深大信工实验四信号的分解与合成实验
- 格式:doc
- 大小:267.00 KB
- 文档页数:9
实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。
1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。
2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。
3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。
【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。
4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim 和FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。
5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。
6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。
【报告要求】1. 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。
(写出理论推导,不能只有图) 非正弦周期信号可以通过Fourier 分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。
本实验需要设计一个高精度的带通滤波器和移相器,组成选频网络,实现方波Fourier 分解的原理性实验,实现方波合成的原理性实验。
简易波形分解与合成由下述四个部分功能电路—周期信号产生电路、波形分解电路(滤波器)、相位调节、幅值调节与合成电路组成。
1. 非正弦周期信号的分解与合成对某非正弦周期信号()f t ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即:000112()sin()sin(2)n n n n n n nf t c c t c c f t T πϕπϕ∞∞===++=++∑∑上式表明,各次谐波的频率分别是基波频率0f 的整数倍。
信号分解与合成实验报告实验报告实验目的:1.了解信号分解与合成的基本概念和原理;2.掌握信号分解与合成的具体方法;3.能够利用信号分解与合成技术分析和合成简单信号。
实验仪器:信号发生器、示波器、频谱分析仪。
实验原理:信号分解是指将一个复杂信号分解成一组频率、振幅和相位不同的简单信号。
信号合成是指根据给定的频率、振幅和相位信息,将多个简单信号合成为一个复杂信号。
实验步骤:1.将信号发生器的输出接入示波器的输入端,并调整信号发生器的频率、振幅和相位设置。
2.调节示波器以及频谱分析仪的参数,观察信号在示波器上的波形和幅频特性。
实验结果与分析:在实验中,我们选择了一个周期为1s,频率为1Hz,振幅为5V,相位为0的方波信号作为实验对象。
将该方波信号输入示波器中,观察到了方波的周期性波形。
接着,我们使用频谱分析仪对方波信号进行频谱分析。
观察到频谱图中只存在基频和其奇次谐波(3Hz,5Hz,7Hz,...),并且振幅逐渐衰减。
这说明方波信号可以被分解为一组频率不同、振幅逐渐衰减的简单信号。
然后,我们选择了多个简单信号(如正弦波、方波、三角波等)并分别输入到示波器中,调整其频率、振幅和相位,观察到了不同波形的复杂信号。
这表明信号分解与合成技术可以通过调节简单信号的频率、振幅和相位,实现对复杂信号的合成。
结论:通过本实验,我们了解了信号分解与合成的基本概念和原理,掌握了信号分解与合成的具体方法。
我们可以根据需要,对复杂信号进行分解,并利用合适的简单信号进行合成,从而实现对信号的分析和合成。
这对于信号处理和通信领域具有重要意义。
信号的分解与合成实验报告一、实验目的本次实验的主要目的是深入理解信号的分解与合成原理,通过实际操作和观察,掌握信号在时域和频域的特性,以及如何将复杂信号分解为简单的基本信号,并重新合成原始信号。
二、实验原理1、信号的分解任何周期信号都可以用一组正弦函数和余弦函数的线性组合来表示,这就是傅里叶级数展开。
对于非周期信号,可以通过傅里叶变换将其表示为连续频谱。
2、信号的合成基于分解得到的各个频率成分的幅度和相位信息,通过逆过程将这些成分相加,可以合成原始信号。
