函数的值域
- 格式:ppt
- 大小:682.00 KB
- 文档页数:7
求函数值域的常用方法函数的值域(range)是指函数所有可能的输出值组成的集合。
求函数值域是函数分析中的一个重要问题,下面介绍一些常用的方法和技巧。
1.查表法:对于一些简单的函数,可以通过列出所有可能的输入值,计算出对应的输出值,然后将这些输出值整理成一个集合,即可得到函数的值域。
例如,对于函数f(x)=x^2,可以列出输入值x的所有可能取值,并计算出对应的输出值f(x),将这些输出值整理成一个集合,即得到函数的值域。
2.分析法:对于一些简单的函数,可以通过对函数的性质进行分析,得到值域的一些性质。
例如,对于函数f(x)=x^2,由于平方不会产生负数,所以函数的值域是大于等于0的实数集合。
3.奇偶性的分析:对于奇函数和偶函数,可以利用它们的奇偶性来求值域。
奇函数的值域关于原点对称,而偶函数的值域关于y轴对称。
例如,对于奇函数f(x)=x^3,可以通过观察函数的奇性得到函数的值域是所有实数。
再例如,对于偶函数f(x)=x^2,可以通过观察函数的偶性得到函数的值域是大于等于0的实数集合。
4.极值点的分析:对于一些有极值点的函数,可以通过极值点的性质来求值域。
例如,对于函数 f(x) = sin(x),由于正弦函数的最大值和最小值分别是1和-1,所以函数的值域是闭区间[-1, 1]。
5.利用导函数的性质:对于一些可导函数,可以通过导函数的性质来求值域。
例如,对于函数f(x)=e^x,导函数是f'(x)=e^x,由于指数函数的导数始终大于0,所以函数是递增的,值域是大于0的实数集合。
6.利用连续性的性质:对于一些连续函数,可以利用连续性的性质来求值域。
例如,对于函数f(x)=1/(x-1),由于分母为0时函数没有定义,所以值域是除去1的实数集合。
7.递归法:对于一些递归定义的函数,可以通过递归法来求值域。
例如,对于斐波那契数列定义函数f(n)=f(n-1)+f(n-2),其中f(0)=0,f(1)=1、通过逐步计算斐波那契数列的值,可以得到函数的值域是非负整数集合。
函数的值域一.知识点1.函数的值域的定义在函数y=f(x)中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。
3.求函数值域的方法①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域; ⑨几何意义法:由数形结合,转化斜率、距离等求值域。
二.应用举例例1.求下列函数的值域 ①2234x x y -+-= ②x x y 212-+= ③21x x y -+=解:①配方法[2,4] ②换元法:]45,(-∞ ③三角换元法:]2,1[- 形如:d cx b ax y +++=的函数可令)0(≥=+t t d cx ,则cd t x -=2转化为关于t 的二次函数求值。
形如含有22x a -的结构的函数,可用三角换元令x=acos θ求解。
例2.求下列函数的值域 ①521+-=x x y ②432+=x x y解:①反函数法或分离常数法:}21{R y y y ∈-≠且 ②判别式法:]43,43[-形如:)0(≠++=a bax d cx y 可用反函数法或分离常数法求; 形如:)0,(2122221121不同时为a a c x b x a c x b x a y ++++=可用判别式法求。
求函数的值域
函数经典定义中,因变量改变而改变的取值范围叫做这
个函数的值域,在函数现代定义中是指定义域中所有元素在
某个对应法则下对应的所有的象所组成的集合。
f:A→B中,
值域是集合B的子集。
如:f(x)=x,那么f(x)的取值范围就
是函数f(x)的值域。
求函数的值域的方法:
一、配方法
将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
二、常数分离
这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
三、逆求法
对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
四、换元法
对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
五、单调性
可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
六、基本不等式
根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
七、数形结合
可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
八、求导法
求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。
值域的表示方法值域,数学名词,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为y≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R图像法根据函数图象,观察最高点和最低点的纵坐标。
配方法利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
判别式法判别式法即利用二次函数的判别式求值域。
复合函数法设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
三角代换法利用基本的三角关系式,进行简化求值。
例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦用三角代换法比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
不等式法基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
