ⌝是q ⌝的必要不充分条件,得到{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,计算得到答案. 【详解】120x-≥,即102x <≤;()()22110x a x a a -+++<,即1a x a <<+.p ⌝是q ⌝的必要不充分条件,故{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,得到0112a a ≤⎧⎪⎨+>⎪⎩,解得102-<≤a . 故答案为:102-<≤a .【点睛】本题考查了根据必要不充分条件求参数,意在考查学生的推断能力.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥.【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<,又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥,故答案为:1a <-或 10a -<<或1a ≥.【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题. 17.【分析】求得命题又由命题是的必要不充分条件所以是的真子集得出不等式组即可求解得到答案【详解】由题意命题命题又由命题是的必要不充分条件所以是的真子集设则满足解得经验证当适合题意所以的取值范围是【点睛】 解析:(],2-∞【分析】 求得命题1:{|1}3p A x x =≤<,又由命题q 是p 的必要不充分条件,所以A 是B 的真子集, 得出不等式组1()03(1)0f f ⎧>⎪⎨⎪≥⎩,即可求解,得到答案.【详解】 由题意,命题311:0{|1}13x p A x x x x ⎧⎫-=≤=≤<⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.又由命题q 是p 的必要不充分条件,所以A 是B 的真子集,设()23f x x mx =--+,则满足2111()()30333(1)130f m f m ⎧=--+>⎪⎨⎪=--+≥⎩,解得2m ≤, 经验证当2m =适合题意,所以m 的取值范围是(],2-∞.【点睛】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A ,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.18.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.19.{-112};【解析】=={-112}解析:{-1,1,2};【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 20.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B (其中R 为△ABC 外接圆半径),故(1)正确;对于(2),x 21x +=--(1﹣x 21x+-)+1≤﹣1=﹣+1,当且仅当x =12)错误; 对于(3),若命题“x R ∃∈,使得()2310ax a x +-+≤”是假命题⇔命题:“∀x ∈R ,使得ax 2+(a ﹣3)x +1>0”恒成立.∵a =0时,不符合题意,∴20(3)40a a a ⎧⎨=--<⎩>∴1a 9<<,故(3)正确; 对于(4),∵()12a f a b c =++=-,∴3a +2b +2c =0,∴32c a b =--. 又f (0)=c ,f (2)=4a +2b +c ,∴f (2)=a ﹣c .(i )当c >0时,有f (0)>0,又∵a >0,∴()102a f =-<,故函数f (x )在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii )当c ≤0时,f (1)<0,f (0)=c ≤0,f (2)=a ﹣c >0,∴函数f (x )在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.三、解答题21.(1){}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)20a -≤≤.【分析】(1)代入a 的值,根据交集和并集的概念以及运算求解出,AB A B ; (2)根据AB B =分析出B A ⊆,由此列出关于a 的不等式,求解出a 的取值范围. 【详解】(1)当1a =时,{}04B x x =≤≤且{}33A x x =-≤≤, 所以{}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)因为AB B =,所以B A ⊆,且31a a +>-,所以B ≠∅, 所以1333a a -≥-⎧⎨+≤⎩,所以20a -≤≤. 【点睛】结论点睛:常见集合的交集、并集运算性质:(1)若A B B =,则B A ⊆;(2)若A B B ⋃=,则A B ⊆. 22.(1){|26}AB x x =<<,()R A B {|2x x =≤-或2}x >;(2)选①,21m -≤≤;选②,7m ≤-或6m ≥;选③7m ≤-或6m ≥. 【分析】先解二次不等式可得A ,进而可得A R ,(1)再利用交集并集的定义直接求解即可;(2)若选①,由B A ⊆列不等式求解即可;若选②,由52m +≤-或6m ≥即可得解;若选③,由52m +≤-或6m ≥即可得解.【详解】 集合{}24120{|26}A x x x x x =-++>=-<<,{|2R A x x =≤-或6}x ≥ (1)若2m =,{27}B x x =<<,则{|26}A B x x =<<,()R A B {|2x x =≤-或2}x >.(2)若选①A B B =,则B A ⊆,所以562m m +≤⎧⎨≥-⎩,解得21m -≤≤; 若选②R B A ⊆,则52m +≤-或6m ≥,解得:7m ≤-或6m ≥;若选③AB =∅,则52m +≤-或6m ≥, 解得:7m ≤-或6m ≥.【点睛】本题主要考查了集合的交并补的运算及由集合的包含关系求参,属于基础题. 23.(1)()2,3;(2)[]1,2.【分析】(1)把2a =代入化简A ,求解一元二次不等式化简B ,再由交集运算得答案; (2)由P 是Q 的充分条件,得A B ⊆.然后对a 分类求解A ,再由两集合端点值间的关系列不等式组求解.【详解】解:(1)当2a =时,22{|(31)20}{|23}A x x a x a a x x =--+-<=<<, 2{|430}{|13}B x x x x x =-+<=<<.{|23}{|13}{|23}A B x x x x x x =<<<<=<<;(2):P x A ∈,:Q x B ∈,若P 是Q 的充分条件,则A B ⊆. 因为(){}()(){}223120120A x x a x a a x x a x a =--+-<=+--< 当1a =时,A =∅,显然成立;当1a <时,{|21}A x a x a =-<<,{|13}B x x =<<,∴2113a a -⎧⎨⎩,解得a ∈∅; 当1a >时,{|21}A x a x a =<<-,{|13}B x x =<<,∴1213a a >⎧⎨-⎩,解得12a <. ∴实数a 的取值范围是[]1,2.【点睛】本题考查交集及其运算,考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.24.(Ⅰ){(1,2)}AB =;(Ⅱ)[3,)m ∈+∞.【分析】(Ⅰ)联立曲线与直线的方程求出交点,结果写成点集的形式;(Ⅱ)A B ⋂≠∅转化为当[0,3]x ∈时方程213x mx x -+-=-有解,当0x =时,方程不成立;当 (0,3]x ∈时,41m x x +=+,由对勾函数的单调性求出函数4()f x x x=+在(0,3]上的值域即可求得m 的取值范围.【详解】 (Ⅰ)24113203y x x x y x y x ⎧=-+-=⎧⎪=-⇒⎨⎨=⎩⎪≤≤⎩,所以{(1,2)}A B =; (Ⅱ)A B ⋂≠∅等价于当[0,3]x ∈时方程213x mx x -+-=-有解,即2(1)40x m x -++=在[0,3]x ∈上有解, 当0x =时,方程不成立,所以0不是方程的解;当 (0,3]x ∈时,41m x x +=+①, 因为函数4()f x x x=+在(0,2]上单调递减,(2,3]上单调递增,(2)224f =+=, 所以()[4,)f x ∈+∞,①式有解,则143m m +≥⇒≥.综上所述:[3,)m ∈+∞.【点睛】本题考查集合的交集运算,根据集合交集的结果求参数,属于基础题.25.(1)①(,)(5,2),(16,13)i j x x =②4,6.(2)证明见详解.【分析】(1)①根据两个元素之差为3,结合集合X 的元素,即可求得;②根据题意要求,写出集合X 中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得k ;(2)采用反证法,假设不存在满足条件的k ,根据差数的范围推出矛盾即可.【详解】(1)①方程3i j x x -=的解有:(,)(5,2),(16,13)i j x x =.②以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.(2)证明:不妨设128117x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k , 则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6, 从而127126()()2(126)749a a a b b b +++++++≥++++= ① 又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾.故假设不成立,结论成立.即对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.【点睛】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.26.(1)5m ≥或3m ≤- (2)当01m <≤时,()1,2A B m =-+;当14m <<时,()2,3A B m =-【分析】(1)若A B =∅,则23m -≥或21m +≤-,解得实数m 的取值范围; (2)若2B ∈则()0,4m ∈,结合交集定义,分类讨论可得A B . 【详解】解:(1)若A B =∅,则23m -≥或21m +≤-,即5m ≥或3m ≤-.所以m 的取值范围为5m ≥或3m ≤-.(2)∵2B ∈,则22m -<且22m +>,∴04m <<.当01m <≤时,()1,2AB m =-+; 当14m <<时,()2,3AB m =-. 【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.。
人教版小学一年级语文上册单元测试题【全套】小学语文第一册汉语拼音第一单元基础练习与检测(1)姓名得分xiǎo pénɡ you xià miɑn de yùn mǔ nǐ huì dú mɑ dúɡěi tónɡ wèi 一、小朋友, 下面的韵母你会读吗? 读给同位tīnɡ tinɡ听听。
(6分)ɑ u o ü e i xià miɑn de tú zhōnɡ cánɡ zhe zǐ xi kàn kɑn yònɡ二、下面的图中藏着“ɑ、o、e”,仔细看看,用nǐ zuì xǐ huān de yán sè bànɡ miáo chū lɑi你最喜欢的颜色棒描出来。
(15分)kàn yi kàn xià miɑn de tú li yǒu xuéɡuò de yùn mǔ mɑ shì zhe 三、看一看,下面的图里有学过的韵母吗?试着zài sì xiàn ɡé li xiě xià lɑi ( měi ɡè zì mǔ xiě sān ɡè)在四线格里写下来。
( 每个字母写 3 个)(15分)xiān shuō shuo xià miɑn de zì mǔ zhù zài nǎ yìɡé li zài xiě yi 四、先说说下面的字母住在哪一格里,再写一xiě写。