三、实验设备与环境1、实验设备信号发生器示波器计算机及相关软件2、实验环境安静、无电磁干扰的实验室环境四、实验内容与步骤1、产生周期信号使用信号发生器产生一个周期方波信号,设置其频率和幅度。
2、观察时域波形将产生的方波信号输入示波器,观察其时域波形,记录波形的特点,如上升时间、下降时间、占空比等。
3、进行傅里叶级数分解通过计算机软件对观察到的方波信号进行傅里叶级数分解,得到各次谐波的频率、幅度和相位信息。
4、合成信号根据分解得到的谐波信息,在计算机软件中重新合成信号,并与原始方波信号进行比较。
5、改变信号参数改变方波信号的频率和幅度,重复上述步骤,观察分解与合成结果的变化。
6、非周期信号实验产生一个非周期的脉冲信号,进行傅里叶变换和合成实验。
五、实验结果与分析1、周期方波信号时域波形显示方波具有陡峭的上升和下降沿,占空比固定。
傅里叶级数分解结果表明,方波包含基波和一系列奇次谐波,谐波的幅度随着频率的增加而逐渐减小。
合成的信号与原始方波信号在形状上基本一致,但在细节上可能存在一定的误差,这主要是由于分解和合成过程中的计算精度限制。
2、改变参数的影响当方波信号的频率增加时,谐波的频率也相应增加,且高次谐波的相对幅度减小。
幅度的改变主要影响各次谐波的幅度,而对频率和相位没有影响。
3、非周期脉冲信号傅里叶变换结果显示其频谱是连续的,且在一定频率范围内有能量分布。
实验四、信号的分解与合成实验实验报告(报告⼈09光信2)实验四信号的分解与合成实验报告⼀、实验⽬的1、进⼀步掌握周期信号的傅⾥叶级数。
2、⽤同时分析法观测锯齿波的频谱。
3、全⾯了解信号分解与合成的原理。
4、掌握带通滤波器的有关特性测试⽅法及其选频作⽤。
5、掌握不同频率的正弦波相位差是否为零的鉴别和测试⽅法(李沙育图形法)。
⼆、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加⽽成的。
对周期信号由它的傅⾥叶级数展开式可知,各次谐波为基波频率的整数倍。
⽽⾮周期信号包含了从零到⽆穷⼤的所有频率成分,每⼀频率成分的幅度均趋向⽆限⼩,但其相对⼤⼩是不同的。
通过⼀个选频⽹络可以将信号中所包含的某⼀频率成分提取出来。
对周期信号的分解,可以采⽤性能较佳的有源带通滤波器作为选频⽹络。
若周期信号的⾓频率0w ,则⽤作选频⽹络的N种有源带通滤波器的输出频率分别是0w 、02w 、03w 、04w 、05w ....0N w ,从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。
把分离出来的各次谐波重新加在⼀起,这个过程称为信号的合成。
因此对周期信号分解与合成的实验⽅案如图2-7-1所⽰。
本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的⼀系列有源带通滤波器电路上。
从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应频率的正弦波。
本实验所⽤的被测周期信号是100Hz的锯齿波,⽽⽤作选频⽹络的7种有源带通滤波器的输出频率分别是100Hz、200Hz 、300Hz 、400Hz 、500Hz 、600Hz 、700Hz ,因⽽能从各有源带通滤波器的两端观察到基波和各次谐波。
按照锯齿波的傅⾥叶级数展开式如下所⽰:111111211111f(t)=[sin()sin(2)sin(3)sin(4)sin(5)sin(6)....]23456w t w t w t w t w t w t -+-+-+∏可知,锯齿波的1~7次谐波的幅度⽐应为 1111111::::::234567。
深圳大学实验报告课程名称:信号与系统
实验项目名称:信号的分解与合成实验学院:生命科学学院
专业:生物技术
指导教师:张坤华
报告人:鲜欣邑学号:2011300054 班级: 1 实验时间:2013-04- 30
实验报告提交时间:2013-05-14
教务部制
送入Y轴,示波器采用X-Y方式显示,观察李沙育图形。
90、1800时,波形分别如图2-2-3当基波与三次谐波相位差为00(即过零点重合)、0
所示。
相位差=0º相位差=90º相位差=180º
图4-3 基波与三次谐波相位的观察
以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频率比,其应约为5:1。
实验内容:
1、观察信号分解的过程及信号中所包含的各次谐波。
2、观察由各次谐波合成的信号。
数据处理:
基波三次谐波
五次谐波七次谐波
基波与三次谐波的相位图、幅度比
基波与五次谐波的相位与幅度比