函数的值域的求法
函数的值域指函数图象上所有点的纵坐标集合,表达式为:
D={y|y=f(x)},其中x∈值域。
值域的求法有以下几种:
(1)分析函数表达式:通过观察函数表达式,根据函数求值规律分
析它的值域,会涉及到因式分解、多项式求根等操作。
(2)绘制函数图像:将函数值域的求取绘制出来,一般的值域可以
采用绘制函数图像的方法来判定值域。
(3)函数的上下限:求解函数的上下限是求值域的重要方法,因为
知道上限和下限的值,好在只需要求函数的值,就可以判断该函数是否在
此值域内。
(4)极限法:函数的值域也可通过极限法求解,根据极限值是函数
值的上确定界,极限值是函数值的下界,就可以求出该函数的值域。
(5)交换法:交换法是利用倒数的性质,把函数乘上该函数的倒数,会得到一个新的函数,这个新函数的值域其实就是原函数的值域的倒数。
函数的值域函数的值域是函数值的集合,它是由函数的定义域与对应关系确定的。
函数的最值是函数值域的端点值,求最值与求值域的思路是基本相同的。
不论用哪种方法求函数值域,都一定要先确定其定义域。
1.确定函数值域的原则(1)y=f(x)以表格的形式给出时,值域为表格中实数y的集合;(2)y=f(x)以图象的形式给出时,值域为图象在y轴上的投影所覆盖的实数y的集合;(3)y=f(x)以解析式的形式给出时,值域由定义域和对应关系唯一确定。
2.基本初等函数的值域3.函数值域的求法注:一定要先求定义域(1) 配方法:主要解决二次或与二次函数有关的函数值域问题;例:。
x x y 的值域求22++-=练习:求函数的值域]1,0[212∈+-=x x x y )(]2,1[)54(log )2(22-∈++=x x x y的值域求例12--=x x y :(2) 换元法练习:求下列函数的值域x x y -+=141)(524)2(1+-=+x x y21)3(xx y -+=注:换元的目的:简化,转化。
的值域求例x x y :41312---=(3)利用单调性注:单调性的判断:1.观察法;2.定义法;3.求导法的值域求x x y --+=72)1(的值域求)2,0(sin 1)()2(π∈-+=x x x x f的值域求例xx y :4+=(4) 基本不等式法注: 一正、二定、三相等(1)求函数11()212y x xx=+>-的值域(2)的值域求13loglog3-+=xxy(3) 求函数1y xx=+在[2,3]x∈上的值域注:若不满足一正、二定、三相等,特别是取不到“=”,要考虑利用函数单调性求解。
例 求函数1x y x =-的值域(5)分离法目的:减少变量个数,转化为易于判断单调性的函数,或利用基本不等式求解练习(1)求2211()212x x y x x --=>-的值域。
函数的值域怎么求
要求函数的值域,需要先确定函数的定义域,然后使用一些方法来确定函数值的范围。
以下是一些常用的方法:
1. 查找函数的图像:通过绘制函数的图像,可以直观地观察函数的值域。
当图像是一条水平直线时,函数值域就是该水平直线的函数值;当图像是一个闭合图形时,函数值域就是该闭合图形包围的区域。
2. 分析函数的性质:根据函数的性质,可以推断函数值的范围。
例如,当函数是一个多项式时,由于多项式是连续函数,所以函数的值域是一个区间;当函数是一个幂函数时,其值域可能是负实数到正实数之间的区间。
3. 求解不等式:对于一些特殊类型的函数,可以通过求解不等式来确定函数的值域。
例如,对于一个有理函数,可以通过求解分母不等于零的条件来确定函数的值域。
4. 利用导数:对于可导的函数,可以通过求解函数的导数为零的点,并进行函数值的分析,来确定函数的值域。
需要注意的是,要求函数的值域需要确定函数的定义域,并注意函数的特殊性质。
对于某些函数,值域可能存在无界区间或者单点。
在求解函数的值域时,可以结合多种方法进行分析求解,以确定函数值的范围。
函数的值域知识点总结一、函数的值域的概念和含义1. 函数的值域定义函数的值域指的是函数在定义域内可以取得的所有可能的输出值的集合。
它是函数所有可能输出的值的集合,可以用集合的形式或者区间的形式进行表示。
例如,对于函数f(x) =x^2,其值域为非负实数的集合,即R+ = {y | y ≥ 0}。
2. 值域的含义值域可以帮助我们了解函数在定义域内的输出情况,它描述了函数所有可能的输出值。
通过求解函数的值域,我们可以确定函数的变化范围,找到函数的最大值和最小值,以及理解函数的性质和行为。
函数的值域在数学分析、微积分、代数等领域都有着重要的应用。
二、函数值域的求解方法1. 代数方法对于一些简单的函数,我们可以通过代数方法来求解函数的值域。
例如,对于线性函数f(x) = ax + b,其值域为整个实数集合R;对于二次函数 f(x) = ax^2 + bx + c,可以通过公式法求解其最值,从而确定其值域范围。
2. 图像法对于一些复杂的函数,我们可以通过绘制函数的图像来观察函数的变化趋势,从而求解函数的值域。
通过分析函数的图像,我们可以找到函数的最值点,从而确定函数的值域范围。
3. 极限方法对于一些较复杂的函数,我们可以通过求函数的极限来确定函数的值域。
通过求解函数在无穷远处的极限值,我们可以得到函数的最大值和最小值,从而确定函数的值域。
4. 排除法有时候,我们可以通过排除法来确定函数的值域。
通过观察函数的定义域和性质,我们可以排除一些无法取得的值,从而确定函数的值域范围。
三、常见函数的值域1. 线性函数对于线性函数 f(x) = ax + b,其值域为整个实数集合R。
线性函数的图像是一条直线,可以取得任意的实数值。
对于二次函数 f(x) = ax^2 + bx + c,可以通过公式法求解其最值,从而确定其值域范围。
当a > 0时,函数的最小值为f(-b/2a),值域为[f(-b/2a), +∞);当a < 0时,函数的最大值为f(-b/2a),值域为(-∞, f(-b/2a)]。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。