(12分)ɑ o e I u üdú yi dú bǐ yi bǐ xiě yi xiě五、读一读,比一比,写一写。
人教版高中英语必修第一册(高一)Unit 1 单元测试题本试卷满分150分,考试时间90分钟。
Ⅰ.阅读理解(共15小题;每小题2分,满分30分)ATwo good friends, Sam and Jason, met with a car accident on their way home one night. The next morning, Sam woke up blind. His legs were broken. The doctor, Mr. Lee, was standing by his bed, looking at him with a thoughtful expression. When he saw Sam awake, he asked, “How are you feeling, Sam?” Sam smiled and said, “Not bad, doctor. Thank you for doing the operation (手术).” Mr. Lee was moved by Sam. When he was leaving, Sam said, “Please don't tell Jason about it.” “...OK,” Mr. Lee replied.Months later when Jason's wounds (伤) healed, Sam was still very sick. Neither could he see nor walk. What he could do was just stay in his wheelchair all day long. At first, Jason stayed with him for a few days. But days later, Jason felt very discouraged and embarrassed to spend time staying with a disabled man like Sam. So he went to see Sam less and less. He made new friends. From then on, he didn't go to visit Sam any more. Sam didn't have any family or friends other than Jason. He felt very sad.Things went from bad to worse. Sam died a year later. When Jason came, Mr. Lee gave a letter to him. It was from Sam. In the letter Sam said, “Dear Jason, I am disabled. But I want you to be a healthy man. So I gave my eyes to you so that you can enjoy life as a healthy man. Now you have new friends. I'm glad to see that you are as healthy as usual. I'm glad you live a happy life. You are always my best friend...Sam”. When he finished reading the letter, Mr. Lee said, “I've promised that I will keep this secret until Sam is gone. Now you know it.” Jason stood there. Tears ran down his face.1.The reason why Sam thanked Mr. Lee was that ___________.A. Mr. Lee was very kind and friendly to himB. Mr. Lee came to see him early in the morningC. Mr. Lee did the operation according to his wishD. Mr. Lee saved both his and Jason's lives2.Which of the following happened according to the order of time?a. Jason made new friends.b. Sam gave his eyes to Jason.c. Sam and Jason were caught in a car accident.d. Sam was disabled and needed friends.e. Sam died and Jason knew the truth.A. d-a-c-b-eB. d-c-b-e-aC. c-b-d-a-eD. c-d-b-e-a3.We can infer from the passage that ___ .A. Sam drove too badly and caused the car accidentB. the unsuccessful operation led to Sam's blindnessC. Jason knew how Sam helped him before Sam diedD. it was Jason that became blind in the car accidentBIt was a terribly rainy wet winter day. While I was walking from the library after getting my university applications (申请) for the next year at the end of my lunch break,a man was walking towards me with two huge boxes of brochures (小册子).I thought, “What on earth is that man trying to do? Carry all those things?” Then all of a sudden he dropped them all! It was a terrible mess with hundreds of brochures all over the path in front of me! “Oh, no,” I thought. The man sat down and started trying to pick all of the brochures up. I couldn't believe how many people passed by without even caring at all.I thought, “I'm not going to be one of those people who don't care about this man. I'm going to help him.” So, even though it was the end of my lunch break from work and I would be late if I stopped to help him, I didn't mind. If I explained what happened, I was sure my boss wouldn't mind too much. So, I helped him pick them all up. Then I asked if he would like a hand in carrying a box to where he went. He said yes gratefully.I carried one of the heavy boxes. The box I had to carry was very heavy—as I'm quite a petite (娇小的) girl but I didn't complain. I just helped him with a big smile across my face. We got there and he thanked me very much for helping him out. He also gave me one of these lovely brochures about all the walks in and around the Bay of Plenty.What is a better way to spend my lunchtime than helping someone? Luckily, I wasn't eventhat late back to work, so nobody minded at all!4.The author was surprised that ____________.A. many people wouldn't help the manB. the man carried two large boxes of brochuresC. the brochures fell down to the groundD. many people picked up the brochures and went away5.In the author's opinion,if she helped the man she would ____________.A. miss her lunchB. arrive late for workC. be asked to pay for the brochuresD. be asked to carry a box of brochures 6.How did the man thank the author?A. He invited her for a walk.B. He wrote her a thankyou letter.C. He offered her a brochure.D. He smiled a big smile at her.7.Which of the following opinions does the author agree with?A. Never laugh at others.B. Carrying something light is wise.C. Never speak with a stranger.D. Helping others is much fun.CEverybody in this world is different from one another. But do you know that understanding differences can help you better manage your money?As we grow up, we gradually develop a set of our own values or beliefs. These are influenced by society, our family, the education we receive and so on. Once this value system is set up, it's not easy to change later in life.Financial experts say that everyone also has their own belief of how to manage their finances. This is part of our value system and it has a great impact on