基波与七次谐波的相位、幅度比
基波与各次谐波的合成图形
深圳大学学生实验报告用纸
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在各个领域中发挥着重要的作用。
在本次实验中,我们将探索信号的分解与合成,以更深入地理解信号的特性和应用。
通过实验,我们希望能够掌握信号的分解与合成方法,并了解其在通信、音频处理等领域中的实际应用。
一、实验目的本次实验的主要目的是通过信号的分解与合成,掌握信号的基本特性和处理方法。
具体目标包括:1. 了解信号的基本概念和分类;2. 掌握信号的分解方法,如傅里叶级数分解;3. 掌握信号的合成方法,如傅里叶级数合成;4. 理解信号的频谱特性和时域特性。
二、实验原理1. 信号的基本概念和分类信号是随时间变化的物理量,可以用数学函数描述。
根据信号的特性,信号可以分为连续信号和离散信号。
连续信号在时间和幅度上都是连续变化的,而离散信号在时间和幅度上都是离散的。
2. 傅里叶级数分解傅里叶级数分解是将周期信号分解为多个正弦和余弦函数的和。
通过傅里叶级数分解,我们可以得到信号的频谱特性,即信号在频域上的分布情况。
傅里叶级数分解的公式为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))3. 傅里叶级数合成傅里叶级数合成是将多个正弦和余弦函数按照一定比例合成为一个周期信号。
通过傅里叶级数合成,我们可以根据信号的频谱特性合成出原始信号。
傅里叶级数合成的公式为:f(t) = Σ(cn*cos(nωt) + dn*sin(nωt))三、实验步骤1. 选择一个周期信号作为实验对象,记录信号的周期和幅度;2. 对信号进行采样,得到离散信号;3. 对离散信号进行傅里叶级数分解,得到信号的频谱特性;4. 根据信号的频谱特性,选择合适的正弦和余弦函数进行傅里叶级数合成;5. 比较合成信号与原始信号的相似性,并分析合成误差的原因。
四、实验结果与分析在实验中,我们选择了一个周期为T的正弦信号作为实验对象。
通过采样和傅里叶级数分解,我们得到了信号的频谱特性,发现信号主要由基频和谐波组成。
目录实验一函数信号发生器实验 (1)实验二常用信号分类与观察实验 (6)实验三信号的卷积实验 (10)实验四信号分解与合成实验 (12)实验五信号的采样和恢复实验 (17)实验六无失真传输系统实验 (21)实验七一阶、二阶系统的幅频特性测试实验 (24)实验八系统极点对系统频响特性的影响实验 (29)实验安排:第六周:实验一+实验二,第八周:实验三第十周:实验四第十二周:实验五第十二、十四周:实验七实验三、四、五、七需交实验报告。
交实验报告的截止时间分别为第九、十一、十三、十七周的周四。
实验一函数信号发生器实验一、实验目的1、了解函数信号发生器的操作方法。
2、了解单片多功能集成电路函数信号发生器的功能及特点。
3、熟悉信号与系统实验箱信号产生的方法。
二、实验内容1、用示波器观察输出的三种波形。
2、改变波形的频率、幅值、占空比、观察三种波形的变化,了解其中的一些极限值。
三、预备知识阅读原理说明部分有关MAX038的资料,熟悉管脚的排列及其功能。
四、实验仪器1、20M双踪示波器一台。
2、信号与系统实验箱一台。
五、实验原理1、MAX038的原理MAX038是单片精密函数信号产生器,它用±5V电源工作,基本的振荡器是一个交变地以恒流向电容器充电和放电的驰张振荡器, 同时产生一个三角波和矩形波。
通过改变COSC 引脚的外接电容和流入IIN引脚的充放电电流的大小来控制输出信号频率,频率范围为0.1Hz~20MHz。
流入IIN 的电流由加到FADJ 和DADJ 引脚上的电压来调制, 通过此两引脚可用外接电压信号调整频率和占空比。
MAX038 内部有一个正弦波形成电路把振荡器的三角波转变成一个具有等幅的低失真的正弦波。
三角波、正弦波和矩形波输入一个多路器。
两根地址线A0和A1从这三个波形中选出一个, 从OUT引脚输出2V(峰锋值)振幅的信号。
三角波又被送到产生高速矩形波的比较器 (由SYNC 引脚输出),它可以用于其它振荡器, SYNC 电路具有单独的电源引线因而可被禁止。
实验四信号的产生、分解与合成一、实验内容与要求设计并安装一个电路使之能够产生方波,并从方波中别离出主要谐波,再将谐波合成为原始信号或其他周期信号。
1.根本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计适宜的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比拟,分析它们的区别与原因。