the way we look after our money.According to our different values, experts put us in three categories. They are: the ant, the cricket and the snail.The ant—works firstJust like ants who work heart and soul in summer in order to store food for winter, these people don't care about enjoying the moment. They work very hard and save money they earn so that they can enjoy life when they get old and retire. The ant loves to save but they could makemore out of their money if they were willing to invest (投资) in some funds and stocks with low risk.The cricket—fun firstThe cricket wants to enjoy everything now and doesn't think too much about the future. They even borrow money when they really want something. Many young people now belong to this group. These people have little savings. When they get old,they might have problems. They should learn to save and buy insurance.The snail—lives under pressureThe snail refers to people who make life difficult for themselves. They take big longterm loans (贷款) from the bank in order to buy things such as luxury (奢华的) houses. They are happy to take big loans even though they are not sure whether they can afford it. This can cause problems in the future. They should plan more carefully.8.People with the character of the snail would like to ____________.A. enjoy life at the moment without thinking much about the futureB. live a luxury life at all costsC. put work before everything elseD. take the risk of investing a large sum of money9.Our beliefs and values are affected by the following EXCEPT ___________.A. societyB. moneyC. educationD. our family 10.This passage mainly talks about ____________.A. the reaction between man and insectsB. the problems with dealing with moneyC. the insects in natureD. the spending nature of people 11.Which of the following has the character that the author prefers?A. The antsB. The cricketC. The snailD. None of the aboveDMost of us have suffered the pain of broken friendships. But most friendships can be mended. If there's a broken friendship you'd like to mend,try the following advice.Give your friend the benefit of the doubt.It's easy to assume (臆想) the worst. But if a friend had hurt you, he may not even realize he's done so.It's probably true that if someone hurts you, they should have known better. But the fact is that we are all human and we mess things up. You need to give people the benefit of the doubt because you will need that, as well.Be active to communicate with your friend.If you've been hurt, your instinct (本能) is probably to pull away and protect yourself. But if you do this, the friendship will likely die.“You need to reach out,” says 20-year-old Jamie, who has restored several broken friendships. “Friendships get broken when trust is lost. Both friends need to reach out and demonstrate they are trustworthy.”Be the first to apologize.Even if you were hurt, apologize for anything you did wrong. Give up your right to be proven right. Otherwise the conflict won't be forgotten,as it should be.Walk through the conflict together.Start by trying to see things from your friend's point of view. Talk about the problems openly but kindly.At first, Jessica didn't understand why Joyce stopped talking to her. Then Joyce finally explained that Jessica's teasing (取笑) bothered her. “I finally found out she was angry because I teased her in front of the boys in our class,” Jessica explained. Jessica meant nothing by her teasing and thought it shouldn't bother Joyce. But when she accepted that it was embarrassing to Joyce, she stopped. Then their friendship could heal.Accept the fact that friendships may change.Nicole and Michelle had been best friends since preschool (幼儿园). But in college, Michelle suddenly pulled away. “We didn't talk to each other for a while, then tried to reconcile.” Nicole says, “but we're just polite acquaintances now.”It's normal for friendships to change. Often two friends just drift apart. Problems come when one friend tries to hang on while the other friend lets go.If your friend isn't willing to work things out,accept it and move on. But if you are able to reconcile, you'll have a friendship that's triedandtrue!12.How many pieces of advice on mending friendships does the writer give us?A. Three.B. Four.C. Five.D. Six.13.Why did Joyce stop talking to Jessica?A. Because Joyce didn't understand Jessica.B. Because what Joyce did was embarrassing to Jessica.C. Because Joyce always made fun of Jessica in front of the boys.D. Because Jessica laughed at Joyce in front of the boys in their class.14.Which of the following is TRUE according to the text?A. You'd better study advice first if there's a broken friendship.B. Friendships will be broken if conflict is lost.C. You should be the first to apologize for anything you did wrong.D. It's unacceptable for friendships to change, for it's abnormal.15.What would be the best title for the passage?A. How to Get Rid of a FriendshipB. How to Heal a FriendshipC. What to Do With a FriendshipD. What to Solve By a FriendshipⅡ.阅读填句(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
一年级语文上册单元测试题(全册)一年级单元评估测试(1-4单元)一、读音节,把音节中的声母写在括号里。
kuò ()gé ()hā ()jiǎ()xǔ()zhǐ()chà ()suō()qià ()wā ()yā ()fù ()四、拼读下面的儿歌,按要求填写。