2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比拟,并与根本要求局部作比照,分析它们的区别与原因。
3. 创新要求用类似方式合成其他周期信号,如三角波、锯齿波等。
分析项目的功能与性能指标:该项目一是产生方波,二是对方波进展分解与再合成。
其中主要涉与方波发生电路,滤波器以与加法电路。
为了使合成波形相位相等,还需要用到移相电路以与比例放大电路。
二、电路设计〔预习要求〕(1)电路设计思想〔请将根本要求、提高要求、创新要求分别表述〕:采用电压比拟器输出方波〔占空比达50%〕,用二阶带通滤波器分别滤出基波、三次、五次谐波。
将三次和五次谐波移相使其与基波相位一样,最后用运放同时实现比例与加法运算,得到叠加波形。
(2)电路结构框图〔请将根本要求、提高要求、创新要求分别画出〕:图1(3)电路原理图〔各单元电路结构、工作原理、参数计算和元器件选择说明〕:1 2 3 45图2如上图,整个电路分成五个局部,分别标注为局部一~局部五。
局部一是方波产生电路,利用电压比拟器。
通过电容的充放电形成电压振荡,振荡中进展电压比拟输出方波。
由频率的计算公式,令f=1kHz,分别取C1=100nF,R1=10k Ω,如此计算得。
取R3=10kΩ,如此R2=3.2kΩ,于是取其临近值3.3kΩ。
局部二是反相比例放大电路,该局部的功能是缩小方波幅值。
主要是为了配合局部三的滤波局部,使滤波的幅值不至于过大。
局部三为滤波局部。
信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在我们日常生活中无处不在。
了解信号的特性和处理方法对于电子通信、信号处理等领域有着重要的意义。
本实验旨在通过信号的分解与合成实验,深入探究信号的本质和处理技术。
一、实验目的本实验旨在通过实际操作,了解信号的分解与合成原理,并通过实验数据分析,探究不同信号类型的特点。
二、实验器材与方法1. 实验器材:示波器、信号发生器、电阻、电容、电感等。
2. 实验方法:a. 信号的分解:将复杂信号通过滤波器进行分解,观察信号的频谱特征。
b. 信号的合成:通过不同信号的叠加,合成新的信号,并观察合成信号的波形和频谱。
三、实验过程与结果1. 信号的分解a. 实验步骤:(1) 将信号发生器输出正弦波信号。
(2) 将正弦波信号输入到滤波器中。
(3) 调节滤波器的参数,观察输出信号的变化。
b. 实验结果:通过调节滤波器的参数,我们可以观察到输出信号的频率范围发生变化。
当滤波器的截止频率与输入信号的频率相等时,输出信号的幅值最大。
这说明滤波器可以将特定频率范围内的信号分离出来。
2. 信号的合成a. 实验步骤:(1) 将信号发生器输出两个不同频率的正弦波信号。
(2) 将两个正弦波信号通过电阻、电容、电感等元件进行叠加。
(3) 观察合成信号的波形和频谱。
b. 实验结果:通过调节叠加信号的幅值和相位差,我们可以观察到合成信号的波形和频谱发生变化。
当两个信号的频率相近且相位差为零时,合成信号的幅值最大。
这说明信号的合成是通过叠加各个频率分量得到的。
四、实验讨论与分析通过本实验,我们深入了解了信号的分解与合成原理,并通过实验数据分析,得出以下结论:1. 信号的分解可以通过滤波器将特定频率范围内的信号分离出来。
这为信号处理提供了重要的基础。
2. 信号的合成是通过叠加各个频率分量得到的,通过调节叠加信号的幅值和相位差,可以得到不同形态的合成信号。
3. 信号的频谱特征对于信号的分解与合成具有重要影响,通过观察频谱可以更好地理解信号的特性。
信的产生分解与合成 Company number【1089WT-1898YT-1W8CB-9UUT-92108】实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。
1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。
2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。
3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。
【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2.掌握滤波器的基本原理、设计方法及参数选择;3.了解实验过程:学习、设计、实现、分析、总结。
4.系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim和FilterPro等软件工具设计出具有一定工程意义和实用价值的电子电路。
5.掌握多级电路的安装调试技巧,掌握常用的频率测量方法。
6.本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。
【实验要求】1.实验要求:(1)根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。
(2)利用EDA软件进行仿真,并优化设计。
(3)实际搭试所设计电路,使之达到设计要求。
(4)按照设计要求对调试好的硬件电路进行测试,记录测试数据,分析电路性能指标。
(5)撰写实验报告。
2.说明要求先用软件设计并仿真,然后硬件实现。
【教学指导】实验分成原理解析、功能电路设计和仿真、系统设计及仿真、连接电路并调试、实验电路测试验收、撰写研究报告等几个阶段进行。
信号的合成与分解实验报告
《信号的合成与分解实验报告》
实验目的:通过合成和分解信号的实验,掌握信号的合成和分解原理,加深对信号处理的理解。
实验材料:
1. 信号合成器
2. 示波器
3. 信号分解器
4. 信号处理器
实验步骤:
1. 将信号合成器连接到示波器,调节合成器的频率和幅度,观察示波器上显示的波形变化。
2. 使用信号分解器将合成的信号分解为不同的频率成分,观察分解后的波形变化。
3. 将分解后的信号输入到信号处理器中,对不同频率成分进行处理,观察处理后的波形变化。
实验结果:
通过实验观察和数据分析,我们发现当不同频率和幅度的信号合成时,示波器上显示的波形会随之变化,呈现出复杂的波形图案。
而当合成信号经过分解器分解后,可以得到不同频率成分的波形,通过信号处理器的处理,可以对不同频率成分进行单独处理,实现对信号的精细控制。
实验结论:
通过这次实验,我们深入理解了信号的合成和分解原理,了解了信号处理的基本方法和技术,对信号处理有了更深入的认识。
同时,我们也认识到了信号处理在通信、音频、视频等领域的重要应用,对未来的研究和实践有了更清晰的方向。
总结:
通过这次实验,我们不仅掌握了信号的合成和分解原理,还加深了对信号处理的理解,为今后的学习和研究奠定了坚实的基础。
希望通过这次实验,能够激发更多同学对信号处理领域的兴趣,为科学技术的发展贡献自己的力量。
实验四--信号的产生、分解与合成信号的产生、分解与合成是现代信号处理的重要主题之一。
在实际应用中,我们需要对原始信号进行各种处理,例如降噪、去除干扰、滤波等。
在这些处理中,信号的分解与合成十分重要,可以帮助我们更好地理解信号的特性,以及优化信号处理方法。
信号的产生是指如何生成一种特定的信号。
在信号处理中,我们通常会使用计算机编程的方式生成信号。
例如,我们可以使用Python编程语言生成一个正弦波信号。
```pythonimport numpy as npimport matplotlib.pyplot as plt# 定义正弦波信号的频率和周期f = 2 # 频率2HzT = 1/f # 周期# 定义采样点数和采样周期N = 200 # 采样点数Ts = T/N # 采样周期# 生成离散时间序列n = np.arange(N) # 采样序列# 生成正弦波信号x = np.sin(2*np.pi*f*n*Ts)# 绘制信号波形plt.plot(n,x)plt.xlabel('n')plt.ylabel('x[n]')plt.title('sine waveform')plt.show()```该程序可以生成一个频率为2Hz的正弦波信号,并用图像形式显示出来。
其中,信号的采样点数为200,采样周期为信号周期的1/200。
信号的分解是指如何将一个原始信号分解成若干个基本信号的叠加。
在信号处理中,常用的基本信号有正弦波、余弦波等,它们是任意函数的四尔机展开式,可以表示任意信号。
因此,将一个原始信号分解成若干个基本信号的叠加可以帮助我们更好地理解信号的特性。
在信号处理中,常用的信号分解方法有Fourier变换和小波变换。
其中,Fourier变换是将一个周期信号分解成一系列频率为基频整数倍的正弦波和余弦波的叠加,即:$$x(t)=\sum_{n=-\infty}^{\infty}c_ne^{jn\omega_0t}$$其中,$\omega_0=2\pi/T$为基频,$c_n$为基频$n\omega_0$对应的复振幅。
信号的合成与分解实验报告信号的合成与分解实验报告引言:信号是信息传递的基本单位,我们生活中的各种声音、光线、电流等都是信号的表现形式。