shàng kè líng dīng dāng xiǎng,wǒmen kuài kuài jìn kè táng,kè běn wén jù zhǔn bèi hǎo,děng zhe lǎo shī jìn kè táng.bǎ'ér gē zhōng dú qīng shēng de yīn jiè chāo xià lái五、把儿歌中读轻声的音节抄下来。
1、bǎ'ér gē zhōng de zhěng tǐrèn dú yīn jiè chāo xià lái2、把儿歌中的整体认读音节抄下来。
xiě chū dài yǒu xià lèi shēng mǔde yīn jié一年级日月水火练习题一、看拼音写汉字。
rìyuè shuǐhuǒshān shí二、想一想,然后填空。
gòng huà dìhuà shì日,共()画,第三画是()。
月,共()画,第二画是()。
水,共()画,第四画是()。
火,共()画,第二画是()。
三、照样子按笔顺写字。
日水火山四、读一读,记一记下面的节日。
一月一日yuān dàn 六月一日ér tóng jié三月八日fù nǚjié 七月一日dǎng shēng rì三月十二日zhíshù jié 八月一日jiàn jūn jié五月一日láo dòng jié 九月十日jiào shī jié五、读一读,猜一猜,写出谜底。
Unit 1 Teenage Life 单元测试一、听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What’s the weather like now?A. Sunny.B. Rainy.C. Snowy.2. What is Lucy doing?A. Reading a book.B. Doing homework.C. Writing a story.3. When does the movie begin?A. At 3:25.B. At 3:30.C. At 3:35.4. How will Mike go home?A. On foot.B. By bike.C. By bus.5. Which dress does the woman want to wear today?A. The black one.B. The red one.C. The blue one.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What happened to Tom?A. He fell over at home.B. His legs were injured.C. A man ran into him on the street.7. What do we know about the phone?A. It dropped and broke.B. Tom used it to call the police.C. It was stolen by someone else.听第7段材料,回答第8、9题。
人教版高中数学必修第一册第一章集合与常用逻辑用语单元测试卷一、单选题 1.命题“0x R ∃∈,0012x x +”的否定形式是( )A .x R ∀∈,12x x +> B .x R ∃∈,12x x +< C .x R ∃∈,12x x+> D .x R ∀∈,12x x+< 2.若{}1,4,A x =,{}21,B x =且B A ⊆,则x =( ).A .2±B .2±或0C .2±或1或0D .2±或±1或03.满足条件{1,2,3,4}{1,2,3,4,5,6}M ⊆的集合M 的个数是( )A .2B .3C .4D .54.设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .85.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( ) A .A B ∈B .A B =C .B A ⊆D .A B ⊆6.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A .{|1}x x ≤ B .{|2x x <-或1}x > C .{|12}x x ≤<D .{|1x x ≤或2}x >7.设,a b ∈R 且0ab ≠,则1ab >是1a b>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要8. “22530xx --<”的一个必要不充分条件是( ) A .13x -<<B .16x -<<C .132x -<<D .102x -<<二、多选题 9.下列不等式中可以作为21x <的一个充分不必要条件的有( )A .1x <B .201x <<C .10x -<<D .11x -<<10.设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A .x Q ∀∈,有x P ∈ B .x P ∃∈,使得x Q ∉ C .∃∈x Q ,使得x P ∉D .x Q ∀∉,有x P ∉11.已知集合{}2|1A y y x ==+,集合{}2(,)|1B x y y x ==+,下列关系正确的是( ).A .(1,2)B ∈ B .A B =C .0A ∉D .(0,0)B ∉12.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴德金分割.试判断,对于任一戴德金分割(),M N ,下列选项中,可能成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素三、填空题13.若A ={a 2,a +1,﹣3},B ={a ﹣3,2a ﹣1,a 2+1},A ∩B ={﹣3},则a =________.14.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________15.已知集合1A={x|x=(21),}9k k Z +∈,41B={x|x=,}99k k Z ±∈,则集合A ,B 之间的关系为________.四、双空题 16.已知全集{}2,3,5U =,集合{}2|0A x x bx c =++=,若{2}U A =,则b =_______,c =_______.五、解答题 17.已知集合{}2,,1,,,0y A x B x x y x ⎧⎫==+⎨⎬⎩⎭,若A B =,求20192018x y +的值.18.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>. (1)求()R C B A ⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.19.设集合{}12,A x a x a a =-<<∈R ,不等式 2280x x --<的解集为B . (1)当0a =时,求集合A ,B . (2)当A B ⊆时,求实数a 的取值范围.20.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题. (1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.21.已知两个关于x 的一元二次方程2440mx x -+=和2244450x mx m m -+--=,求两方程的根都是整数的充要条件.22.给定数集A ,若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合. (1)判断集合{4,2,0,2,4},{|3,}A B x x k k Z =--==∈是否为闭集合,并给出证明. (2)若集合A ,B 为闭集合,则A B 是否一定为闭集合?请说明理由. (3)若集合A ,B 为闭集合,且,AR BR ,求证:()A B R ⋃.参考答案:1.D 【解析】根据特称命题的否定是全称命题进行判断即可. 【详解】解:命题“0x R ∃∈,0012x x +”为特称命题,其否定为全称命题,则否定是:x R ∀∈,12x x+<, 故选:D . 【点睛】本题主要考查含有量词的命题的否定,结合特称命题的否定是全称命题是解决本题的关键. 2.B 【解析】利用条件B A ⊆,得24x =或2x x =,求解之后进行验证即可. 【详解】解:因为{}1,4,A x =,{}21,B x=,若B A ⊆,则24x =或2x x =,解得x =2或−2或1或0. ∈当x =0,集合A ={1,4,0},B ={1,0},满足B A ⊆. ∈当x =1,集合A ={1,4,1},不成立.∈当x =2,集合A ={1,4,2},B ={1,4},满足B A ⊆. ∈当x =−2,集合A ={1,4,−2},B ={1,4},满足B A ⊆. 综上,x =2或−2或0. 故选:B . 【点睛】本题主要考查集合关系的应用,考查分类讨论的思想,属于基础题. 3.B 【解析】根据子集和真子集的知识判断出集合M 的个数. 【详解】由题意可知:M应在{1,2,3,4}的基础上不增加元素或增加5,6中的一个,所以M的个数就是集合{5,6}的真子集个数,即集合M的个数是2213-=.故选:B【点睛】本小题主要考查子集和真子集,属于基础题.4.C【解析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:C U(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∈集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∈A∩B={3,5},图中阴影部分表示的集合为:C U(A∩B)={1,2,4},∈图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C.【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.5.D【解析】先分别求出集合A和B,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y,x∈A,y∈A}={0,1,2,3,4},∈A⊆B.故选D.【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.6.D【解析】先分别求出集合A 和集合集合B ,再求出R C A ,与集合B 求并集即可. 【详解】因为{}A |1x x =>,B {x |x 2=<-或x 2}>; R A {x |x 1}∴=≤;()R A B {x |x 1∴⋃=≤或x 2}>.故选D 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型. 7.D 【解析】由题意看命题“ab >1”与“1a b>”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断. 【详解】若“ab >1”当a =﹣2,b =﹣1时,不能得到“1a b >”,若“1a b >”,例如当a =1,b =﹣1时,不能得到“ab >1“,故“ab >1”是“1a b>”的既不充分也不必要条件,故选D . 【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题. 8.B 【解析】由集合的包含关系直接判断即可. 【详解】212530(3)(21)032x x x x x --<⇔-+<⇔-<<,因为1{|3}{|16}2x x x x -<<-<<,所以142x -<<是22530x x --<的必要不充分条件.故选:B. 9.BC 【解析】由题意解不等式,再由集合间的关系、充分不必要条件的概念逐项判断即可得解. 【详解】解:{}2111x x x <⇔-<<,因为{}11xx -<<∣{}1x x <∣, ()()2011,00,1x <<⇔-,()()1,00,1-{}11xx -<<∣, {}11xx -<<∣{}10x x -<<∣, 所以21x <的一个充分不必要条件有:201x <<或10x -<<. 故选:BC. 10.CD 【解析】由两集合交集的结果推出Q 是P 的真子集,再根据真子集的概念进行判断. 【详解】因为P Q Q ⋂=,且P Q ≠,所以Q 是P 的真子集, 所以x Q ∀∈,有x P ∈,x P ∃∈,使得x Q ∉,CD 错误. 故选:CD 【点睛】本题考查集合交集的概念、真子集的概念,属于基础题. 11.ACD 【解析】根据集合的定义判断,注意集合中代表元形式. 【详解】由已知集合{}1}[1,)A y y =≥=+∞,集合B 是由抛物线21y x =+上的点组成的集合,A 正确,B 错,C 正确,D 正确, 故选:ACD . 【点睛】本题考查集合的概念,确定集合中的元素是解题关键. 12.ABD 【解析】举特例根据定义分析判断,进而可得到结果. 【详解】令{|10,}M x x x Q =<∈,{|10,}N x x x Q =≥∈,显然集合M 中没有最大元素,集合N 中有一个最小元素,即选项A 可能;令{|}M x x x Q =<∈,{|}N x x x Q =≥∈,显然集合M 中没有最大元素,集合N 中也没有最小元素,即选项B 可能;假设答案C 可能,即集合M 、N 中存在两个相邻的有理数,显然这是不可能的; 令{|10,}M x x x Q =≤∈,{}10,N x x x Q =>∈,显然集合M 中有一个最大元素,集合N 中没有最小元素,即选项D 可能. 故选:ABD . 13.-1 【解析】根据题意,由A ∩B ={﹣3}可得3B -∈,由于B 中有3个元素,则分三种情况讨论,∈a ﹣3=﹣3,∈2a ﹣1=﹣3,∈a 2+1=﹣3,分别求出a 的值,求出A ∩B 并验证是否满足A ∩B ={1,﹣3},即可得答案. 【详解】A ∩B ={﹣3},则3B -∈,分3种情况讨论:∈33a -=-,则0a =,此时B ={﹣3,﹣1,1},A ={0,1,﹣3},A ∩B ={1,﹣3},不合题意,∈213a -=-,则1a =-,此时A ={1,0,﹣3},B ={﹣4,﹣3,2},此时A ∩B ={﹣3},符合题意,∈213a +=-,此时a 无解,不合题意; 综上所述1a =- 故答案为:﹣1. 【点睛】本题考查集合的交集运算与性质,注意集合中元素的特征:互异性、确定性、无序性,属于基础题. 14.2,3⎡⎫-+∞⎪⎢⎣⎭【解析】根据充分条件,必要条件和集合之间的关系等价法,即可求出. 【详解】因为p 是q 的充分非必要条件,所以()(),13,-∞-+∞是()(),312,m m -∞+⋃++∞的真子集.当312m m +≤+,即12m ≤时,31123m m +≥-⎧⎨+≤⎩,解得213m -≤≤,又因为12m ≤,所以2132m -≤≤; 当12m >时,()(),312,m m R -∞+⋃++∞=,显然()(),13,-∞-+∞是()(),312,m m -∞+⋃++∞的真子集.综上,实数m 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.故答案为:2,3⎡⎫-+∞⎪⎢⎣⎭.15.A=B 【解析】分别讨论k=2n 和k=2n-1,n ∈Z 时,集合A 所表示的集合,由描述法的定义即可知道集合A=B. 【详解】对于集合A ,k=2n 时,()14141,999n x n n Z =+=+∈ , 当k=2n-1时,()141421,999n x n n Z =-+=-∈ 即集合A=41,99n x x n Z ⎧⎫=±∈⎨⎬⎩⎭ ,由B=41,99k x x k Z ⎧⎫=±∈⎨⎬⎩⎭可知A=B ,故填:A=B. 【点睛】本题考查了集合之间的关系,考查了集合相等的判断,涉及了集合的表示法,是基础题. 16.8- 15【解析】根据补集的结果推出集合A ,可知方程20x bx c ++=的两个实数根为3和5,利用根与系数的关系即可求得b 、c . 【详解】 ∈{2}UA =,∈{3,5}A =,∈方程20x bx c ++=的两个实数根为3和5, ∈(35)8,3515b c =-+=-=⨯=. 故答案为:8-;15 【点睛】本题考查集合补集的概念、一元二次方程,属于基础题. 17.-1. 【解析】由集合相等,分析两集合中元素,列出方程组,解得,x y 后可求值. 【详解】∈集合{}2,,1,,,0,y A x B x x y A B x ⎧⎫==+=⎨⎬⎩⎭,∈201,1y x x =⎧⎪=⎨⎪≠⎩解得1,0x y =-=, 则2019201820192018(1)01x y +=-+=-. 故答案为:-1. 【点睛】本题考查集合的相等,解题时注意集合中元素的性质,特别是互异性. 18.(1)(){|21}R C B A x x ⋂=-≤≤(2){}|42a a -<<- 【解析】(1)根据集合的补集和并集的定义计算即可(2)根据并集的定义得出关于a 的不等式组,求出解集即可 【详解】(1)集合{}1B x x =.则{}|1R C B x x =≤ 集合{}|22A x x =-≤≤, 则(){}|21R C B A x x ⋂=-≤≤(2)集合{}|6M x a x a =<<+,且A M M ⋃=622a a +>⎧∴⎨<-⎩,解得42a -<<-故实数a 的取值范围为{}|42a a -<<- 【点睛】本题主要考查了交集、并集、补集的运算,在解答时需要将并集转化为子集问题来求解. 19.(1){}10A x x =-<<,{}24B x x =-<<;(2)}{2a a ≤. 【解析】(1)0a =代入即可求得A ,解一元二次不等式2280x x --<得B ;(2)注意讨论A =∅与A ≠∅的两种情况,最后求解并集即可.【详解】(1)解:当0a =时,{}10A x x =-<<,解不等式2280x x --<得:24x -<<,即{}24B x x =-<<. (2)解:若A B ⊆,则有:∈A =∅,即21a a ≤-,即1a ≤-,符合题意,∈A ≠∅,有211224a a a a >-⎧⎪-≥-⎨⎪≤⎩,解得:12a -<≤.综合∈∈得:}{2a a ≤.20.(1)(2,)+∞;(2)2[,)3+∞.【解析】(1)分离出m ,将不等式恒成立转化为函数的最值,求出2max ()x x -,即可求出m 范围;(2)分析讨论二次不等式对应方程的两个根的大小,写出解集A, x A ∈是 x B ∈的充分不必要条件得出A B ⊆,求出a 的范围.【详解】(1)命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题,得2x x m --<0在11x -≤≤时恒成立,∈2max ()m x x >-,得2m >,即{}2(2,)B m m =>=+∞.(2)不等式(3)(2)0x a x a ---<,∈当32a a >+,即1a >时,解集{}23A x a x a =+<<,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,∈22a +≥,此时1a >;∈当32a a =+,即1a =时,解集A φ=,满足题设条件;∈当32a a <+,即1a <时,解集{}32A x a x a =<<+,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,32a ∴≥,此时213a ≤<. 综上∈∈∈可得2[,)3a ∈+∞ 【点睛】本题主要考查了含参数一元二次不等式的解法,分类讨论的思想,以及充分必要条件的理解转化,集合的交集运算等,属于中档题.解决不等式恒成立求参数的范围问题,常采用分离参数求最值;解含参数的二次不等式时,常从二次项系数、判别式、两个根的大小进行讨论.21.1m =【解析】∈2440mx x -+=是一元二次方程,∈ 0m ≠.又另一方程为2244450x mx m m -+--=,且两方程都要有实根,∈()()212224160,1644450,m m m m ⎧∆=--≥⎪⎨∆=---≥⎪⎩ 解得5,14m ⎡⎤∈-⎢⎥⎣⎦. ∈两方程的根都是整数,∈其根的和与积也为整数, 即24,4,445,Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩∈m 为4的约数.又∈5,14m ⎡⎤∈-⎢⎥⎣⎦, ∈11,2m =±±当1m =-时,第一个方程可化为,其根不是整数; 当12m =-,第一个方程可化为2880x x +-=,其根不是整数; 当12m =,第一个方程可化为2880x x -+=,其根不是整数; 当1m =时,两方程的根均为整数,∈两方程的根均为整数的充要条件是 1m =. 考点:充分必要条件.22.(1)A 不为闭集合.B 为闭集合.证明见解析;(2)不是,理由见解析;(3)证明见解析.【解析】(1)根据新定义,确定集合中任间两个元素的和与差是否还是该集合中的元素可得; (2)可举反例说明;(3)用反证法,假设若A B R =,A R ,存在a R ∈且a A ∉,故a B ∈,同理,由B R ,存在b R ∈且b B ∉,故b A ∈,利用a b +及闭集合的定义得出矛盾.【详解】(1)因为4A ∈,但是448A +=∉,所以A 不为闭集合.任取,a b B ∈,设3,3,,a m b n m n Z ==∈,则333()a b m n m n +=+=+且m n Z +∈,所以a b B +∈,同理,a b B -∈,故B 为闭集合.(2)结论:不一定.令{|2,},{|3,}A x x k k Z B x x k k Z ==∈==∈,则由(1)可知,A ,B 为闭集合,但2,3,235A B A B ∈⋃+=∉⋃,因此,A B 不为闭集合.(3)证明:(反证法)若A B R =,则因为A R ,存在a R ∈且a A ∉,故a B ∈,同理,因为B R ,存在b R ∈且b B ∉,故b A ∈, 因为a b R A B +∈=⋃,所以,a b A +∈或a b B +∈,若a b A +∈,则A 为闭集合,()a a b b A =+-∈,与a A ∉矛盾,若a b B +∈,则B 为闭集合,()b a b a B =+-∈,与b B ∉矛盾,综上,存在R c ∈,使得c A B ∉⋃.∈A BR ⋃.【点睛】本题考查集合新定义问题,解题关键是理解新定义“闭集合”,把问题转化为利用,a b a b +-的属性得出结论.考查学生理解能力,创新意识.。
第一章物质及其变化单元测试(参考用时:70分钟)姓名:________________ 班级:________ 学号:________ 一、单选题(本大题共16小题)1.下列各组中两稀溶液间的反应可以用同一个离子方程式表示的是( )A.H2SO4溶液(足量)与K2CO3溶液;HNO3溶液(足量)与Na2CO3溶液B.CH3COOH溶液与KOH溶液;盐酸与NaOH溶液C.BaCl2溶液与Na2SO4溶液;Ba(OH)2溶液与H2SO4溶液D.H2SO4溶液与NaOH溶液;H2SO4溶液与Ba(OH)2溶液2.下列科技成果所涉及物质的应用过程中,发生的不是氧化还原反应的是( )A.“熬胆矾铁釜,久之亦化为铜”,该过程中发生的反应B.偏二甲肼用作发射“天宫二号”的火箭燃料,在发射过程中的反应C.“青蒿一握,以水二升渍,绞取汁”,诗句中体现屠呦呦对青蒿素的提取过程中的反应D.开采可燃冰,将其作为能源使用过程中的反应3.下列物质中,含有自由移动的Cl-的是( )A.KClO3溶液B.CaCl2溶液C.KCl晶体D.液态HCl4.氢氧化钠溶液和氨水都能使酚酞溶液变红,其原因是二者的溶液中均含有一种相同的粒子,该粒子是( )A.H+B.OH-C.H2O D.H5.在离子方程式x R2++y H++O2===m R3++n H2O中,对化学计量数m和R2+、R3+判断正确的是( )A.m=y,R3+是还原剂B.m=2y,R2+被氧化C.m=2,R3+是氧化剂D.m=4,R2+是还原剂6.医院里医生给病人做心电图时,在仪器与皮肤接触部位擦的一种电解质溶液是( )A.氯化钠溶液B.医用酒精C.葡萄糖溶液D.碘酒7.今有一种固体化合物X,X本身不导电,但在熔融状态下或溶于水时能够电离。
下列关于该化合物X的说法中,正确的是( )A.X一定为电解质B.X可能为非电解质C.X只能是盐类D.X可以是任何化合物8.下列反应方程式中有一个与其他三个在分类上不同,这个反应是( )A.3Fe+2O2=====△Fe3O4B.CO2+C=====△2COC.NH4HCO3=====△NH3↑+H2O+CO2↑D.CaCO3+CO2+H2O===Ca(HCO3)29.已知在碱性溶液中可发生如下反应:2M(OH)3+10OH-+3Cl2===2MO n-4+6Cl-+8H2O,则MO n-4中的M的化合价是( )A.+4 B.+5 C.+6 D.+710.常温下,下列三个反应均能发生:X2+2W2+===2X-+2W3+;Z2+2X-===2Z-+X 2;2W3++2Y-===2W2++Y2。