了解信号的合成与分解对于我们理解信号传递的过程和原理非常重要。
本实验旨在通过实际操作,探究信号的合成与分解的原理和方法。
实验一:信号的合成在实验室中,我们使用了一个简单的信号发生器和示波器进行实验。
首先,我们选择了两个频率不同的正弦波信号,一个频率为f1,另一个频率为f2。
通过信号发生器将这两个信号合成为一个信号,并将合成后的信号输出到示波器上进行观察。
实验结果显示,合成后的信号在示波器上呈现出频率为f1和f2的两个正弦波信号的叠加形式。
通过调整信号发生器中两个信号的振幅和相位差,我们可以观察到不同形态的合成信号。
这说明信号的合成是通过叠加不同频率、振幅和相位的信号而实现的。
实验二:信号的分解在实验二中,我们使用了一个滤波器和示波器进行信号的分解实验。
首先,我们选择了一个复杂的信号,例如方波信号。
通过信号发生器将方波信号输入到滤波器中,然后将滤波器的输出连接到示波器上进行观察。
实验结果显示,滤波器输出的信号仅包含原始信号中特定频率范围内的成分,而滤波器之外的频率成分则被滤除。
通过调整滤波器的截止频率,我们可以观察到不同频率范围内的信号成分。
这说明信号的分解是通过滤波器选择性地通过或阻断不同频率的信号成分而实现的。
讨论:通过以上两个实验,我们可以得出以下结论:1. 信号的合成是通过叠加不同频率、振幅和相位的信号而实现的。
2. 信号的分解是通过滤波器选择性地通过或阻断不同频率的信号成分而实现的。
3. 信号的合成与分解是信号处理中常用的技术,广泛应用于通信、音频处理等领域。
结论:本实验通过实际操作,探究了信号的合成与分解的原理和方法。
通过信号的合成,我们可以将不同频率、振幅和相位的信号叠加在一起,形成复杂的信号。
而通过信号的分解,我们可以选择性地提取出特定频率范围内的信号成分。
实验四信号的产生、分解与合【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。
1. 基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;( 2) 设计合适的滤波器,从方波中提取出基波和 3 次谐波;( 3) 设计一个加法器电路,将基波和3 次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。
2. 提高要求设计 5 次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。
3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。
【实验目的】1. 掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。
4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。
5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。
6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。
【实验要求】1. 实验要求:(1) 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。
(2) 利用EDA软件进行仿真,并优化设计。
(3) 实际搭试所设计电路,使之达到设计要求。
(4) 按照设计要求对调试好的硬件电路进行测试,记录测试数据,分析电路性能指标。
(5) 撰写实验报告。
2. 说明要求先用软件设计并仿真,然后硬件实现。
【教学指导】实验分成原理解析、功能电路设计和仿真、系统设计及仿真、连接电路并调试、实验电路测试验收、撰写研究报告等几个阶段进行。
通过对设计任务中性能指标的理解,由学生自行设计电路和实验方案,经仿真研究后提交实验预习报告 (课前准备) ,教师审核并对关键电路、参数、测量线路进行方案论证后,进入实验室搭试功能电路,并完成实验参数的测量、作品验收。
实验四报告:信号的分解与合成实验摘要:信号的分解与合成是信号处理中的重要研究内容之一。
本实验旨在通过实际操作,了解并掌握信号的分解与合成的基本原理和方法。
我们通过对不同类型信号的分解与合成实验,研究了信号的频域分析、傅里叶级数分析、傅里叶变换分析等内容。
实验结果表明,在不同的分析方法下,我们能够准确地还原信号,并从中提取出我们所需的信息。
引言:信号的分解与合成是信号处理与通信领域中的基础工作。