人教版一年级上册第一单元测试卷一、单选题(共10题;共20分)1.和数量一样的是( )。
A. ○○○○○B. ○○○○○○C. ○○○○○○○2.羽毛球和羽毛球拍哪一个数量少?( )A.B.3.小明有20枚纪念币。
小华的纪念币比小明多得多,是( )。
A. 48枚B. 14枚C. 21枚4.小东比小明多3多花,小红有8朵花,则小东有( )朱花。
A. 5B. 11C. 无法确定5.红红有46本书,东东的书比红红的少一些。
东东可能有( )本书。
A. 50B. 20C. 426.明明比小兰多13个球,也就是小兰比明明少( )个球。
A. 11B. 12C. 137.比48大一些的数是( )。
A. 52B. 30C. 45D. 968.小猫和鱼哪一个数量少( )A.B.9.少的是( )A. B.10.看图,一人一块糖,应该准备( )A. 7块B. 8块C. 9块D. 10块二、判断题(共5题;共10分)11.如图:图中共有4只小鸭子。
( )12.小明的爷爷今年70岁,小明比爷爷小一些。
( )13.0可以看成正数,也可以看成负数。
( )14.从6数到10,数了4个数。
( )15.5个苹果和第五个苹果意思一样。
( )三、填空题(共5题;共13分)16.教室里男生比女生多2个,女生就比男生少________个。
17.看图回答上面是一群小动物在一起休息。
从左数起小马在第________位上,从右数起小象在第________位。
小鹿的右边有________个小动物,左边有________个小动物。
一共有________个小动物。
18.小明有45本书,小红的书和小明差不多,小红可能有________本书。
19.用“多一些”“少一些”“多得多”或“少得多”填空。
鸡比鸭________ 鸭比鹅________鹅比鸭________ 鹅比鸡________20.一共有________只狗。
把左数第6只狗圈起来________。
高中英语人教版(2023)高一英语必修第一册模块测试题单元检测题(含答案,无听力音频有听力原文)模块测试题I. 听力部分第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
每段对话仅读一遍。
( ) 1.According to the man, what might help LindaA. Seeing a doctor.B. Reading more books.C. Talking to a schoolmate.( ) 2.What did some countries in Europe suggestA. Setting a good example for children.B. Stopping people smoking in public.C. Keeping people healthy.( ) 3.Why is Latin grammar so difficultA. It often has quizzes.B. Its words can change a lot.C. It has a large vocabulary.( ) 4.What disaster does the conversation refer toA. An earthquake.B. A volcanic eruption.C. A drought.( ) 5.Where are the two speakersA. In a classroom.B. In the school hall.C. In the school gym.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
每段对话或独白读两遍。
听第6段材料,回答第6和第7题。
( ) 6.How long does the man have to practise swimming every dayA. Two-and-a-half hours.B. Three-and-a-half hours.C. One-and-a-half hours.( ) 7.What will the man probably do laterA. Teach swimming.B. Continue swimming.C. Quit swimming.听第7段材料,回答第8至10题。
人教版高中数学选择性必修第一册第一章单元测试卷一、单选题 1.如图,空间四边形OABC 中,OA a =,OB b =,OC c =,且2OM MA =,BN NC =,则MN =( )A .122132a b c -++B .122121a b c +-C .221332a b c -++D .123122a b c -+二、解答题 2.如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,1AA c =,P 、M 、N 分别是CA '、CD '、C D ''的中点,点Q 在CA '上,且:4:1CQ QA '=.用空间的一个基底{},,a bc 表示下列向量:(1)AP ; (2)AM ; (3)AN ; (4)AQ .3.如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,1CB =,2CA =,1AA ,M 是1CC 的中点.求证:1AM BA ⊥.4.如图,正三棱柱111ABC A B C -的底面边长为a.(1)试建立适当的空间直角坐标系,并写出点A ,B ,1A ,1C 的坐标;(2)求1AC 与侧面11ABB A 所成的角.5.已知空间三点(0,2,3)A ,(2,1,6)B -,(1,1,5)C - (1)求以,AB AC 为边的平行四边形的面积;(2)若向量a 分别与,AB AC 垂直,且|aa 的坐标.6.设空间两个单位向量(),,0OA m n =,()0,,OB n p =与向量()1,1,1OC =的夹角都等于4π,求cos AOB ∠的值.7.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,使1⊥MN AB .8.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别是1DD ,BD ,1BB 的中点.(1)求证:EF CF ⊥;(2)求EF 与CG 所成角的余弦值; (3)求CE 的长.9.如图所示,直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=,12AA =,M 、N 分别是11A B 、1A A 的中点.(Ⅰ)求证:11A B C M ⊥;(Ⅰ)求线段BN 的长度;(Ⅰ)求异面直线1BA 与1CB 的夹角余弦值.10.如图,在平行六面体ABCD A B C D ''''-中,底面ABCD 是边长为a 的正方形,侧棱AA '的长为b ,且120A AB A AD ''=∠=∠︒.求:(1)AC '的长;(2)直线BD '与AC 所成角的余弦值.11.在长方体1111ABCD A B C D -中,点E ,F 分别在1BB ,1DD 上,且1AE A B ⊥,1AF A D ⊥.(1)求证:1A C ⊥平面AEF ;(2)当3AD =,4AB =,15AA =时,求平面AEF 与平面11D B BD 所成二面角的余弦值. 12.如图,在四棱锥S ABCD -中,底面ABCD 满足AB AD ⊥,AB BC ⊥,SA ⊥底面ABCD ,且1SA AB BC ===,0.5=AD .(1)求四棱锥S ABCD-的体积;(2)求平面SCD与平面SAB的夹角的余弦值.13.如图,把正方形纸片ABCD沿对角线AC折成直二面角,E,F分别为AD,BC的中点,O是原正方形ABCD的中心,求折纸后EOF∠的大小.14.在正四棱锥S ABCD-中,O为顶点在底面内的射影,P为侧棱SD的中点,且SO OD=.求直线BC与平面P AC所成的角.15.如图,在四面体ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)求证://BD平面EFGH;(3)设M是EG和FH的交点,求证:对空间任意一点O,有()14OM OA OB OC OD=+++. 16.如图,在棱长为a的正方体OABC O A B C''''-中,E,F分别是棱AB,BC上的动点,且AE BF=.(1)求证:A F C E''⊥;(2)当三棱锥B BEF'-的体积取得最大值时,求平面B EF'与平面BEF的夹角正切值. 17.如图,两条异面直线a,b所成的角为θ,在直线a,b上分别取点A',E和点A,F,使AA a'⊥,且AA b'⊥.已知A E m'=,AF n=,EF l=,求线段AA'的长.参考答案:1.A 【解析】根据空间向量的线性运算及其几何应用解题即可. 【详解】因为MN ON OM =-,又因为2233OM OA a ==,11()()22ON OB OC b c =+=+,所以211322MN a b c =-++.故选:A 2.(1)111222AP a b c =++ (2)1122AM a b c =++(3)12AN a b c =++ (4)114555AQ a b c =++【解析】(1)利用空间向量的加法法则可得出AP 在基底{},,a b c 下的表达式; (2)利用空间向量的加法法则可得出AM 在基底{},,a b c 下的表达式; (3)利用空间向量的加法法则可得出AN 在基底{},,a b c 下的表达式; (4)利用空间向量的加法法则可得出AQ 在基底{},,a b c 下的表达式. (1)解:A C A A AB BC a b c ''=++=+-, 则()1111122222AP AA A P AA A C c a b c a b c ''''=+=+=++-=++; (2)解:CD CC CD c a ''=+=-,AD AD AA b c ''=+=+,所以,()11112222AM AD D M AD CD b c c a a b c ''''=+=-=+--=++;(3)解:1122AN AD D N AD D C a b c '''''=+=+=++.(4)解:()1111455555AQ AA A Q AA A C c a b c a b c ''''=+=+=++-=++.3.证明见解析 【解析】以B 为原点建立如图所示空间直角坐标系,证明10BA AM ⋅=即可. 【详解】由题可以B 为原点建立如图所示空间直角坐标系,则1(0,0,0),,B A M A ⎛ ⎝⎭,则1(0,3,6),(1,BA AM ==-, 10330BA AM ⋅=-+=∴,∴1AM BA ⊥.4.(1)答案见解析;(2)6π【解析】取BC 的中点为O ,11B C 的中点为1O ,连结1OO ,连结OA ,以O 为原点,1,,OA OB OO 为x 、y 、z 轴的正方向建立空间直角坐标系,用向量法求解. 【详解】(1)因为三棱柱111ABC A B C -为正三棱柱,取BC 的中点为O , 取11B C 的中点为1O ,连结1OO ,则1OO Ⅰ面ABC .连结OA ,则OA ⅠBC . 以O 为原点,1,,OA OB OO 为x 、y 、z 轴的正方向建立空间直角坐标系,由底面边长为a,则()1110,0,0,,0,0,0,,0,0,,0,,0,,0,,2222a a a a O A B C A B C ⎫⎫⎛⎫⎛⎫⎛⎫⎛⎫--⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 所以点A ,B ,1A ,1C的坐标为:11,0,0,0,,0,,0,22a a A B A C ⎫⎫⎛⎫⎛⎫-⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)由(1)知:()1133=,,2=,,0=0,0,22222a a AC a a AB a AA ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,.设(),,n x y z =为面11ABB A 的一个法向量,则1·=0·=0n AA n AB ⎧⎨⎩,即1·=00·=0022n AA z an AB x y ⎧+⋅⎪⎛⎫⎨-⋅+⋅+= ⎪⎪ ⎪⎝⎭⎩, 不妨设x =1,则()1,3,0n =.设1AC 与侧面11ABB A 所成的角为02πθθ⎛⎫<≤ ⎪⎝⎭,则1111sin =cos ,2AC n AC n AC nθ⎛⎝===⨯⎛, 所以=6πθ,即1AC 与侧面11ABB A 所成的角为6π.5.(1)(2)()1,1,1a =或()1,1,1--- 【解析】(1)Ⅰ=(-2,-1,3),=(1,-3,2), Ⅰ||=,||=,cosⅠBAC==,ⅠⅠBAC =60°,ⅠS=||·||sinⅠBAC =7. (2)设向量a =(x,y,z ),则由a ·=0, a ·=0,| a |=,得Ⅰ或Ⅰa =(1,1,1)或(-1,-1,-1). 【点睛】本题主要考查向量模的坐标表示、向量垂直的坐标表示以及向量夹交余弦公式的应用,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行;(2)两向量垂直. 6.cos AOB ∠=或cos AOB ∠=【解析】根据已知可得||||cos4OC OA OC OA π⋅=⋅⋅1m n ===+,2221OA m n =+=,由此可以求出2n ,再根据2cos ||||OA OBAOB n OA OB ⋅∠==⋅,即可求得答案.【详解】因为两个单位向量(,,0)OA m n =,(0,,)OB n p =与向量(1,1,1)OC =的夹角都等于4π, 4AOC BOC π∴∠=∠=,||3OC =,||||1OA OB ==,||||cos 4OC OA OC OA π∴⋅=⋅⋅1==OC OA m n ⋅=+,2221OA m n =+=,221m n m n⎧+=⎪∴⎨⎪+=⎩22m n ⎧=⎪⎪⎨⎪=⎪⎩或22m n ⎧=⎪⎪⎨⎪=⎪⎩, 2OA OB n ⋅=, 2cos ||||OA OBAOB n OAOB ⋅∴∠==⋅,cos AOB ∴∠=cos AOB ∠=7.满足18CN =.【解析】以A 为原点建立空间直角坐标系,设(0,1,),02N t t ,通过10MN AB ⋅=求解. 【详解】如图,以A 为原点建立空间直角坐标系,则131,0,(0,0,0),,242M A B ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭, 设(0,1,),02N t t ,则13131,,,,,24422MN t AB ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 1MN AB ⊥,131120442MN AB t ⋅=-⨯+∴=,解得18t =,故可得满足18CN =即可.8.(1)证明见解析;(2(3【解析】(1)以D 为坐标原点建立空间直角坐标系,证明0EF CF ⋅=即可; (2)求出cos cos ,EF CG EF CG EF CGθ⋅=<>=⋅即可;(3)利用空间两点间距离公式即可求出. 【详解】如图,以D 为坐标原点建立空间直角坐标系,则()11110,0,,,,0,0,1,0,1,1,2222E F C G ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)111,,222EF ⎛⎫=- ⎪⎝⎭,11,,022CF ⎛⎫=- ⎪⎝⎭,则111110022222EF CF ⎛⎫⎛⎫⋅=⨯+⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,EF CF ∴⋅,∴EF CF ⊥;(2)设EF 与CG 所成角为θ, 111,,222EF ⎛⎫=- ⎪⎝⎭,11,0,2CG ⎛⎫= ⎪⎝⎭,则1cos cos ,3EF CG EF CG EF CGθ⋅=<>===⋅ 所以EF 与CG(3)CE==9.(Ⅰ)证明见详解;(Ⅰ(Ⅰ【解析】(Ⅰ)先由题中条件,根据线面垂直的判定定理,证明1C M ⊥平面11AA B B ,进而可得11A B C M ⊥;(Ⅰ)根据题中条件,得到AN AB ⊥,再由勾股定理,即可得出结果;(Ⅰ)连接1A C ,取1BB 的中点为P ,取1A C 的中点为O ,连接OM ,OP ,MP ,根据题中条件,得到OMP ∠即等于异面直线1BA 与1CB 所成的角或所成角的补角,再由题中数据,解三角形,即可得出结果. 【详解】(Ⅰ)因为直三棱柱111ABC A B C -中,1CA CB ==,所以11111C A C B ==; 又M 是11A B 的中点,所以111C M A B ⊥;又直棱柱中,侧棱与底面垂直,所以1A A ⊥平面111A B C ; 又1C M ⊂平面111A B C ,所以11A A C M ⊥; 因为1111A AA B A =,1A A ⊂平面11AA B B ,11A B ⊂平面11AA B B ,所以1C M ⊥平面11AA B B ,因为1A B ⊂平面11AA B B ,所以11A B C M ⊥;(Ⅰ)因为直棱柱中,侧棱与底面垂直,所以1A A ⊥平面ABC ; 又N 分别是1A A 的中点,12AA =, 则AN ⊥平面ABC ,1AN =;因为AB平面ABC ,所以AN AB ⊥,因为1CA CB ==,90BCA ∠=,所以AB =因此BN =(Ⅰ)连接1A C ,取1BB 的中点为P ,1A C 的中点为O ,连接OM ,OP ,MP , 因为M 是11A B 的中点,所以1//MP A B ,1//OM CB,且112MP A B ===112OM CB ===, 所以OMP ∠即等于异面直线1BA 与1CB 所成的角或所成角的补角; 取AC 中点为S ,连接OS ,SB ,则1//OS AA ,且112OS AA =, 因此//OS PB 且OS PB =,因此四边形OSBP 为平行四边形,所以OP SB === 因此,在OMP中,222565cos 2OM MP OP OMP OM MP +-+-∠==⋅,所以异面直线1BA 与1CB .【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.10.(1)AC '=(2【解析】(1)利用基底表示向量AC ',再利用数量积求模;(2)转化为利用向量数量积求直线夹角的余弦值. 【详解】A AB AD AC A =+'+', 所以()2AC AB AD AA ''=++()2222AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅BD BA BC BB ''=++, 所以()2BD BA BC BB ''=++()2222BA BC BB BA BC BA BB BC BB '''+++⋅+⋅+⋅AC AB BC =+,2AC a =()()BD AC BA BC BB AB BC ab ''⋅=++⋅+=-,cos ,2BD AC BD AC BD AC '⋅'<>===',所以直线BD '与AC11.(1)证明见解析;(2. 【解析】(1)利用向量证明1AC AE ⊥,1AC AF ⊥即可; (2)首先建立空间直角坐标系,算出平面11D B BD 的法向量,利用第一问的结论进一步得到平面AEF 的法向量,最后利用法向量的夹角求出二面角的余弦值. 【详解】(1)证明:因为()()110AC AE A B BC AE BC AE BC AB BE ⋅=+⋅=⋅=⋅+= 所以1AC AE ⊥因为()()110AC AF A D DC AF DC AF DC AD DF ⋅=+⋅=⋅=⋅+= 所以1AC AF ⊥ 因为AE AF A ⋂=,所以1A C ⊥平面AEF(2)分别以AB 、AD 、1AA 为x 轴、y 轴、z 轴,建立空间直角坐标系,连接AC ,由于:4AB =,3AD =,15AA =所以(4,3,0)BD =-,1(0,0,5)DD =设平面11DBB D 的法向量为(),,n x y z =,则10n DD =⋅,0n BD ⋅=所以50430z x y =⎧⎨-+=⎩,所以可取()3,4,0n =又由于:1AC ⊥平面AEF所以:1AC 看作是平面AEF 的法向量1(4,3,5)AC =-设平面AEF 和平面11D B BD 所成的角为θ,则11·12cos 25n AC n AC θ==所以平面AEF 和平面11D B BD .12.(1)14;(2【解析】(1)先求底面面积,再结合锥体体积公式即可求解;(2)分别以AD AB AS 、、所在直线为x 轴,y 轴、z 轴,建立如图空间直角坐标系,BC 为平面SAB 的一个法向量,且(1,0,0)BC =,求平面SCD 的一个法向量n ,根据cos cos ,|BC n θ=〈〉,即可求得答案. 【详解】 (1)SA ⊥平面ABCD ,AB AD ⊥,BC AB ⊥,且1SA AB BC ===,0.5=AD所以四棱锥S ABCD -的体积1111111133224ABCD V S SA ⎛⎫=⋅=⨯+⨯⨯= ⎪⎝⎭;(2)分别以AD AB AS、、所在直线为x 轴,y 轴、z 轴,建立如图空间直角坐标系, 如图:由1SA AB BC ===,12AD =可得:(0,0,0)A ,(0,1,0)B ,(1,1,0)C ,1(,0,0)2D ,(0,0,1)S ,由(1)知BC ⊥平面SAB ,∴BC 为平面SAB 的一个法向量,且(1,0,0)BC =;设(,,)n x y z =为平面SCD 的一个法向量, 则n DC ⊥,n SD ⊥,∴0n DC ⋅=,0n SD ⋅=,1(,1,0)2DC =,1(,0,1)2SD =-,∴102102x y x z ⎧+=⎪⎪⎨⎪-=⎪⎩,令1z =,则2x =,1y =-,∴(2,1,1)n =-,设平面SCD 与平面SAB 所成的二面角为θ,∴cos cos ,|BC n θ=〈〉=∴平面SCD 与平面SAB13.120 【解析】可连接BO ,DO ,根据正方形的对角线互相垂直有BO AC ⊥,DO AC ⊥,而折成的为直二面角,从而平面ABC ⊥平面ADC ,从而可得到BO ⊥平面ADC ,可得出OD ,OC ,OB 三直线两两垂直,从而可分别以这三直线为x ,y ,z 轴,建立空间直角坐标系.然后求出空间一些点的坐标,从而可以得出向量,OE OF →→的坐标,这样可根据向量夹角的余弦公式求出向量,OE OF →→的夹角,从而得出EOF ∠的大小. 【详解】折起后的图形如下所示,连接BO ,DO ,则BO AC ⊥,DO AC ⊥; 又平面ABC ⊥平面ADC ,平面ABC平面ADC AC =;BO ∴⊥平面ADC ;OD ∴,OC ,OB 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立空间直角坐标系 设正方形的对角线长为2,则可确定以下点坐标:(0O ,0,0),(0A ,1-,0),(1D ,0,0),11(,,0)22E -,(0B ,0,1),(0C ,1,0),11(0,,)22F ;∴1111(,,0),(0,,)2222OE OF →→=-=;∴11cos ,211||||22OE OF OE OF OE OF →→→→→→-<>===-; ∴,120OE OF →→<>=︒;120EOF ∴∠=︒.14.30 【解析】如图所示,以O 为原点建立空间直角坐标系O-xyz ,求得平面P AC 的一个法向量和直线BC 的方向向量,结合线面夹角公式即可求解. 【详解】如图所示,以O 为原点建立空间直角坐标系O-xyz .设OD =SO =OA =OB =OC =a (a >0),则A (a,0,0),B (0,a,0),C (-a,0,0),(0,,)22a aP -.则(2,0,0)CA a =,(,,)22a aa AP =--,(,,0)CB a a =.设平面P AC 的法向量为n ,则,,n AP n CA ⊥⊥即2002ax a aax y z x =⎧⎪⎨--+=⎪⎩,得0x =,令1y =,则1z = (0,1,1)n ∴=,则1cos ,2||||2CB n CB n CB n ⋅<>===.Ⅰ,60CB n <>=︒.Ⅰ直线BC 与平面P AC 所成的角为90°-60°=30°. 15.