信号分解是将原始信号分解为若干个基频分量的过程,而信号合成则是将这些基频分量按照一定的权重加权叠加得到原始信号。
信号的分解与合成在音频、视频、图像以及通信系统等领域具有广泛的应用。
方法与步骤:1. 实验器材准备:在本次实验中,我们使用了函数发生器、示波器和计算机等仪器设备。
2. 信号的产生和采集:首先,使用函数发生器产生不同类型的信号,如正弦信号、方波信号以及三角波信号。
然后,利用示波器对这些信号进行观测和采集,并将采集到的信号转移到计算机上进行进一步处理。
3. 信号的频域分析:通过使用傅里叶级数展开,我们可以将任意周期函数表示为一系列正弦函数或余弦函数的叠加。
利用计算机上的信号处理软件,我们可以对信号进行频域分析,得到信号的频谱信息。
4. 信号的时域分析:利用计算机上的信号处理软件,我们可以对信号进行时域分析,了解信号在时间轴上的变化规律,如信号的振幅、周期等特征。
5. 信号的傅里叶变换分析:傅里叶变换是一种将信号从时域转换为频域的数学工具。
利用计算机上的信号处理软件,我们可以对信号进行傅里叶变换分析,得到信号的频域表示。
6. 信号的逆变换与合成:在信号分解的基础上,我们可以通过对基频分量进行逆变换,将信号进行合成还原。
通过合成得到的信号与原始信号进行比较,可以验证我们分析和合成信号的准确性。
结果与讨论:实验结果表明,通过信号的分解与合成,我们能够准确地还原出原始信号,并提取到所需的信息。
在频域分析中,我们可以清楚地观察到信号的频谱特征,了解信号的频率分量。
信号系统硬件实验-信号的分解和合成实验要求1.实验前必须充分预习,完成指定的预习任务。
1)认真阅读实验指导书,进⾏必要的估算。
2)完成各实验“预习要求”中的内容。
3)熟练实验内容及各仪器的使⽤⽅法及注意事项。
2.对仪器操作及实验箱线路接线必须认真,确定⽆误后才能接通电源。
3.若在实验中发现有破坏性异常现象(例如有冒烟,发烫或异味),应⽴即关断电源,保持现场,报告实验⽼师,找出原因,排除故障。
经指导教师同意后再继续实验。
4.实验过程中应仔细观察实验现象,认真记录实验结果,所记录的实验结果应经指导教师审阅签字。
5.实验结束后,必须关断电源,拔出电源插头,并将仪器、设备、⼯具、导线等按规格整理。
6.实验后,每个同学必须按要求独⽴完成实验报告。
⽬录实验⼀⾮正弦信号的谐波分解 (1)⼀、实验⽬的 (1)⼆、预习要求 (1)三、实验仪器 (1)四、实验原理 (1)五、实验内容 (4)六、实验报告 (6)实验⼆波形的合成 (7)⼀、实验⽬的 (7)⼆、预习要求 (7)三、实验仪器 (7)四、实验内容 (7)五、实验报告 (8)实验⼀⾮正弦信号的谐波分解⼀、实验⽬的1、掌握利⽤傅⽒级数进⾏谐波分析的⽅法。
2、学习和掌握不同频率的正弦波相位差的鉴别与测试⽅法,并复习李沙育图形的观测⽅法。
3、掌握带通滤波器特性的有关测试。
⼆、预习要求1、阅读实验指导书的相关内容。
2、复习⾼等数学中傅⾥叶三⾓级数的原理,以及它在谐波分析中的应⽤、测量⽅法。
3、复习带通滤波器的原理及实验⽅法。
XDDL—01型实验箱、双踪⽰波器、信号发⽣器、万⽤表、直流电源。
四、实验原理1、在电⼒电⼦系统中最常⽤的是正弦交流信号,电路的分析以其作为基础。
然⽽,电⼦技术领域中常遇到另⼀类交流电,虽是周期波,却不是正弦量,统称为⾮正弦周期信号,常见的有⽅波、锯齿波等等。
它们对电路产⽣的影响⽐单频率的正弦波复杂得多,即使在最简单的线性电路中,也⽆法使⽤相量模型或复频域分析法,⽽必须去解形式复杂的微积分⽅程,⼗分⿇烦。
深圳大学实验报告课程名称:信号与系统
实验项目名称:信号的分解与合成实验学院:信息工程
专业:电子信息
指导教师:
报告人:学号班级: 4
实验时间:2016-05- 14
实验报告提交时间:2016-05-14
教务部制
送入Y轴,示波器采用X-Y方式显示,观察李沙育图形。
90、1800时,波形分别如图2-2-3当基波与三次谐波相位差为00(即过零点重合)、0
所示。
相位差=0º相位差=90º相位差=180º
图4-3 基波与三次谐波相位的观察
以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频率比,其应约为5:1。
实验内容:
1、观察信号分解的过程及信号中所包含的各次谐波。
2、观察由各次谐波合成的信号。
数据处理:
基波与三次谐波的相位图、幅度比
基波与五次谐波的相位与幅度比
基波与七次谐波的相位、幅度比
基波与各次谐波的合成图形
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。