(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】(1)根据题意得出EF HG =可证; (2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=, 又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面;(2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 16.(1)证明见详解;(2)【解析】(1)以C 为坐标原点,,,CO CB CC '为,,x y z 轴建立空间直角坐标系,利用空间向量的数量积即可证明.(2)根据三棱锥B BEF '-的体积最大时,E ,F 分别是棱AB ,BC 上中点,过B 作BG EF ⊥,连接B G ',得出B GB '∠为平面B EF '与平面BEF 的夹角,在Rt B GB '中即可求解. 【详解】(1)以C 为坐标原点,,,CO CB CC '为,,x y z 轴建立空间直角坐标系,如图:设AE BF m ==,则(),,A a a a ',()0,,0F a m -,()0,0,C a ',(),,0E a m a -,(),,A F a m a '∴=---,(),,C E a m a a '=--,由220A F C E a am am a ''⋅=-+-+=,∴A F C E ''⊥.(2)13BE B EF FB V SBB '-'=⋅⋅,若三棱锥B BEF '-的体积取得最大值, 则BEFS取得最大值,()2211122228BEFa m m a SBE BF a m m -+⎛⎫=⋅⋅=⋅-⋅≤⋅=⎪⎝⎭, 当且仅当a m m -=时,即2am =时取等号, 即E ,F 分别是棱AB ,BC 上中点,过B 作BG EF ⊥,连接B G ',由三垂线定理可得, 得出B GB '∠为平面B EF '与平面BEF 的夹角,B B a '=,14BG BO ==所以tan B BB GB BG''∠==17 【解析】依题意,EF EA A A AF =+'+',两边平方,结合条件,即可求得公垂线段AA '的长. 【详解】依题意,EF EA A A AF =+'+',平方得 ()22222222EF EA A A AFEA A A AF EA A A A A AF EA AF =++=+'''''++⋅+⋅+''⋅',因为AA EA ⊥'',AA AF ⊥',,EA AF θ='或πθ-, 所以22222cos l m A A n mn θ=++±',故2A A l ='。
人教版第一册第一单元测试题(本卷满分120分,测试时间120分钟)一、基础知识(20分,每题4分)1.下列各组词语中,加点字的读音、字形错误最多的一项是()A.寥廓..liáo kuò沧.茫cāng 橘.子洲头jú百舸.争流gěB.峥嵘..zhēng róng 逶.迤wēi 浪遏.飞舟è跫.音不响qióngC.漪沦..yī lún 颓圮.qǐ星辉斑.斓bān 别离苼.箫shēngD.漫溯..màn shuò佝.偻gōu 撑支长蒿.gāo 坎坷.小路kē2.下列加点词语的解释,完全正确的一项是()A.鹰击.长空:搏击,这里形容飞得矫健有力。
怅.寥廓:这里用来表达由深思而引发激昂慷慨的心绪。
携来.百侣曾游:来往。
B.挥斥..方遒:奔放。
指点..江山:这里是评论的意思。
粪土..当年万户侯:作动词用,使成为粪土。
C.漫.江碧透:随便。
浪遏.飞舟:阻止。
峥嵘..岁月:不平凡、不寻常。
D.踟蹰..:心里迟疑,要走不走的样子。
隽永..:(言语、诗文)意味深长。
山岚..:山里的雾气。
3.下列对有关诗句的解说,有误的一项是()A.“万类霜天竞自由”是个总括性的句子,它突出了上文由“看”字引出的有关景物自由自在生长的共同特征。
B.“也许铜的要绿成翡翠,铁罐上锈出几瓣桃花”,作者以“翡翠”“桃花”等美好意象来表达对死水外美而内丑形象的极端厌恶之情。
C.《再别康桥》的第一节和最后一节都反复使用了叠字,增加了诗歌的节奏感,也使感情表达越来越沉重。
D.“我必须是你近旁的一株木棉,作为树的形象和你站在一起”,表达了女子渴望与男子有着平等的爱情关系,而不是作为依附者存在。
4.下列选项中,完全符合填入横线处内容的一项是( )新诗诚然完成了旧传统的打破和新传统的建立,但,并不意味着割断,而只能是,也就是推陈出新。
,也便没有可出之新。
A.打破或者叫决裂扬弃与吸收、批判与继承不推陈便不能出新而没有可推之陈B.决裂或者叫打破批判与继承、扬弃与吸收不推陈便没有可推之陈而没有出新C.打破或者叫决裂批判与继承、扬弃与吸收不推陈便没有可推之陈而没有出新D.决裂或者叫打破扬弃与吸收、批判与继承不推陈便不能出新而没有可推之陈5.下列文学常识的表述,有误的一项是()A.词最初称为“曲词”或“曲子词”,是配音乐的。
词大致可分为三类:小令;中调;长调。
一般认为:五十八字以内为小令,五十九至九十字为中调,九十一字以上为长调。
B.徐志摩,笔名云中鹤、南湖,浙江海宁人,现代诗人,“象征派”代表诗人。
著作有《志摩的诗》《翡冷翠的一夜》等,名作有《再别康桥》。
C.闻一多,新格律诗的代表诗人。
他创作诗注重“三美”(音乐美、绘画美、建筑美),《死水》就体现了他“三美”的主张。
著有诗集《红烛》《死水》等。
D.普希金,俄罗斯民族的伟大诗人,俄国近代文学的奠基人,俄罗斯文学语言的创建者。
代表作品主要有长篇诗体小说《叶甫盖尼·奥涅金》,长诗《茨冈》及小说《上尉的女儿》等。
二、阅读理解(45分)阅读一:阅读下面两首诗歌,完成6~10题。
(每题4分,共20分)废园闻一多一只落魄的蜜蜂,象个沿门托钵的病僧,游到被秋雨踢倒了的一堆烂纸似的鸡冠花上,闻了一闻,马上飞走了。
啊!零落的悲哀哟!是蜂底悲哀?是花底悲哀?黄鹂徐志摩一掠颜色飞上了树。
“看,一只黄鹂!”有人说。
翘着尾尖,它不作声,艳异照亮了浓密——像是春光,火焰,像是热情,等候它唱,我们静着望,怕惊了它。
但它一展翅,冲破浓密,化一朵彩云;它飞了,不见了,没了——像是春光,火焰,像是热情。
6.《废园》描绘了怎样一幅画面?有何特征?7.“是蜂底悲哀?是花底悲哀?”诗人并没有回答,你认为到底是谁的悲哀呢?说明理由。
8.“废园”和“蜜蜂”各有何象征意义?请结合闻一多生活的时代背景加以阐说。
9.徐志摩笔下的黄鹂有何象征意义?请具体分析。
10.两首诗中蜜蜂和鸟的形象,有何不同之处?阅读二:阅读下面的文字,完成11~15题。
(每题5分,共25分)论毛泽东诗词的认识价值与教育功能(节选)邓翠菊中国传统的“诗言志”、“诗教化”等观念,渗透到毛泽东的诗词艺术之中,转化成了毛泽东诗词的审美特征:诗教人生。
毛泽东诗词以其崇高的美学品格和丰富的哲理内涵产生美感和力量,对人的意志培养和人格塑造,具有独特的功能。
毛泽东的诗词,无论写景、咏物,或是抒情、喻理,都为言志。
这个“志”,在毛泽东诗词当中,首先表现为充盈其间的远大理想和崇高抱负,使毛泽东诗词有着真切、生动、壮丽的理想启示录和理想感召力。
毛泽东是中国大地上生长出来的与中国人民血肉相连的领袖,他同许多革命先驱一样,经历了一个由爱国主义者、民主主义者成长为共产主义者的思想发展过程。
他之所以能完成世界观的彻底转变,一方面是时代与环境对他的影响和造就,另一方面,是因为他从小就树立了远大的理想和抱负,并能随着时代的发展而不断变化自己的理想。
早年,毛泽东改诗立志,发出了“孩儿立志出乡关,学不成名誓不还”的宏愿。
在《七古·送纵宇一郎东行》中,毛泽东用有驾驶宇宙之力的鲲鹏自喻,以睥睨千古的口气表达了自己积极人世、搏击人生,去创造一番大事业的热情和渴望。
“怅寥廓,问苍茫大地,谁主沉浮?”时代的召唤激起了毛泽东强烈的社会责任感,驱动着他去主宰历史的命运,去拯救多灾多难的民族。
毛泽东诗词中充满了打破不平世界、建立新秩序的抱负和追求。
《念奴娇·昆仑》一词,在毛泽东那举重若轻,玩昆仑于股掌之间的豪迈气慨中,奔腾着他藐视古今的远大抱负和改天换地的雄心壮志。
毛泽东诗词中的主人公永远不会倾倒在强者面前承认自己的渺小,而是以坚韧不拔的意志和勇气对强者进行反抗和超越。
大革命失败后的井冈山岁月,面对风云变幻的北伐局势,毛泽东立志“唤起工农千百万,同心干”。
在艰苦卓绝的长征岁月里,在变幻莫测凶险异常的行军途中,毛泽东在马背上哼出了最壮美的诗篇,这里有“红军不怕远征难,万水千山只等闲”的坚强意志,有“不到长城非好汉”的坚定信念,也有“奔腾急,万马战犹酣”的壮阔气势,还有“更喜岷山千里雪,三军过后尽开颜”的胜利喜悦。
毛泽东的诗词蕴含着丰富的哲理内涵,它形象地揭示出许多宇宙和人生的根本原理,闪烁着深刻的理性光芒,如“世上无难事,只要肯登攀”,“子在川上曰:逝者如斯夫”,“不管风吹浪打,胜似闲庭信步”等诗句,把逻辑思维与形象思维相结合,使诗情与哲理融为一体,撼人心魄,成为鼓舞人们的意志的警句格言。
毛泽东诗词既表现了毛泽东坚强的意志品质,也反映出中国共产党人不屈不挠的奋斗精神。
这崇高的精神是中华民族的巨大财富,它产生的意志之力、道德之力,正是审美教育与道德教化的最佳契合。
毛泽东诗词是体现中国多元文化价值的艺术复合体。
共产主义的宏伟理想和爱国主义的崇高情操,无产阶级的博大胸襟和高尚伟大的人格,辩证唯物主义世界观指引下的雄辩远视和革命理想烛照的乐观主义,强烈丰富的情感和表露方式的脱俗,天才的智慧和高度的教养,出类拔萃的思维能力和鲜明突出的个性……交融一体,创造了毛泽东诗词独具的诗风,也使毛泽东诗词具有震撼人心的人格力量。
它的审美教育功效,“能使昏睡者惊醒;浑噩者聪慧;冷漠者燃烧;狭隘者博大;轻贱者深沉;软弱者坚强;游戏者庄重。
毛泽东的人品和诗品,拥有一份民族人格建设的价值”。
毛泽东诗词是一座巍峨的艺术丰碑,人们吟诵它时,那种崇高的审美感受便会油然而生,那种对于巨大力量的崇敬,对于独步时代的先进思想、意志和高尚情操的向往,强烈地激荡、震撼着读者的心旌。
这种崇高的审美感受所表现出来的艺术的道德感染、陶冶力是强烈而巨大的,鲜明地体现了毛泽东诗词的审美认识价值和教育功能。
11.阅读文章第一段,“诗教人生”有什么含义?12.“诗言志”,毛泽东诗词的“志”体现在哪些方面。
请分条加以概括。
13.作者在第四段列举“世上无难事,只要肯登攀”等诗句,用意是什么?14.你怎样理解“毛泽东诗词是一座巍峨的艺术丰碑”的评价?15.用自己的语言写出毛泽东诗词有哪些教育功能。
三、语言表达(15分)16.为下面的一段新闻拟写标题。
(不超过15字,4分)新华网巴黎6月26日电(记者李学梅)从明年起,全世界约13亿网民将有机会使用普通单词、产品商标、人名、城市名或者公司名等,自由创建个性化域名。
对国际互联网名称和编号分配公司(ICANN)26日在巴黎年会上作出的这一决定,人们意见不一:支持者认为这能使人们在网络上展示个性,并推动互联网发展;反对者认为此举只为谋利,会引起互联网运行的混乱。
17.假如你是2008年感动中国的颁奖人,请为获奖者龚天秀写段颁奖词。
要求:写清获奖者的主要事迹和获奖理由,不少于100字。
(6分)汶川大地震中,龚天秀的爱人王怀俊为了救她死在废墟里,为了完成丈夫的遗愿,也为了照顾自己唯一的儿子王涛,龚天秀用砖头和剪刀弄断自己被压的无法动弹的右腿,喝自己的血求生,终于等到了救援人员的到来,最终她凭借自己的毅力,赢得了生命,更赢得了尊重。
18.下面一段文字,有五处语病或标点符号误用现象,请找出并改正。
(5分)①亲爱的朋友们,你们的工作绝不是徒劳的。
②你们不声不响地为我们所做过的一切,我们牢牢地都记在心上。
③道路可能很长,困难仍然不少,因此光明永远在前面照耀。
④我们回国已将近七十多天,代表团成员分居三个省市,今天我还接到诗人的来信,他说:“想起在法国的那十八天,意味还是很长,许多美好的回忆是不会忘记的”。
⑤诗人可能把他火热的感情写成动人的诗篇。
⑥我呢?这几篇随笔只是向法国朋友的普通问候。
⑦倘使问起我这次访问的最大收获,我的回答便是:让我也把这余生献给人民友谊的事业!四、写作(40分)19.阅读下面的材料,根据要求作文。
有这样一则希腊神话,阿波罗爱上了西比尔,并且告诉她,不管多少年,只要她手里有尘土,她就能活下去。
随着时光流逝,西比尔日渐憔悴,终成空躯,却依然求死不得。
孩子们问吊在瓶中的西比尔:“你要什么?”她回答说:“我要死。
”要求:全面理解材料,但可以选择一个侧面、一个角度构思作文;自主确定立意,确定文体,确定标题;不要脱离材料的含意作文,不要套作,不得抄袭;不少于800字。